Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4894-4906.doi: 10.3864/j.issn.0578-1752.2024.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning, Prokaryotic Expression and Ligand Binding Property of BminMinusOBP1 and BminPlusOBP1 from Bactrocera minax

WANG ZhiXiong1(), XU Dong2(), TIAN XiaoLi3, WAN Peng2, XIA Gen1, SONG XuRong1, WANG FuLian1, GUI LianYou1, ZHANG GuoHui1()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    2 Institute of Plant Protection, Soil and Fertilizer Research, Hubei Academy of Agricultural Sciences/Key Laboratory of Integrated Pests Management on Crops in Central China, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Wuhan 430064
    3 College of Life Science, Yangtze University, Jingzhou 434025, Hubei
  • Received:2024-07-29 Accepted:2024-09-19 Online:2024-12-16 Published:2024-12-23
  • Contact: ZHANG GuoHui

Abstract:

【Objective】To provide significant references for revealing the role of non-classic OBP gene in the olfactory recognition mechanism of Bactrocera minax, an in-depth study on the molecular characteristics of B. minax Minus-C OBP (BminMinusOBP1) and Plus-C OBP (BminPlusOBP1) and ligand binding properties of its heterologous expressed proteins was conducted.【Method】Based on the B. minax transcriptome database, BminMinusOBP1 and BminPlusOBP1 were analyzed, identified, and cloned. The sequence characteristics and tissue expression patterns of BminMinusOBP1 and BminPlusOBP1 were analyzed by bioinformatics software and RT-qPCR, respectively. Recombinant expression vectors pET32a/BminMinusOBP1 and pET32a/BminPlusOBP1 were constructed, and the recombinant expression vectors were transferred into prokaryotic cell BL21 (DE3) for heterologous expression. The binding ability of the bacterially expressed BminMinusOBP1 and BminPlusOBP1 proteins to 12 host plant volatiles was investigated by the fluorescence competitive binding assay using 1-NPN as the fluorescent probe.【Result】Sequence analysis indicated that BminMinusOBP1 contains an open reading frame (ORF) of 426 bp that encodes 141 amino acid residues, and there is a signal peptide composed of 16 amino acid residues at its N-terminus. The predicted molecular weight of the mature protein is 14.39 kDa and the isoelectric point is 4.86. The four conserved cysteine residues were found in BminMinusOBP1 amino acid sequence, which is a typical feature of Minus-C OBP of insects. The ORF of BminPlusOBP1 is 765 bp, encoding 254 amino acid residues, and 18 amino acid residues at its N-terminus are signal peptide sequences. The predicted molecular weight of BminPlusOBP1 mature protein is 27.29 kDa and the isoelectric point is 5.75. The sequence contains conserved cysteine residues and proline residues specific to Plus-C OBP. The tissue expression patterns of BminMinusOBP1 and BminPlusOBP1 demonstrated that the expression of these two genes was not high in the antennae, the main olfactory organ, but high in the head tissue where the antennae had been removed. The results of fluorescence competitive binding experiments showed that both BminMinusOBP1 and BminPlusOBP1 exhibited broad ligand binding spectra. BminMinusOBP1 can bind to eight of the 12 tested odor ligands, including methyl eugenol, linalool, acetoin, (1s)-(-)-α-pinene, methyl salicylate, benzaldehyde, 1-octanol and citral, with Ki values ranging from 9.02 to 22.13 μmol·L-1. BminPlusOBP1 can bind to all 12 tested odor ligands, with Ki values ranging from 7.40 to 16.74 μmol·L-1. 【Conclusion】BminMinusOBP1 showed medium or strong binding affinity for seven host plant volatile components such as linalool, acetoin, citral, etc. BminPlusOBP1 showed medium or strong binding affinity for 12 host plant volatile components such as methyl eugenol, raspberry ketone, methyl phenylacetate, etc. Information from this study can provide an important reference for a comprehensive understanding of the functional characteristics of each member of the odorant binding protein family in B. minax.

