Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3220-3233.doi: 10.3864/j.issn.0578-1752.2024.16.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Magnesium Fertilizer Dosage on Nutrient Absorption and Photosynthetic Characteristics in Peanuts

HU JiaYu1(), GAO BingYang1, GAO YiFan1, YUAN ShiLun1, QI Xin1, HUANG YuFang1, YAN JunYing2, ZHAO YaNan1(), YE YouLiang1()   

  1. 1 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
    2 Henan Province Soil and Fertilizer Station, Zhengzhou 450002
  • Received:2023-09-25 Accepted:2023-11-30 Online:2024-08-16 Published:2024-08-27
  • Contact: ZHAO YaNan, YE YouLiang

Abstract:

【Objective】The aim of this study was to explore the impact of an appropriate amount of magnesium (Mg) fertilizer on nutrient absorption and photosynthetic characteristics of peanuts for high yield and high efficiency, so as to provide the theoretical support for peanut high yield and high efficiency. 【Method】Field experiments were carried out from 2021 to 2022 to study the effects of four MgSO4 dosages (0, 20, 40, 60 kg·hm-2, referred to as T1, T2, T3, T4) on the growth and development, yield and nutrient absorption, photosynthetic characteristics, photosynthetic rate-limiting enzymes, and antioxidant enzymes of peanuts.【Result】The rational application of Mg showed a significant effect on peanut plant height, with the maximum value observed at 40 kg·hm-2 in different periods. The flower needle stage showed a significant effect of Mg on branching, with an average increase of 8.8% than that under T1. The treatments with Mg application had 3.5%-15.1% higher dry matter accumulation than that under T1. The yields, pods per plant, 100-pod weight, and 100-kernel weight significantly increased within the ranges of 7.6%-15.5%, 2.4%-18.1%, 1.5%-11.1%, and 3.5%-10.9%, respectively, reaching the maximum value under T3. At the maturity stage, the nutrient absorption of different treatments as follows: nitrogen (197.3, 206.8, 217.9, and 204.8 kg·hm-2), phosphorus (37.1, 40.1, 42.3, and 39.4 kg·hm-2), potassium (75.6, 79.7, 81.1, and 78.5 kg·hm-2), calcium (38.5, 45.4, 46.8, and 42.3 kg·hm-2), and Mg (20.9, 25.4, 26.6, and 23.6 kg·hm-2). The nutrient absorption reached the maximum under T3, which were 10.4%, 14.0%, 7.3%, 21.6%, and 27.3% higher than under T1, respectively. Reasonable application of Mg increased the SPAD, net photosynthetic rate, activity of rubisco enzyme, and antioxidant enzymes in peanut leaves. The SPAD value reached the maximum under T3 in each growth stage. At the pod-setting stage, the changes in Pn, Gs, Tr, and Ci due to Mg application were within the ranges of 2.7%-10.3%, -3.7%-15.8%, -6.6%-5.9%, and -8.2%- -3.0%, respectively. The activities of Rubisco, SOD, and CAT increased by 2.7%-9.1%, 0.6%-5.3%, and 2.1%-7.3%, respectively, while the PRO decreased by 3.3%-10.3%. 【Conclusion】Rational application of Mg fertilizer promoted peanut growth, increased nutrient absorption and yield, improved photosynthetic characteristics, and delayed leaf senescence. The recommended Mg application rate in soils with exchangeable Mg of 243 mg·kg-1 was 40 kg·hm-2.

Key words: high oleic acid peanut, Mg fertilizer, nutrient accumulation, photosynthetic rate, enzymatic activity

Fig. 1

The monthly temperature and precipitation of the test site in 2021 and 2022"

Fig. 2

Effects of magnesium fertilizer on the agronomic characteristics of peanuts Different lowercase letters indicate that there are significant differences among different magnesium fertilizer treatments at P<0.05. FP: Flowering pegging stage, PS: Pod-setting stage, PF: Pod-filling stage, MS: Mature stage. The same as below"

Fig. 3

Effects of magnesium fertilizer on the accumulation and distribution of dry matter of peanuts"

Table 1

Effects of magnesium fertilizer dosage on the yield and composition of peanuts"

