Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (5): 909-918.doi: 10.3864/j.issn.0578-1752.2024.05.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Predation Behavior of Odontomachus monticola and Camponotus japonicus on Black Cutworm (Agrotis ipsilon)

GAO DongMei(), HUANGFU JiaYi, GUO Xiao()   

  1. Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329
  • Received:2023-10-25 Accepted:2023-11-21 Online:2024-03-01 Published:2024-03-06
  • Contact: GUO Xiao

Abstract:

【Objective】Black cutworm (Agrotis ipsilon) is one of the important underground pests of food and cash crops. The objective of this study is to clarify the predation characteristics of Odontomachus monticola and Camponotus japonicus on A. ipsilon, enrich the biological control techniques of A. ipsilon, and to reduce the cost of A. ipsilon control and the amount of chemical pesticides.【Method】Predation selectivity, predation mode, predation lethality on different A. ipsilon stages by O. monticola and C. japonicus were observed and counted under two natural conditions, soil cover and bare prey, for 1, 6, 12, 24 and 48 h. Sequence characteristics of predation behavior were carried out indoors using experimental populations of the two ant species. Statistical analyses were performed to clarify the differences in predation behavior and pest control characteristics of the two ant species.【Result】C. japonicus was less lethal to A. ipsilon eggs, and the cumulative 48 h lethality was only 12.67%. O. monticola did not feed on A. ipsilon eggs. The control effect of the two ant species on A. ipsilon larvae and pupae was over 49% and up to 98.67%, and the control effect decreased with the age of A. ipsilon. There were some differences in the sequence characteristics of predation behavior of O. monticola and C. japonicus: for A. ipsilon low instar larvae, both ants mainly carried directly; for the larger A. ipsilon elder instar larvae, C. japonicus had behaviors of probing, attacking, calling companions, cutting prey and carrying in groups, which showed obvious group behavior. On the other hand, the predation behavior of O. monticola on large prey was simple, and behaviors such as calling companions and group handling were not observed, the group predation behavior was not obvious. The differences in the predation behavior of the two ant species on A. ipsilon were also reflected in the mode of predation and lethality on A. ipsilon: Most of the low instar A. ipsilon larvae were carried directly by C. japonicus, the predation efficiency was very high, and C. japonicas usually preyed A. ipsilon elder instar larvae in groups. O. monticola had a higher proportion of discarded elder A. ipsilon larvae, but A. ipsilon larvae that escaped predation by biting and stinging had a higher mortality. In addition, soil cover strongly influenced the detection of A. ipsilon larvae by ants, the two ant species could only detect surface prey and not subterranean prey.【Conclusion】C. japonicus and O. monticola have better control effect on both A. ipsilon larvae and pupae, and the lower the age of A. ipsilon, the better the control effect. There are some differences in the predation behavior of the two ant species on the elder A. ipsilon larvae, but it does not affect the control effect on A. ipsilon.

Key words: ant, underground pest, black cutworm (Agrotis ipsilon), lethality, sequence of predation behavior, predator insect

Fig. 1

Experimental setup diagram in the field"

Fig. 2

Lethality of C. japonicus and O. monticola to different insect stages of A. ipsilon"

Table 1

Lethality of C. japonicus and O. monticola to A. ipsilon under different times (%)"