Key words: Bactrocera minax, odorant binding protein (OBP), prokaryotic expression, host volatile, olfactory recognition mechanism

Table 1

The primer sequences used in this study"

基因名称
Gene name
引物序列
Primer sequence (5′→3′)
用途
Purpose
BminGAPDH Sense: GCAAACTGTGGCGTGATG 组织表达
Tissue expression
Antisense: GGTGTTGGGACACGGAAT
BminTubulin Sense: CTGAACGCTGACTTACGC
Antisense: GAGATAACGTCCGTGTCG
qBminMinusOBP1 Sense: AGCCGATGATTGGAG
Antisense: CACATAATTTCGTACTGACT
qBminPlusOBP1 Sense: AGTGTTGTAAGGGCGGTAA
Antisense: CGTCATCAGCAGGTTCG
BminMinusOBP1 Sense: ATGAAATACTTTATTGTGATCCTT 基因全长验证
Gene full-length validation
Antisense: TTACTCTGATCTCTTTAATAGCTC
BminPlusOBP1 Sense: ATGAAGTATTTTGTAGGCTCACTT
Antisense: TTACTCCTCATCGCGCG
BminMinusOBP1 Sense: CGCGGATCCGATGATTGG (BamH I) 原核表达
Prokaryotic expression
Antisense: CCCAAGCTTTTACTCTGATCTCTTT (Hind III)
BminPlusOBP1 Sense: CGCGGATCCTATGACTTCGATGAT (BamH I)
Antisense: CCCAAGCTTTTACTCCTCATCGCG (Hind III)

Fig. 1

Alignment and phylogenetic analysis of BminMinusOBP1 and BminPlusOBP1 with other OBP sequences"

Fig. 2

The expression pattern of BminMinusOBP1 and BminPlusOBP1 in different tissues The data represent the mean values±SE; Different letters above error bars indicate significant differences among different tissues (P<0.05, Tukey’s HSD test). Uppercase and lowercase letters indicate females and males, respectively; Asterisks indicate significant difference (*P<0.05, **P<0.01, Student’s t-test) in the same tissue between female and male"

Fig. 3

SDS-PAGE analysis of expression and purification products of pET-32a/BminMinusOBP1 and pET-32a/BminPlusOBP1"

Fig. 4

Fluorescence binding assays for BminMinusOBP1 and BminPlusOBP1"

Table 2

Binding property of tested ligands to BminMinusOBP1 and BminPlusOBP1"

化合物
Compound
CAS No. 分子式
Formula
纯度
Purity (%)
来源
Source
BminMinusOBP1 BminPlusOBP1
抑制中浓度
IC50 (μmol·L-1)
结合常数
Ki (μmol·L-1)
抑制中浓度
IC50 (μmol·L-1)
结合常数
Ki (μmol·L-1)
丁香酚甲醚Methyl eugenol 93-15-2 C11H14O2 >99 MACKLIN 24.53 22.13 11.84 9.62
覆盆子酮Raspberry ketone 5471-51-2 C10H12O2 >99 MACKLIN - - 13.16 10.70
苯乙酸甲酯Methyl phenylacetate 101-41-7 C9H10O2 >99 TCI - - 16.68 13.56
柠檬烯(R)-(+)-Limonene 5989-27-5 C10H16 >95 TCI - - 11.29 9.18
芳樟醇Linalool 78-70-6 C10H18O >96 TCI 14.30 12.90 19.45 15.82
乙偶姻Acetoin 513-86-0 C4H8O2 >96 Sigma 15.43 13.92 20.59 16.74
α-蒎烯(1s)-(-)-α-Pinene 7785-26-4 C10H16 >96 TCI 12.50 11.27 11.84 9.62
水杨酸甲酯Methyl salicylate 119-36-8 C8H8O3 >99 TCI 13.32 12.01 15.07 12.25
苯甲醛Benzaldehyde 100-52-7 C7H6O >99.5 Aladdin 19.26 17.37 10.98 8.92
十一醇Undecanol 112-42-5 C11H24O >99 TCI - - 9.49 7.72
1-辛醇1-Octanol 111-87-5 C8H18O >99 TCI 11.29 10.18 16.56 13.47
柠檬醛Citral 5392-40-5 C10H16O >98 TCI 10.00 9.02 9.10 7.40
[1]
汪兴鉴, 罗禄怡. 桔大实蝇的研究进展. 昆虫知识, 1995, 32(5): 310-315.
WANG X J, LUO L Y. Research progress in the Chinese citrus fruit fly. Entomological Knowledge, 1995, 32(5): 310-315. (in Chinese)
[2]
GUI L Y, HUANG X Q, LI C R, BOITEAU G. Validation of harmonic radar tags to study movement of Chinese citrus fly. Canadian Entomologist, 2011, 143: 415-422.
[3]
王小蕾, 张润杰. 桔大实蝇生物学、生态学及其防治研究概述. 环境昆虫学报, 2009, 31(1): 73-79.
WANG X L, ZHANG R J. Review on biology, ecology and control of Bactrocera (Tetradacus) minax Enderlein. Journal of Environmental Entomology, 2009, 31(1): 73-79. (in Chinese)
[4]
陈振中, 邓安石, 朱群, 陈维彬, 许秀美, 郑和斌, 牛长缨. 球形诱捕器对柑橘大实蝇的诱杀效果. 华中农业大学学报, 2017, 36(2): 33-37.
CHEN Z Z, DENG A S, ZHU Q, CHEN W B, XU X M, ZHENG H B, NIU C Y. Attracting and killing effects of spherical traps on Chinese citrus fly, Bactrocera minax. Journal of Huazhong Agricultural University. 2017, 36(2): 33-37. (in Chinese)
[5]
李再园, 杜田华, CONSOLATHA C, 黄聪, 马跃坤, 王福莲, 张桂芬. 柑橘大实蝇成虫田间诱杀适期探究. 果树学报, 2018, 35(11): 1406-1412.
LI Z Y, DU T H, CONSOLATHA C, HUANG C, MA Y K, WANG F L, ZHANG G F. Study on the optimal field trapping period of Bactrocera minax. Journal of Fruit Science, 2018, 35(11): 1406-1412. (in Chinese)
[6]
王福莲. 柑橘大实蝇成虫防控技术基础研究[D]. 荆州: 长江大学, 2018.
WANG F L. Fundamental study on adult control of Bactrocera minax (Enderlein)[D]. Jingzhou: Yangtze University, 2018. (in Chinese)
[7]
KNOLHOFF L M, HECKEL D G. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annual Review of Entomology, 2014, 59: 263-278.