年份
Year
处理
Treatment
产量
Yield (kg·hm-2)
单株果数
Pods per plant(No.)
百果重
100-pod weight (g)
百仁重
100-kernel weight (g)
出仁率
Kernel rate (%)
2021 T1 4717±84.03c 12.7±0.83b 148.9±6.05b 60.3±1.05c 72.9±1.97b
T2 5288±149.89b 13.6±0.97ab 153.5±6.28ab 63.5±2.11b 74.5±1.44ab
T3 5463±84.03a 15.0±1.06a 158.2±3.76a 66.9±1.43a 76.1±0.62a
T4 5156±110.44b 13.1±1.13b 151.1±1.35ab 62.4±2.06bc 74.3±2.07ab
2022 T1 4438±85.39c 16.4±0.52b 198.5±6.49b 72.5±3.10b 68.5±1.11b
T2 4875±239.79b 18.2±1.36a 214.9±14.90ab 76.6±1.78a 70.2±3.03ab
T3 5200±108.01a 19.0±0.68a 220.5±9.78a 77.7±1.16a 71.9±1.60a
T4 4700±135.40b 16.8±0.79b 215.1±11.23ab 75.9±3.28ab 69.4±0.38ab

Fig. 4

Effects of magnesium fertilizer dosage on the absorption and distribution of peanut nutrients"

Table 2

Effects of magnesium fertilizer dosage on SPAD values of peanut leaves"

年份
Year
处理
Treatment
生育时期 Growth stage
花针期
Pegging stage
结荚期
Pod-setting stage
饱果期
Pod-filling stage
成熟期
Mature stage
2021 T1 42.9±2.88a 47.8±1.03b 47.7±2.39b 42.5±2.30b
T2 43.4±2.05a 49.7±0.36a 49.1±2.03ab 43.3±1.27ab
T3 45.5±1.96a 51.4±0.85a 50.9±0.70a 45.7±0.95a
T4 44.6±0.50a 51.2±1.54a 50.7±0.68a 44.5±1.89ab
2022 T1 43.9±1.74b 50.9±1.47b 47.5±1.24b 46.2±1.37b
T2 45.1±1.52ab 52.3±1.32a 49.7±1.35a 48.2±1.43ab
T3 47.1±1.20a 52.6±1.49a 50.8±0.70a 48.8±1.37a
T4 46.8±0.92a 51.1±1.11a 50.6±1.89a 47.8±1.47ab

Table 3

Effects of magnesium fertilizer dosage on the photosynthetic characteristics of peanut leaves"

