Scientia Agricultura Sinica

Previous Articles    

Research advances of map-based cloning genes in cotton

ZANG XinShan1,2,4, WANG KangWen1,3, ZHANG XianLiang1,2, WANG XuePing1, WANG Jun1, LIANG Yu1, PEI XiaoYu1, REN Xiang1,2, Lü YuLong1,2, GAO Yu1, WANG XingXing1, PENG YunLing3*, MA XiongFeng1,2,3,4* #br#   

  1. 1Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan; 2Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang; 3College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Lab of Arid Land Crop Science/Gansu Key Lab of Crop Improvement Germplasm Enhancement, Lanzhou 730070; 4School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001
  • Published:2023-05-22

Abstract: Map-based cloning is a classical and effective method to identify candidate genes for specific phenotypic variants. Map-based cloning of functional genes plays important roles in the innovative utilization of germplasm resources, molecular design breeding and improving breeding efficiency. In recent years, the whole-genome sequencing of Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense has been completed and improved. map-based cloning has entered into a crucial period. In 2016, the dominant glandless gene Gl2e (GoPGF) was the first map-based cloning gene in cotton. So far, 20 qualitative traits genes and 5 quantitative traits genes have been identified by map-based cloning technology. In this paper, research progress was systematically reviewed in fiber, gland, nectary, leaf type, plant architecture, plant color, and fertility in terms of gene symbols, names, chromosomal positioning, and candidate genes. Moreover, map-based cloning strategies were systematically review in mapping populations and bulked segregate analysis-sequencing (BSA-seq). With the reduction of sequencing cost and utilization of BSA-seq. In addition, transformation and genome editing have been successfully used to evaluate the function of the candidate gene in the target interval. It is believed that map-based cloning could provide a theoretical basis and genetic resources for molecular design breeding in cotton.


Key words: cotton, map-based cloning, molecular marker, mapping population, BSA-seq

[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[3] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[4] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[5] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[6] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[7] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[8] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[9] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[10] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[11] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[12] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[13] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[14] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[15] WANG JiangHao, WANG LiWei, ZHANG DongMin, GUO Rui, ZHANG QuanGuo, LI XingHua, WEI JianFeng, SONG Wei, WANG BaoQiang, LI RongGai. Molecular Marker Assisted Identification and Application of Maize Germplasms for Maize Rough Dwarf Disease Resistance [J]. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!