虫态Stage 处理Treatment 1 h 6 h 12 h 24 h 48 h 累计Accumulation

Egg
日本弓背蚁C. japonicus 0a 0.67±0.67a 1.33±0.82a 3.33±1.50a 4.67±2.45a 12.67±4.52a
山大齿猛蚁O. monticola 0a 0a 0a 0a 0a 0b
对照CK 0a 0a 0a 0a 0a 0b
1—2龄幼虫
1st-2nd instar larva
日本弓背蚁C. japonicus 1.33±0.82a 11.33±1.70a 15.28±2.08a 44.22±5.65a 13.22±4.07b 94.33±3.60a
山大齿猛蚁O. monticola 0a 8.67±2.71a 25.17±3.57a 33.11±2.48a 28.86±2.89a 98.67±1.33a
对照CK 0a 0b 2.00±0.82b 1.33±0.82b 0.66±0.66b 4.00±1.63b
3—4龄幼虫
3rd-4th instar larva
日本弓背蚁C. japonicus 0.67±0.67a 9.33±2.21a 11.49±1.97a 20.80±2.01b 22.24±4.17a 73.50±3.52a
山大齿猛蚁O. monticola 0a 5.33±2.26a 16.78±2.69a 30.00±2.11a 27.71±0.83a 81.14±5.40a
对照CK 0a 0b 0.66±0.66b 0c 1.33±0.82b 2.00±1.33b
5—6龄幼虫
5th-6th instar larva
日本弓背蚁C. japonicus 0a 4.67±2.00b 10.00±0b 14.76±1.34b 27.28±4.13a 69.84±2.70b
山大齿猛蚁O. monticola 0a 13.33±2.36a 20.00±1.83a 26.84±1.26a 26.67±3.33a 87.20±4.20a
对照CK 0a 0b 0c 0.67±0.67c 0b 0.67±0.67c

Pupa
日本弓背蚁C. japonicus 0a 4.00±1.25b 13.33±0b 15.33±1.33a 18.67±4.00a 51.33±4.67a
山大齿猛蚁O. monticola 0a 12.67±2.45a 16.67±1.05a 11.33±2.91a 8.67±3.60a 49.33±1.25a
对照CK 0a 0b 0c 0b 0b 0b

Table 2

Predation patterns of C. japonicus and O. monticola on different insect stages of A. ipsilon (%)"

虫态
Stage
处理
Treatment
1 h 6 h 12 h 24 h 48 h
叮咬丢弃
<BOLD>D</BOLD>iscard after biting
搬运
Transport
叮咬丢弃
<BOLD>D</BOLD>iscard after biting
搬运
Transport
叮咬丢弃<BOLD>D</BOLD>iscard after biting 搬运
Transport
叮咬丢弃
<BOLD>D</BOLD>iscard after biting
搬运
Transport
叮咬丢弃
<BOLD>D</BOLD>iscard after biting
搬运
Transport
1—2
龄幼虫
1-2 instar larva
日本弓背蚁
C. japonicus
0.67±0.67 0.67±0.67 1.33±0.82 10.00±1.83 2.00±1.33 16.67±1.05* 5.33±5.33 40.00±3.33* 0.67±0.67 17.33±2.67*
山大齿猛蚁
O. monticola
0 0 1.33±0.82 7.33±2.21 0.67±0.67 26.00±3.23* 0 34.00±2.45* 0 29.33±2.87*
3—4
龄幼虫
3-4 instar larva
日本弓背蚁
C. japonicus
0 0.67±0.67 1.33±0.82 8.00±2.26 3.33±1.05 9.33±1.25* 4.00±1.25 17.33±1.25* 4.00±1.25 26.00±2.45*
山大齿猛蚁
O. monticola
0 0 0 5.33±2.26 0.67±0.67 16.67±2.36* 2.00±0.82 28.00±2.26*a 2.00±1.33 26.67±1.05*
5—6
龄幼虫
5-6 instar larva
日本弓背蚁
C. japonicus
0 0 2.67±1.63 2.00±1.33 6.00±1.25 5.33±1.70 13.33±2.79 7.33±1.25a 18.00±3.27 15.33±4.03a
山大齿猛蚁
O. monticola
0 0 11.33±2.49* 2.00±0.82 20.00±1.83*a 0 27.33±1.25*a 0 26.67±3.33*a 0

Pupa
日本弓背蚁
C. japonicus
0 0 4.00±1.25 0 8.00±1.70* 0 10.00±1.05* 5.33±0.82a 14.00±2.87 10.00±2.79a
山大齿猛蚁
O. monticola
0 0 12.67±2.45* 0 16.67±1.05*a 0 11.33±2.91* 0 8.67±3.59 0