叶片 Leaf 上部叶片 Upper leaves 中部叶片 Middle leaves 下部叶片 Lower leaves
生育时期
Growth stage
处理
Treatment
净光合速率
Pn
(μmol·m-2·s-1)
气孔导度
Gs
(mol·m-2·s-1)
胞间CO2浓度
Ci
(μmol·mol-1)
蒸腾速率
Tr
(mmol·m-2·s-1)
净光合速率
Pn
(μmol·m-2·s-1)
气孔导度
Gs
(mol·m-2·s-1)
胞间CO2浓度
Ci
(μmol·mol-1)
蒸腾速率
Tr
(mmol·m-2·s-1)
净光合速率
Pn
(μmol·m-2·s-1)
气孔导度
Gs
(mol·m-2·s-1)
胞间CO2浓度
Ci
(μmol·mol-1)
蒸腾速率
Tr
(mmol·m-2·s-1)
花针期
Flowering pegging stage
T1 46.050±1.505b 0.726±0.041b 214.625±3.574a 5.369±0.110b
T2 47.663±1.617ab 0.740±0.042b 209.063±4.038ab 5.524±0.112ab
T3 48.888±1.111a 0.818±0.031a 205.625±6.023b 5.748±0.139a
T4 47.394±1.514ab 0.773±0.039a 211.625±3.099ab 5.717±0.225a
结荚期
Pod-setting stage
T1 46.517±0.695b 0.736±0.052ab 216.750±4.646a 5.477±0.129b 28.667±0.593b 0.551±0.044b 253.000±5.818a 4.298±0.245ab 14.533±0.213b 0.312±0.011c 259.750±6.124a 2.688±0.096b
T2 47.950±0.510a 0.709±0.035b 207.667±2.018b 5.644±0.233ab 29.450±1.773b 0.587±0.023ab 245.333±8.869ab 4.014±0.208b 15.725±0.618a 0.434±0.017b 251.667±3.174b 2.818±0.062ab
T3 48.925±1.333a 0.791±0.043a 202.750±2.184b 5.800±0.110a 31.625±0.945a 0.638±0.046a 232.333±13.958b 4.501±0.081a 14.833±0.568ab 0.451±0.042b 245.917±3.872b 2.749±0.055ab
T4 48.100±0.729a 0.759±0.021ab 208.083±6.652b 5.790±0.219a 29.433±1.414b 0.611±0.031a 240.750±8.582ab 4.191±0.204ab 15.200±0.310ab 0.506±0.019a 250.333±5.598b 2.879±0.150a
饱果期
Pod-filling stage
T1 28.517±1.507b 0.280±0.026ab 221.750±5.322a 4.538±0.043b 6.568±1.045b 0.035±0.003c 254.333±6.080a 2.378±0.090c 4.098±0.065b 0.022±0.002c 279.583±11.874a 0.526±0.031b
T2 29.083±1.483b 0.315±0.028a 210.583±4.289ab 4.633±0.150ab 8.978±1.398a 0.037±0.006c 248.583±3.957ab 2.733±0.151b 4.210±0.084ab 0.036±0.002a 273.000±9.926ab 0.652±0.015a
T3 31.433±0.712a 0.284±0.022ab 206.000±1.515b 4.747±0.052a 9.748±1.045a 0.063±0.007b 240.083±5.109b 3.202±0.082a 4.241±0.105a 0.032±0.002b 256.500±13.234b 0.678±0.012a
T4 29.308±0.722b 0.272±0.017b 209.083±1.424b 4.641±0.161ab 7.831±1.443ab 0.081±0.014a 239.750±17.236b 2.533±0.165c 4.169±0.058ab 0.022±0.002c 256.167±9.199b 0.545±0.021b
成熟期
Mature stage
T1 13.892±0.709b 0.111±0.007b 231.417±4.999a 2.610±0.070b 6.147±0.428c 0.033±0.004b 257.667±4.380a 0.976±0.088b 2.833±0.055c 0.021±0.001c 305.333±9.092a 0.458±0.006c
T2 15.075±1.093ab 0.120±0.005ab 223.667±4.009ab 2.803±0.098ab 7.793±0.220b 0.035±0.005b 251.750±8.500ab 1.288±0.109a 3.318±0.058a 0.030±0.002a 301.917±11.641ab 0.499±0.009a
T3 16.008±0.676a 0.128±0.009a 217.333±4.119b 2.886±0.088a 8.600±0.175a 0.042±0.005a 247.333±3.991b 1.130±0.175ab 3.346±0.050a 0.027±0.002b 296.500±14.180ab 0.481±0.010b
T4 14.825±0.988ab 0.109±0.014b 221.917±7.753b 2.720±0.191ab 7.646±0.420b 0.043±0.003a 250.583±6.602ab 1.176±0.182ab 3.078±0.099b 0.022±0.001c 285.333±9.572b 0.480±0.016b

Fig. 5

Effects of magnesium fertilizer dosage on enzyme activity of peanut leaves"