doi: 10.1146/annurev-ento-011613-161945 pmid: 24160429
[8]
郭线茹, 刘晓光, 汤清波, 丁识伯, 周洲, 李为争, 马继盛. 植食性昆虫寄主植物嗅觉搜寻述介. 生态学报, 2023, 43(11): 4411-4422.
GUO X R, LIU X G, TANG Q B, DING S B, ZHOU Z, LI W Z, MA J S. An introduction to phytophagous insect searching for host-plants through olfaction. Acta Ecologica Sinica, 2023, 43(11): 4411-4422. (in Chinese)
[9]
TURLINGS T C, ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 2018, 63: 433-452.

doi: 10.1146/annurev-ento-020117-043507 pmid: 29324043
[10]
HARE J D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annual Review of Entomology, 2011, 56: 161-180.

doi: 10.1146/annurev-ento-120709-144753 pmid: 21133760
[11]
LEAL W S. Pheromone reception//Topics in Current Chemistry. Berlin: Springer, 2005: 1-36.
[12]
LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58: 373-391.

doi: 10.1146/annurev-ento-120811-153635 pmid: 23020622
[13]
SUH E, BOHBOT J D, ZWIEBEL L J. Peripheral olfactory signaling in insects. Current Opinion in Insect Science, 2014, 6: 86-92.

pmid: 25584200
[14]
PELOSI P, ZHOU J J, BAN L, CALVELLO M. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 2006, 63: 1658-1676.