Fig. 3

Effects of soil cover on C. japonicus and O. monticola preying on A. ipsilon The data in the figure are mean±SE (n=5), and the data were analyzed by independent sample t-test. * indicates highly significant differences of A. ipsilon mortality between exposed and soil cover groups at the same time point with the same stage of A. ipsilon (P<0.01)"

Fig. 4

Sequence of predation behaviors of C. japonicus and O. monticola The percentages are calculated from the total number of tested insects (30 A. ipsilon)"

[1]
CLEMENT S, SHOW E, WAY M. Black cutworm pheromone trapping in strawberries. California Agriculture, 1982, 36(7): 20-21.
[2]
张继祖, 徐金汉. 中国南方地下害虫及其天敌. 北京: 中国农业出版社, 1996: 109-144.
ZHANG J Z, XU J H. Underground Pests and Their Natural Enemies in Southern China. Beijing: China Agriculture Press, 1996: 109-144. (in Chinese)
[3]
BEHLE R W. In vivo production of Agrotis ipsilon nucleopolyhedrovirus for quantity and quality. Journal of Economic Entomology, 2018, 111(1): 101-107.

doi: 10.1093/jee/tox315
[4]
雷雪萍. 我国地下害虫绿色防控技术研究进展. 现代农业科技, 2022(24): 91-94.
LEI X P. Research progress on green prevention and control technology for underground pests in China. Modern Agricultural Sciences and Technology, 2022(24): 91-94. (in Chinese)
[5]
王凤, 鞠瑞亭, 李跃忠, 杜予州. 生态位概念及其在昆虫生态学中的应用. 生态学杂志, 2006, 25(10): 1280-1284.
WANG F, JU R T, LI Y Z, DU Y Z. Niche concept and its application in insect ecology. Chinese Journal of Ecology, 2006, 25(10): 1280-1284. (in Chinese)
[6]
周善义, 冉浩. 中国蚂蚁名录——猛蚁型亚科群(膜翅目: 蚁科). 广西师范大学学报(自然科学版), 2010, 28(4): 101-113.
ZHOU S Y, RAN H. Checklist of poneromorph subfamilies (Hymenoptera: Formicidae) in China. Journal of Guangxi Normal University (Natural Science Edition), 2010, 28(4): 101-113. (in Chinese)
[7]
MASCHWITZ U, SCHONEGGE P. Forage communication, nest moving recruitment, and prey specialization in the oriental ponerine Leptogenys chinensis. Oecologia, 1983, 57: 175-182.

doi: 10.1007/BF00379578
[8]
PEETERS C, CREWE R. Foraging and recruitment in ponerine ants: Solitary hunting in the queenless Ophthalmopone berthoudi (Hymenoptera: Formicidae). Psyche: A Journal of Entomology, 1987, 94(1/2): 201-214.

doi: 10.1155/1987/74592
[9]
DEJEAN A, FENERON R. Predatory behavior in the ponerine ant, Centromyrmex bequaerti: A case of termitolesty. Behavioural Processes, 1999, 47(2): 125-133.

doi: 10.1016/S0376-6357(99)00060-1
[10]
王常禄, 吴坚, 萧刚柔. 日本弓背蚁生物学特性及捕食马尾松毛虫作用的研究. 林业科学研究, 1991, 4(4): 405-408.
WANG C L, WU J, XIAO G R. A study on the bionomics and predatory effect of Camponotus japonicus to Dendrolimus punctatus. Forest Research, 1991, 4(4): 405-408. (in Chinese)
[11]
PERFECTO I. Indirect and direct effects in a tropical agroecosystem: The maize-pest-ant system in Nicaragua. Ecology, 1990, 71: 2125-2134.

doi: 10.2307/1938626
[12]
AGARWAL V M, RASTOGI N, RAJU S V S. Impact of predatory ants on two Lepidopteran insect pests in Indian cauliflower agroecosystems. Journal of Applied Entomology, 2007, 131: 493-500.