[1]
廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2): 161-166.
LIAO B S. A review on progress and prospects of peanut industry in China. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 161-166. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2020115
[2]
HU J Y, YANG Y, ZHANG H Y, LI Y H, ZHANG S H, HE X H, HUANG Y F, YE Y L, ZHAO Y N, YAN J. Reduction in nitrogen rate and improvement of nitrogen use efficiency without loss of peanut yield by regional mean optimal rate of chemical fertilizer based on a multi-site field experiment in the North China plain. Plants, 2023, 12(6): 1326.
[3]
徐霞, 赵亚南, 黄玉芳, 汪洋, 孙笑梅, 叶优良. 河南省玉米施肥效应对基础地力的响应. 植物营养与肥料学报, 2019, 25(6): 991-1001.
XU X, ZHAO Y N, HUANG Y F, WANG Y, SUN X M, YE Y L. Response of fertilization effect of maize to inherent soil productivity in Henan Province. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 991-1001. (in Chinese)
[4]
SENBAYRAM M, GRANSEE A, WAHLE V, THIEL H. Role of magnesium fertilisers in agriculture: plant-soil continuum. Crop and Pasture Science, 2015, 66(12): 1219.
[5]
CHEN Z C, PENG W T, LI J, LIAO H. Functional dissection and transport mechanism of magnesium in plants. Seminars in Cell & Developmental Biology, 2018, 74: 142-152.
[6]
田贵生, 陆志峰, 任涛, 鲁剑巍. 镁肥基施及后期喷施对油菜产量与品质的影响. 中国土壤与肥料, 2019(5): 85-90.
TIAN G S, LU Z F, REN T, LU J W. Effects of spraying magnesium on the yield and quality of oilseed rape under different magnesium fertilizer application rates. Soil and Fertilizer Sciences in China, 2019(5): 85-90. (in Chinese)
[7]
WANG Z, HASSAN M U, NADEEM F, WU L Q, ZHANG F S, LI X X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Frontiers in Plant Science, 2020, 10: 1727.
[8]
JIA Y M, XU H, WANG Y W, YE X, LAI N W, HUANG Z R, YANG L T, LI Y, CHEN L S, GUO J X. Differences in morphological and physiological features of citrus seedlings are related to Mg transport from the parent to branch organs. BMC Plant Biology, 2021, 21(1): 239.
[9]
王鲲娇, 任涛, 陆志峰, 鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响. 中国农业科学, 2021, 54(15): 3198-3206. doi: 10.3864/j.issn.0578-1752.2021.15.005.
WANG K J, REN T, LU Z F, LU J W. Effects of different magnesium supplies on the growth and physiological characteristics of oilseed rape in seeding stage. Scientia Agricultura Sinica, 2021, 54(15): 3198-3206. doi: 10.3864/j.issn.0578-1752.2021.15.005. (in Chinese)
[10]
尤垂淮, 孙青慧, 陈晟, 柯彦, 林新萍, 施木田. 镁营养对苦瓜生长发育及生理代谢的影响. 热带作物学报, 2021, 42(12): 3545-3552.

doi: 10.3969/j.issn.1000-2561.2021.12.022
YOU C H, SUN Q H, CHEN S, KE Y, LIN X P, SHI M T. Effects of magnesium nutrition on the growth and development of Momordica charantia and its physiological metabolism. Chinese Journal of Tropical Crops, 2021, 42(12): 3545-3552. (in Chinese)
[11]
ZHANG Y, ZHANG Q, WANG Y H, LIN S X, CHEN M H, CHENG P Y, WANG Y C, DU M R, JIA X L, WANG H B, YE J H. Effects of magnesium on transcriptome and physicochemical index of tea leaves. Plants, 2023, 12(9): 1810.
[12]
LI H X, CHEN Z J, ZHOU T, LIU Y, ZHOU J B. High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars. Journal of Integrative Agriculture, 2018, 17(12): 2813-2821.
[13]
彭云, 韩晓日, 杨劲峰, 刘轶飞, 王月, 林颖. 镁肥不同用量对花生叶片抗氧化代谢的影响. 花生学报, 2014, 43(2): 7-11.
PENG Y, HAN X R, YANG J F, LIU Y F, WANG Y, LIN Y. Effects of different Mg application amount on antioxidant enzymes activities of peanut. Journal of Peanut Science, 2014, 43(2): 7-11. (in Chinese)
[14]
冼华章, 周养, 樊权, 钟毅泽. 红壤土花生施用镁肥的效应. 中国农学通报, 2003, 19(6): 160-161, 165.
XIAN H Z, ZHOU Y, FAN Q, ZHONG Y Z. The effect of spray magnesium fertilizer to peanut planted in krasnozem. Chinese Agricultural Science Bulletin, 2003, 19(6): 160-161, 165. (in Chinese)
[15]
白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004(2): 3-5.
BAI Y L, JIN J Y, YANG L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils and Fertilizers, 2004(2): 3-5. (in Chinese)
[16]
GRANSEE A, FÜHRS H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 2013, 368(1): 5-21.
[17]
石元亮, 王玲莉, 刘世彬, 聂鸿光. 中国化学肥料发展及其对农业的作用. 土壤学报, 2008, 45(5): 852-864.
SHI Y L, WANG L L, LIU S B, NIE H G. Development of chemical fertilizer industry and its effect on agriculture of China. Acta Pedologica Sinica, 2008, 45(5): 852-864. (in Chinese)
[18]
郑亚萍, 吴正锋, 王春晓, 王才斌, 沈浦, 赵红军, 冯昊, 孙秀山. 棕壤花生镁营养特性对不同耕作措施的响应. 核农学报, 2018, 32(12): 2406-2413.