doi: 10.1007/s00018-005-5607-0 pmid: 16786224
[15]
刘伟, 王桂荣. 昆虫嗅觉中枢系统对外周信号的整合编码研究进展. 昆虫学报, 2020, 63(12): 1536-1545.
LIU W, WANG G R. Research progress of integrated coding of peripheral olfactory signals in the central nervous system of insects. Acta Entomologica Sinica, 2020, 63(12): 1536-1545. (in Chinese)
[16]
LI D, LI C, LIU D. Analyses of structural dynamics revealed flexible binding mechanism for the Agrilus mali odorant binding protein 8 towards plant volatiles. Pest Management Science, 2021, 77(4): 1642-1653.
[17]
XU C, YANG F, DUAN S, LI D, LI L, WANG M, ZHOU A. Discovery of behaviorally active semiochemicals in Aenasius bambawalei using a reverse chemical ecology approach. Pest Management Science, 2021, 77(6): 2843-2853.
[18]
LIU J, ZHOU T, LI C, LI R, YE X, TIAN Z. Reverse chemical ecology guides the screening for Grapholita molesta pheromone synergists. Pest Management Science, 2022, 78(2): 643-652.
[19]
HULL J J, PERERA O P, SNODGRASS G L. Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris. Insect Molecular Biology, 2014, 23(1): 78-97.
[20]
HEKMAT-SCAFE D S, SCAFE C R, MCKINNEY A J, TANOUYE M A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Research, 2002, 12(9): 1357-1369.
[21]
CHENG W N, ZHANG Y D, LIU W, LI G W, ZHU-SALZMAN K. Molecular and functional characterization of three odorant binding proteins from the wheat blossom midge, Sitodiplosis mosellana. Insect Science, 2020, 27(4): 721-734.
[22]
HUANG Y, HU W, HOU Y M. Host plant recognition by two odorant-binding proteins in Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pest Management Science, 2023, 79(11): 4521-4534.
[23]
CHEN J, YANG L, TIAN X, GUI L, WANG F, ZHANG G. Functional characterization of two antenna-enriched odorant-binding proteins From Bactrocera minax (Diptera: Tephritidae). Journal of Economic Entomology, 2021, 114(6): 2361-2369.
[24]
WU Z, KANG C, QU M, CHEN J, CHEN M, BIN S, LIN J. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics, 2019, 20(1): 646.
[25]
YAO R, ZHAO M, ZHONG L, LI Y, LI D, DENG Z, MA X. Characterization of the binding ability of the odorant binding protein BminOBP9 of Bactrocera minax to citrus volatiles. Pest Management Science, 2021, 77(3): 1214-1225.
[26]
XU P, WANG Y, AKAMI M, NIU C. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS ONE, 2019, 14(9): e0222193.
[27]
杨岭, 田晓丽, 桂连友, 王福莲, 张国辉. 柑橘大实蝇气味结合蛋白BminOBP6与其气味配体的互作机制. 中国农业科学, 2023, 56(7): 1311-1321. doi: 10.3864/j.issn.0578-1752.2023.07.009.
YANG L, TIAN X L, GUI L Y, WANG F L, ZHANG G H. Interaction mechanisms between Bactrocera minax odorant-binding protein BminOBP6 and its ligands. Scientia Agricultura Sinica, 2023, 56(7): 1311-1321. doi: 10.3864/j.issn.0578-1752.2023.07.009. (in Chinese)
[28]
周仁迪, 桂连友, 刘梅柯, 何章章, 杨璇, 华登科, 刘文茹, 姜振宇, 汤建涛, 孙康林. 柑橘大实蝇产卵器的超微结构观察(双翅目:实蝇科). 环境昆虫学报, 2023, 45(2): 543-554.
ZHOU R D, GUI L Y, LIU M K, HE Z Z, YANG X, HUA D K, LIU W R, JIANG Z Y, TANG J T, SUN K L. Ultrastructural observation of ovipositor of Bactrocera minax (Diptera: Tephritidae). Journal of Environmental Entomology, 2023, 45(2): 543-554. (in Chinese)
[29]
ZHANG T T, MEI X D, FENG J N, BERG B, ZHANG Y J, GUO Y Y. Characterization of three pheromone-binding proteins (PBPs) of Helicoverpa armigera (Hübner) and their binding properties. Journal of Insect Physiology, 2012, 58: 941-948.
[30]
杜田华, 华登科, 何章章, 王福莲, 桂连友. 柑橘大实蝇成虫对板栗挥发物的行为反应. 环境昆虫学报, 2018, 40(2): 474-484.
DU T H, HUA D K, HE Z Z, WANG F L, GUI L Y. Behavioral responses of adults Bactrocera minax (Diptera: Tephritidae) to volatile organic components from Castanea (Fagales: Fagaceae). Journal of Environmental Entomology, 2018, 40(2): 474-484. (in Chinese)
[31]
LIU L, ZHOU Q. Olfactory response of female Bactrocera minax to chemical components of the preference host citrus volatile oils. Journal of Asia-Pacific Entomology, 2016, 19: 637-642.
[32]
LIU Y, CUI Z, WANG G, ZHOU Q, LIU Y. Cloning and functional characterization of three odorant receptors from the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Frontiers in Physiology, 2020, 11: 246.
[33]
WU Z, CUI Y, MA J, QU M, LIN J. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species. Molecular Phylogenetics and Evolution, 2020, 151: 106858.
[34]
ONO H, HEE A K, JIANG H. Recent advancements in studies on chemosensory mechanisms underlying detection of semiochemicals in Dacini fruit flies of economic importance (Diptera: Tephritidae). Insects, 2021, 12(2): 106.
[35]
KHUHRO S A, LIAO H, ZHU G, LI S, YE Z, DONG S. Tissue distribution and functional characterization of odorant binding proteins in Chilo suppressalis (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 2017, 20(4): 1104-1111.
[36]
郑志川. 云斑天牛Minus-C OBPs与配基的结合与释放机制[D]. 武汉: 华中农业大学, 2017.
ZHENG Z C. The binding and releasing mechanism between Minus-C OBPs from Batocera horsfieldi (Hope) and ligands[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[37]
吴健, 张贺贺, 杨燕川, 陈湜, 杨建全, 王波, 陈家骅. 一种桔小实蝇Minus-C气味结合蛋白的分子克隆和结合特征分析. 江西农业大学学报, 2018, 40(2): 389-398.
WU J, ZHANG H H, YANG Y C, CHEN S, YANG J Q, WANG B, CHEN J H. Molecular cloning and binding characterization of the Minus-C odorant binding protein in Bactrocera dorsalis. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(2): 389-398. (in Chinese)
[38]
LI Z, ZHANG S, LUO J, CUI J, MA Y, DONG S. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. Journal of Insect Physiology, 2013, 59(3): 263-272.
[39]
WANG Q, ZHOU X, ZHANG K, QIN L, WU Q, DENG L, XU Z, GUO J. Ligand-binding properties of XaffOBP9, a Minus-C odorant-binding protein from Xyleborus affinis (Coleoptera: Curculionidae: Scolytinae). Frontiers in Physiology, 2024, 14: 1326099.
[40]
陈秀琳, 苏丽, 陈丽慧, 李怡萍, 仵均祥, 李广伟. 梨小食心虫Minus-C气味结合蛋白的分子克隆、表达谱及结合特性分析. 昆虫学报, 2018, 61(7): 771-783.