doi: 10.1111/jen.2007.131.issue-7
[13]
VAN MELE P. A historical review of research on the weaver ant Oecophylla in biological control. Agricultural and Forest Entomology, 2008, 10: 13-22.

doi: 10.1111/afe.2008.10.issue-1
[14]
ANJOS D V, TENA A, VIANA-JUNIOR A B, CARVALHO R L, TOREZAN-SILINGARDI H, DEL-CLARO K, PERFECTO I. The effects of ants on pest control:A meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2022, 289: 20221316.
[15]
CHOATE B, DRUMMOND F. Ants as biological control agents in agricultural cropping systems. Terrestrial Arthropod Reviews, 2011, 4: 157-180.

doi: 10.1163/187498311X571979
[16]
顾晓军, 田素芬, 刘文静. 应用叶片保护率与校正死亡率评价阿维菌素与氟虫腈对小菜蛾3龄幼虫的毒力. 中国农业科技导报, 2009, 11(2): 98-105.
GU X J, TIAN S F, LIU W J. Indoor toxicity assessment of avermectin and fipronil on 3rd instar larvae of diamondback moth by means of leaf protection rates and corrected mortality rate. Journal of Agricultural Science and Technology, 2009, 11(2): 98-105. (in Chinese)
[17]
BOND A B. The foraging behaviour of lacewing larvae on vertical rods. Animal Behaviour, 1983, 31(4): 990-1004.

doi: 10.1016/S0003-3472(83)80004-9
[18]
GELPERIN A. Feeding behaviour of the praying mantis: A learned modification. Nature, 1968, 219(5152): 399-400.

doi: 10.1038/219399a0
[19]
FERRAN A, DIXON A. Foraging behaviour of ladybird larvae (Coleoptera: Coccinellidae). European Journal of Entomology, 1993, 90(4): 383-402.
[20]
BELLIURE B, MICHAUD J P. Biology and behavior of Pseudodorus clavatus (Diptera: Syrphidae), an important predator of citrus aphids. Annals of the Entomological Society of America, 2001, 94(1): 91-96.

doi: 10.1603/0013-8746(2001)094[0091:BABOPC]2.0.CO;2
[21]
TRANIELLO J. Foraging strategies of ants. Annual Review of Entomology, 1989, 34: 191-210.

doi: 10.1146/ento.1989.34.issue-1
[22]
RICHARD F J, FABRE A, DEJEAN A. Predatory behavior in dominant arboreal ant species: The case of Crematogaster sp. (Hymenoptera: Formicidae). Journal of Insect Behavior, 2001, 14(2): 271-282.

doi: 10.1023/A:1007845929801
[23]
DIYES G C P, KARUNARATHNA N B, SILVA T H S E, KARUNARATNE W A I P, RAJAKARUNA R S. Ants as predators of the spinose ear tick, Otobius megnini (Dugés) in Sri Lanka. Acarologia, 2017, 57(4): 747-753.

doi: 10.24349/acarologia/20174200
[24]
DEJEAN A, CORBARA B. Study of different foraging paths of the predatory neotropical ponerine ant Pachycondyla (=Neoponera) villosa (Hymenoptera, Formicidae). Sociobiology, 1998, 32: 409-426.
[25]
CZACZKES T, RATNIEKS F. Cooperative transport in ants (Hymenoptera: Formicidae) and elsewhere. Myrmecological News, 2013, 18: 1-11.
[26]
KAZUMA K, MASUKO K, KONNO K, INAGAKI H. Combined venom gland transcriptomic and venom peptidomic analysis of the predatory ant Odontomachus monticola. Toxins, 2017, 9(10): 323.

doi: 10.3390/toxins9100323
[27]
李姣, 金晨钟, 龙大彬, 欧阳芳, 戈峰. 天敌昆虫对害虫的非直接致死效应. 应用昆虫学报, 2014, 51(4): 863-870.
LI J, JIN C Z, LONG D B, OUYANG F, GE F. Non-lethal effects of a natural enemy on herbivore insect population. Chinese Journal of Applied Entomology, 2014, 51(4): 863-870. (in Chinese)
[28]
PREISSER E L, BOLNICK D I, BENARD M F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology, 2005, 86(2): 501-509.