doi: 10.11869/j.issn.100-8551.2018.12.2406
ZHENG Y P, WU Z F, WANG C X, WANG C B, SHEN P, ZHAO H J, FENG H, SUN X S. Response of peanut magnesium nutrition characteristics to various tillage measures in brown soils. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2406-2413. (in Chinese)

doi: 10.11869/j.issn.100-8551.2018.12.2406
[19]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[20]
GRZEBISZ W. Crop response to magnesium fertilization as affected by nitrogen supply. Plant and Soil, 2013, 368(1): 23-39.
[21]
HERMANS C, VERBRUGGEN N. Physiological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 2005, 56(418): 2153-2161.
[22]
VERBRUGGEN N, HERMANS C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil, 2013, 368(1): 87-99.
[23]
王飞, 王建国, 李林, 刘登望, 万书波, 张昊. 施钙与覆膜栽培对缺钙红壤花生Mg、Fe、Zn吸收, 积累及分配的影响. 核农学报, 2019, 33(11): 2261-2270.

doi: 10.11869/j.issn.100-8551.2019.11.2261
WANG F, WANG J G, LI L, LIU D W, WAN S B, ZHANG H. Effects of calcium application and plastic film mulching cultivation on absorption, accumulation and distribution of Mg, Fe and Zn of peanut in red soil under Ca deficiency. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2261-2270. (in Chinese)

doi: 10.11869/j.issn.100-8551.2019.11.2261
[24]
李腾升, 魏倩倩, 王文昊, 崔玉照, 谭慧婷, 孙伟, 杨羽, 张欢洋, 韩传浩, 颜冬云. 喷施山梨醇螯合钙对花生生长及钾、钙、镁吸收的影响. 土壤, 2022, 54(6): 1117-1123.
LI T S, WEI Q Q, WANG W H, CUI Y Z, TAN H T, SUN W, YANG Y, ZHANG H Y, HAN C H, YAN D Y. Effects of sorbitol chelated calcium on peanut growth and absorption of potassium, calcium and magnesium. Soils, 2022, 54(6): 1117-1123. (in Chinese)
[25]
闫波, 周婷, 王辉民, 陈竹君, 曹京阳, 刘淑敏, 周建斌. 日光温室栽培番茄镁缺乏与土壤阳离子平衡的关系. 中国农业科学, 2016, 49(18): 3588-3596. doi: 10.3864/j.issn.0578-1752.2016.18.013.
YAN B, ZHOU T, WANG H M, CHEN Z J, CAO J Y, LIU S M, ZHOU J B. The relationships between magnesium deficiency of tomato and cation balances in solar greenhouse soil. Scientia Agricultura Sinica, 2016, 49(18): 3588-3596. doi: 10.3864/j.issn.0578-1752.2016.18.013. (in Chinese)
[26]
孙艳, 洪婉婷, 韩阳, 徐梓楷, 程凌云. 植物内部磷循环利用提高磷效率的研究进展. 植物营养与肥料学报, 2021, 27(12): 2216-2228.
SUN Y, HONG W T, HAN Y, XU Z K, CHENG L Y. Targeting internal phosphorus re-utilization to improve plant phosphorus use efficiency. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2216-2228. (in Chinese)
[27]
司贤宗, 张翔, 索炎炎, 李亮, 余琼, 余辉, 王红梅. 不同品种花生的氮磷钾钙硫积累及产质量差异. 江西农业学报, 2020, 32(8): 52-56.
SI X Z, ZHANG X, SUO Y Y, LI L, YU Q, YU H, WANG H M. Differences in accumulation of nitrogen, phosphorus, potassium, calcium, sulfur and yield-quality of different peanut varieties. Acta Agriculturae Jiangxi, 2020, 32(8): 52-56. (in Chinese)
[28]
赵琳, 李世清, 李生秀, 张兴昌, 吕丽红, 邵明安. 半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用. 干旱地区农业研究, 2004, 22(4): 14-20.
ZHAO L, LI S Q, LI S X, ZHANG X C, L H, SHAO M A. Accumulation of soil nitrate nitrogen in the process of ecological and its effcts in plant nitrogen nutrition in semiarid areas. Agricultural Research in the Arid Areas, 2004, 22(4): 14-20. (in Chinese)
[29]
HERMANS C, BOURGIS F, FAUCHER M, STRASSER R J, DELROT S, VERBRUGGEN N. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 2005, 220(4): 541-549.

