Scientia Agricultura Sinica

Previous Articles    

Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton fiber development

DANG YuanYue1,2, MA JianJiang2, YANG ShuXian2, SONG JiKun1,2, JIA Bing1,2, FENG Pan2, CHEN QuanJia1*, YU JiWen1,2* #br#   

  1. 1College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi 830052; 2Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang 455000, Henan
  • Online:2023-05-17 Published:2023-05-17

Abstract: 【Objectiveβ-tubulin is the basic structural unit of cotton fiber, regulate fiber cell morphogenesis, and play a vital role in fiber development. But there is less understood how β-tubulin gene influenced the distinct characteristic of fiber quality traits in cotton. In this study, members of the β-tubulin gene family were identified in cotton, their expression profiles were analyzed, and role of β-tubulin genes were explored for fiber quality. MethodBLAST method was used to identify members of the β-tubulin gene family in the genomes of four cotton species. ProtParam tool was utilized to analyze physicochemical properties, MEGA7.0 to construct phylogenetic tree, Mapchart2.2 to draw chromosomal localization map, MEME to analyze conserved motif, and PlantCARE to analyze promoter cis-acting elements. Expression levels of β-tubulin genes were characterized by using transcriptome data from 39 studies on fiber development. Spearman correlation analysis was used to identify candidate genes for fiber quality traits. ResultImportantly, 36, 37, 19 and 18 β-tubulin genes were identified in the genomes of Gossypium hirsutum(AD1), Gossypium barbadense(AD2), Gossypium arboretum(A2) and Gossypium raimondii(D5), respectively. The number of β-tubulin genes in tetraploid cotton species is almost double than that of diploid cotton species. Phylogenetic analysis classified these genes into 5 main clusters. Phylogenetic and collinearity analysis revealed that β-tubulin genes in Gossypium barbadense is closely related to Gossypium arboretum and Gossypium raimondii as compared to Gossypium hirsutum. Furthermore, all genes have typical conservative domains with Tubulin and Tubulin-C. The genes physicochemical properties showed amino acids range from 421 to 508 with isoelectric point of 4.68 to 5.09. The analysis of promoter cis-acting elements identified growth responsive, hormone responsive, and stress responsive elements which showed β-tubulin mediates various mechanisms of cell growth regulation. Interestingly, cluster analysis on 36 β-tubulin gene expression profiles showed 42% genes in cluster П had dominant expression in fiber. In particular, 1, 6, and 11 β-tubulin genes exhibited significant correlation with fiber micronaire value, fiber strength, and fiber length, respectively. Four genes were found to influenced fiber length and fiber strength traits simultaneously. ConclusionA total of 110 β-tubulin gene family members were identified in the four cotton species. Their physicochemical properties and sequences of amino acids were highly conserved and the promoter sequence had diverse regulatory elements. This study characterized the expression profiles as well as molecular function of β-tubulin gene family in cotton fiber. Further discovered the potential candidate genes that probably regulate fiber quality traits in cotton. Our results may have great potential for cotton fiber quality improvement by genetic engineering.


Key words: cotton, β-tubulin gene family, bioinformatics, expression analysis, fiber development

[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[3] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[4] PAN FengYing, QU JunJie, LIU LuLu, SUN DaYun, GUO ZeXi, WEI XiaoLi, WEI ShuMei, YIN Ling. Expression and Functional Analysis of Glycosyl Hydrolase Genes from Plasmopara viticola [J]. Scientia Agricultura Sinica, 2023, 56(5): 879-891.
[5] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[6] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[7] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[8] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[9] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[10] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[11] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[12] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[13] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[14] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[15] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!