doi: 10.16380/j.kcxb.2018.07.003
CHEN X L, SU L, CHEN L H, LI Y P, WU J X, LI G W. Molecular cloning, expression profiling and binding characterization of a Minus-C odorant binding protein from the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Acta Entomologica Sinica, 2018, 61(7): 771-783. (in Chinese)
[41]
ZHOU J J, HE X L, PICKETT J A, FIELD L M. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: Genome annotation and comparative analyses. Insect Molecular Biology, 2008, 17: 147-163.
[42]
WANG W W, HAN K R, JING X F, LIU T X, ZHANG S Z. Odorant-binding protein CrufOBP1 in Cotesia ruficrus females plays a pivotal role in the detection of Spodoptera frugiperda larvae. International Journal of Biological Macromolecules, 2024, 274: 133491.
[43]
TU J, WANG Z, YANG F, LIU H, QIAO G, ZHANG A, WANG S. The female-biased general odorant binding protein 2 of Semiothisa cinerearia displays binding affinity for biologically active host plant volatiles. Biology, 2024, 13: 274.
[44]
WANG B, ZHANG Y, ZHANG C, LIAO M, CAO H, GAO Q. Identification and functional characterization of two antenna-specific odorant-binding proteins in Plutella xylostella response to 2,3- dimethyl-6-(1-hydroxy)-pyrazine. International Journal of Biological Macromolecules, 2024, 262: 130031.
[1] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[2] QIAN YanHong, SONG Shuai, WEN XiaoHui, NIU RuiHui, YANG YanQiu, ZHENG BoBin, YUAN ZiGuo, LUO ShengJun. Establishment and Application of a Tube-Based Chemiluminescence Immunoassay Method for Detecting Antibodies Against Trichinella spiralis in Pigs [J]. Scientia Agricultura Sinica, 2024, 57(22): 4578-4588.
[3] BIAN XianYu, LI SuFen, WANG JianXin, HAN Nan, LU HongTing, CHENG Xi, ZHOU JinZhu, TAO Ran, ZHU XueJiao, DONG HaiLong, ZHANG XueHan, LI Bin. Prokaryotic Expression, Antibody Preparation and Application of Major Non-Structural Proteins of Porcine Rotavirus [J]. Scientia Agricultura Sinica, 2024, 57(17): 3494-3506.
[4] YANG Ling, TIAN XiaoLi, GUI LianYou, WANG FuLian, ZHANG GuoHui. Interaction Mechanisms Between Bactrocera minax Odorant-Binding Protein BminOBP6 and Its Ligands [J]. Scientia Agricultura Sinica, 2023, 56(7): 1311-1321.
[5] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[6] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
[7] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[8] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[9] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[10] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[11] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[12] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[13] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[14] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[15] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!