doi: 10.1007/s00425-004-1376-5 pmid: 15580527
[30]
常佳悦, 马小龙, 吴艳莉, 李建明. 行距和灌水量对番茄冠层光截获和光合能力、物质积累及果实品质的影响. 中国农业科学, 2023, 56(11): 2141-2157. doi: 10.3864/j.issn.0578-1752.2023.11.009.
CHANG J Y, MA X L, WU Y L, LI J M. Effects of row spacing and irrigation amount on canopy light interception and photosynthetic capacity, matter accumulation and fruit quality of tomato. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157. doi: 10.3864/j.issn.0578-1752.2023.11.009. (in Chinese)
[31]
WATLING J R, PRESS M C, QUICK W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C(4) cereal sorghum. Plant Physiology, 2000, 123(3): 1143-1152.
[32]
TANG N, LI Y, CHEN L S. Magnesium deficiency-induced impairment of photosynthesis in leaves of fruiting Citrus reticulata trees accompanied by up-regulation of antioxidant metabolism to avoid photo-oxidative damage. Journal of Plant Nutrition and Soil Science, 2012, 175(5): 784-793.
[33]
秦文洁, 郭润泽, 邹晓霞, 张晓军, 于晓娜, 王月福, 司彤. 膜下滴灌追肥种类对花生结荚期茎叶干物重、矿质养分吸收和产量的影响. 作物学报, 2021, 47(3): 520-529.

doi: 10.3724/SP.J.1006.2021.04109
QIN W J, GUO R Z, ZOU X X, ZHANG X J, YU X N, WANG Y F, SI T. Effects of drip irrigation and topdressing on dry matter weight, mineral nutrient absorption and yield of pod-bearing stage in peanut. Acta Agronomica Sinica, 2021, 47(3): 520-529. (in Chinese)
[34]
PENG Y Y, LIAO L L, LIU S, NIE M M, LI J, ZHANG L D, MA J F, CHEN Z C. Magnesium deficiency triggers SGR-mediated chlorophyll degradation for magnesium remobilization. Plant Physiology, 2019, 181(1): 262-275.

doi: 10.1104/pp.19.00610 pmid: 31289214
[35]
ZHANG Y. Effects of magnesium on the intrinsic quality and aroma composition in leaves of Wuyi Rougui tea (Camellia sinensis L.). Allelopathy Journal, 2023, 58(2): 109-120.
[36]
叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响. 作物学报, 2023, 49(11): 3063-3073.