doi: 10.1890/04-0719
[29]
CAMPBELL N J, BRISTOW C M, AYERS G S, SIMMONS G A. Design and field test of portable colonies of the predaceous ant, Formica exsectoides (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 1991, 64(1): 116-120.
[30]
OFFENBERG J. The use of artificial nests by weaver ants: A preliminary field observation. Asian Myrmecology, 2014, 6: 119-128.
[31]
HOLLDOBLER B, WILSON E O. The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera Formicidae). Behavioral Ecology and Sociobiology, 1978, 3(1): 19-60.

doi: 10.1007/BF00300045
[32]
DIAME L, REY J Y, VAYSSIERES J F, GRECHI I, CHAILLEUX A, DIARRA K. Ants: Major functional elements in fruit agro-ecosystems and biological control agents. Sustainability, 2017, 10: 23.

doi: 10.3390/su10010023
[33]
QUEIROZ J M, OLIVEIRA P S. Tending ants protect honeydew- producing whiteflies (Homoptera: Aleyrodidae). Environmental Entomology, 2001, 30(2): 295-297.

doi: 10.1603/0046-225X-30.2.295
[34]
EVANS T A, DAWES T Z, WARD P R, LO N. Ants and termites increase crop yield in a dry climate. Nature Communications, 2011, 2(1): 262.

doi: 10.1038/ncomms1257
[35]
OFFENBERG J. Review: Ants as tools in sustainable agriculture. Journal of Applied Ecology, 2015, 52(5): 1197-1205.

doi: 10.1111/jpe.2015.52.issue-5
[36]
BLUM M S, WALKER J R, CALLAHAN P S, NOVAK A F. Chemical, insecticidal, and antibiotic properties of fire ant venom. Science, 1958, 128(3319): 306-307.

doi: 10.1126/science.128.3319.306-a pmid: 13568785
[37]
LAI L C, CHANG Y Y, HUA K H, WU W J, HUANG R N. Comparative toxicity of three fire ant (Hymenoptera: Formicidae) venoms to Spodoptera litura larvae. Sociobiology, 2010, 56(3): 653-663.
[38]
白茹, 陈立, 王文凯. 切叶蚁亚科蚂蚁的防御性生物碱. 昆虫学报, 2021, 64(7): 875-886.
BAI R, CHEN L, WANG W K. Defensive alkaloids of myrmicine ants. Acta Entomologica Sinica, 2021, 64(7): 875-886. (in Chinese)

doi: 10.16380/j.kcxb.2021.07.011
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[3] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[4] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[5] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[6] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[7] WANG ChuFan, NIU Jun. Water and Carbon Footprint and Layout Optimization of Major Grain Crops in the Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(6): 1137-1152.
[8] HOU Shuai, ZHANG YiJia, ZHOU DanDan, MA FeiYang, WANG DaPeng, ZHAO SiQi, DING Chao, LIU Qiang. Analysis of the Effect of Dielectric Barrier Discharge Cold Plasma on Phenolic Metabolism of Stored Paddy Rice Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(6): 1180-1190.
[9] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[12] CHEN XiHong, CAI Wei, YU Yun, LI Min, WANG NianWu, DU ZhenGuo, SHEN JianGuo, GAO FangLuan. Identification of Tea Plant Viruses in Fujian Province and Establishment of Multiplex PCR Detection Assay [J]. Scientia Agricultura Sinica, 2024, 57(4): 698-710.
[13] PEI ShuYao, CAO HongXia, ZHANG ZeYu, ZHAO FangYang, LI ZhiJun. Physiological Response of Potted Tomatoes to NaCl and Na2SO4 Brackish Water Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(3): 570-583.
[14] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[15] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!