doi: 10.3724/SP.J.1006.2023.34051
YE X L, GENG G T, XIAO G B, W S, REN T, LU Z F, LU J W. Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.). Acta Agronomica Sinica, 2023, 49(11): 3063-3073. (in Chinese)
[37]
陆景陵. 植物营养学-上册. 2版. 北京: 中国农业大学出版社, 2003.
LU J L. Plant Nutrition-volume I. 2nd ed. Beijing: China Agricultural University Press, 2003. (in Chinese)
[38]
赵义涛, 姜佰文, 梁运江. 土壤肥料学. 北京: 化学工业出版社, 2009.
ZHAO Y T, JIANG B W, LIANG Y J. Soil Fertilizer Science. Beijing: Chemical Industry Press, 2009. (in Chinese)
[39]
张忠启, 祝亮, 王美艳, 史学正, 孙维侠. 基于土壤钙镁比的毕节植烟区镁肥施用分区研究. 土壤学报, 2023, 60(6): 1737-1748.
ZHANG Z Q, ZHU L, WANG M Y, SHI X Z, SUN W X. Application zoning of magnesium fertilizer in Bijie tobacco growing area based on soil calcium-magnesium ratio. Acta Pedologica Sinica, 2023, 60(6): 1737-1748. (in Chinese)
[40]
李小芳, 李倩, 雷利琴, 田贵生, 鲁剑巍. 高钾地力下不同镁肥用量对油菜产量和品质的影响. 湖南农业科学, 2018(8): 48-50.
LI X F, LI Q, LEI L Q, TIAN G S, LU J W. Effects of magnesium application rates on yield and quality of rapeseed under high potassium soil fertility. Hunan Agricultural Sciences, 2018(8): 48-50. (in Chinese)
[41]
陆志峰, 任涛, 鲁剑巍. 我国冬油菜种植区土壤有效镁状况与油菜施镁效果. 华中农业大学学报, 2021, 40(2): 17-23.
LU Z F, REN T, LU J W. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. Journal of Huazhong Agricultural University, 2021, 40(2): 17-23. (in Chinese)
[42]
刘小曼, 刘晓东, 刘闫, 谭启玲, 胡承孝, 武松伟, 谢合平. 镁肥对温州蜜柑果实产量及品质的影响. 华中农业大学学报, 2022, 41(5): 84-90.
LIU X M, LIU X D, LIU Y, TAN Q L, HU C X, WU S W, XIE H P. Effects of magnesium fertilizer on yield and quality of satsuma mandarin fruit. Journal of Huazhong Agricultural University, 2022, 41(5): 84-90. (in Chinese)
[43]
CAKMAK I, YAZI A. Magnesium: A forgotten element in crop production. Better Crops with Plant Food, 2010, 94: 23-25.
[1] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[2] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[3] HU WenShi, LI YinShui, ZHAO ManLi, ZHANG ShanShan, GU ChiMing, DAI Jing, LI XiaoYong, YANG Lu, QIN Lu, LIAO Xing. Characteristics of Oilseed Rape Cultivar with Different Oil Content in Nutrient Dynamitic Accumulation Rates and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2023, 56(24): 4895-4905.
[4] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[5] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[6] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[7] WANG JinSong,DONG ErWei,WU AiLian,BAI WenBin,WANG Yuan,JIAO XiaoYan. Responses of Fertilization on Sorghum Grain Yield, Quality and Nutrient Utilization to Soil Fertility [J]. Scientia Agricultura Sinica, 2019, 52(22): 4166-4176.
[8] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[9] JingChao YUAN,JianZhao LIU,Yao LIANG,WenJie ZHAN,HongXi ZHANG,ZiHao ZENG,HongGuang CAI,Jun REN. Characteristics of Grain Yield and Nutrient Accumulation for Spring Maize Under Different Agronomic Management Practices [J]. Scientia Agricultura Sinica, 2019, 52(20): 3546-3558.
[10] REN ShengMao, DENG YuChuan, WEN FengJun, Sajad Hussain, PU QuanMing, YU XiaoBo, LIU WeiGuo, YANG WenYu. Effects of Intercropping on the Transformation of Carbohydrate Related Substances in Stem of Soybean Seedling Stage and Its Relationship with Leaf Photosynthesis [J]. Scientia Agricultura Sinica, 2018, 51(7): 1272-1282.
[11] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Spatial Characteristics of Nitrogen and Phosphorus Flow in Cultivated Grassland of China [J]. Scientia Agricultura Sinica, 2018, 51(3): 535-555.
[12] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Spatial Characteristics of Nitrogen and Phosphorus Flow in Natural Grassland of China [J]. Scientia Agricultura Sinica, 2018, 51(3): 523-534.
[13] Mu ZHANG, ShuanHu TANG, QiaoYi HUANG, YuWan PANG, Qiong YI, Xu HUANG, Ping LI, HongTing FU. The Nutrient Supply Characteristics of Co-Application of Slow-Release Urea and Common Urea in Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2018, 51(20): 3985-3995.
[14] LIN HongXin, PAN XiaoHua, YUAN ZhanQi, XIAO YunPing, LIU RenGen, WANG RuiQing, Lü FengJuan. Effects of Nitrogen Application and Cassava-Peanut Intercropping on Cassava Nutrient Accumulation and System Nutrient Utilization [J]. Scientia Agricultura Sinica, 2018, 51(17): 3275-3290.
[15] LIU KaiLou, ZHANG HuiMin, HAN TianFu, ZHOU LiJun, LI DaMing, HU ZhiHua, HUANG QingHai, YE HuiCai, XU XiaoLin, HU HuiWen. Effects of Long-Term Application of Chemical and Organic Fertilizers on Root Biomass and Nutrient in Double Cropping Rice System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3540-3547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!