Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2413-2424.doi: 10.3864/j.issn.0578-1752.2022.12.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress

BIAN LanXing1(),LIANG LiKun1,YAN Kun2,3(),SU HongYan3,LI LiXia1,DONG XiaoYan2,MEI HuiMin4   

  1. 1College of Life Science, Yantai University, Yantai 264003, Shandong
    2Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Science Yantai Institute of Coastal Zone Research/Chinese Academy of Sciences, Yantai 264003, Shandong
    3College of Agriculture, Ludong University, Yantai 264003, Shandong
    4College of life science, Liaoning University, Shenyang 110000
  • Received:2021-09-29 Accepted:2021-12-14 Online:2022-06-16 Published:2022-06-23
  • Contact: Kun YAN E-mail:958489263@qq.com;yankunacademic@163.com;kyan@ldu.edu.cn

Abstract:

【Objective】This research aimed to investigate the effect of Trichoderma on salt tolerant ability of Chinese wolfberry (Lycium chinense), and to reveal the salt tolerant mechanisms in terms of in ion homeostasis, oxidative stress and photosystem II (PSII) performance.【Method】Chinese wolfberry was used as the experimental material, and Trichoderma agent was applied around roots. Salt treatment was carried out by irrigation with NaCl solution (300 mmol·L-1), so as to compare the differences of biomass, K+/Na+, K+ and Na+ absorption and transport in roots, leaf oxidative damage and PSII performance in plants applied with and without Trichoderma agents under salt stress.【Result】Under salt stress, the biomass decreased less in plants applied with Trichoderma agents, indicating that Trichoderma could improve salt tolerance in Chinese wolfberry and alleviate the inhibition on growth. Under salt stress, Trichoderma alleviated the decline of photosynthetic rate and actual photochemical efficiency of PSII, inhibited the elevation of PSII excitation pressure, and aided in defending PSII photoinhibition. The decrease in Fv/Fm and the loss of PSII reaction center protein were relatively less in plants applied with Trichoderma agents under salt stress, confirming that Trichoderma alleviated PSII photoinhibition and protected PSII reaction center. Consistent with the result of photoinhibition, the oxidative damage was slighter in plants applied with Trichoderma agents according to lower leaf lipid peroxidation extent and H2O2 content. Under salt stress, the lower decrease in the efficiency that an electron moved beyond QA was noted in plants with Trichoderma agents application, while J step of chlorophyll a fluorescence transient (OJIP) did not obviously rise, indicating that Trichoderma protected the electron transporters at PSII acceptor side. Trichoderma also protected oxygen-evolving complex at PSII donor side of PSII, because the application of Trichoderma agent prevented a significant increase in variable fluorescence intensity at K step and an emergence of K step in OJIP curve under salt stress. Therefore, Trichoderma played a protective role for all PSII components, alleviated the decline of PSII performance index under salt stress, and improved PSII integral stability. Under salt stress, the lower Na+ content and higher K+ content were noted in roots and leaves in plants applied Trichoderma agents, indicating that Trichoderma inhibited the decline of K+/Na+ for maintaining ion homeostasis by reducing Na+ accumulation and K+ loss in roots and leaves. As the key mechanism for maintaining ion homeostasis, Trichoderma enhanced root Na+ efflux, improved root K+ uptake and promoted K+ transport to shoot in Chinese wolfberry under salt stress.【Conclusion】Trichoderma regulated the uptake and transport of Na+ and K+ in roots under salt stress, maintained ion homeostasis, reduced oxidative stress on PSII, and enhanced salt tolerant capacity in Chinese wolfberry and alleviate the inhibition on its growth.

Key words: Trichoderma agent, Chinese wolfberry, salt tolerance, photoinhibition, mon-invasive micro-test technology

Table 1

Changes in total plant dry weight, MDA and H2O2 content after 14 days of salt treatment"

处理
Treatment
总干重
Total DW (g/plant)
叶片MDA含量
Leaf MDA content (ng·g-1)
叶片H2O2含量
Leaf H2O2 content (μg·g-1)
CK 1.10±0.05c 52.45±4.95a 35.49±5.82a
N 0.50±0.03a 88.84±2.18c 69.26±7.12c
N+T 0.80±0.06b 63.13±2.46b 49.58±4.63b

Fig. 1

Changes in photosynthetic rate (Pn, A), stomatal conductance (Gs, B), intercellular CO2 concentration (Ci, C), transpiration (Tr, D), actual photochemical efficiency of PSII (ΦPSII, E) and PSII excitation pressure (1-qP, F) in Chinese wolfberry under salt stress Different small letters indicate significant difference among treatments (P<0.05). The same as below"

Fig. 2

Changes in PSII performance index (PI (abs), A), the maximal photochemical capacity of PSII (Fv/Fm, B), the efficiency that an electron moves beyond primary quinone (ETo/TRo, C) and variable fluorescence intensity at K step (Wk, D) under salt stress"

Fig. 3

Changes in the abundance of PSII reaction center proteins in Chinese wolfberry after 14 days of salt stress (A) and the transients of prompt chlorophyll fluorescence after 7 days (B) and 14 days (C) of treatment"

Fig. 4

Changes in root Na+, K+ flux in meristematic zone and maturation zone of Chinese wolfberry after 7 days (A, B, C, D, E, F) and 14 days (G, H, I, J, K, L) under salt stress"

Fig. 5

Changes in Na+ K+ content and K+/Na+ rate in roots and leaves of Chinese wolfberry after 14 days under salt stress"

Fig. 6

Changes in Na+ and K+ translocation factor in Chinese wolfberry after 14 days under salt stress"

[1] FENG X H, GUO K, YANG C, LI J S, CHEN H Y, LIU X J. Growth and fruit production of tomato grafted onto wolfberry (Lycium chinense) rootstock in saline soil. Scientia Horticulturae, 2019, 255: 298-305.
doi: 10.1016/j.scienta.2019.05.028
[2] LOPEZ-BUCIO J, PELAGIO-FLORES R, HERRERA-ESTRELLA A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 2015, 196: 109-123.
doi: 10.1016/j.scienta.2015.08.043
[3] SAZZAD HOSSAIN M, KARL-JOSEF D. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science, 2016, 7: 548.
[4] ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445. doi: 10.1016/s1369-5266(03)00085-2.
doi: 10.1016/s1369-5266(03)00085-2
[5] ZHU J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. doi: 10.1146/annurev.arplant.53.091401.143329.
doi: 10.1146/annurev.arplant.53.091401.143329
[6] MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911.
doi: 10.1146/annurev.arplant.59.032607.092911
[7] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016.
doi: 10.1016/j.plaphy.2010.08.016
[8] CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2008, 103(4): 551-560. doi: 10.1093/aob/mcn125.
doi: 10.1093/aob/mcn125
[9] CHINNUSAMY V, JAGENDORF A, ZHU J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45: 437-448.
doi: 10.2135/cropsci2005.0437
[10] ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001, 6: 66-71.
doi: 10.1016/S1360-1385(00)01838-0
[11] SUN J, CHEN S L, DAI S X, WANG R G, LI N Y, SHEN X, ZHOU X Y, LU C F, ZHENG X J, HU Z M, ZHANG Z K, SONG J, XU Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2008, 149(2): 1141-1153. doi: 10.1104/pp.108.129494.
doi: 10.1104/pp.108.129494
[12] YAN F Y, WEI H M, LI W W, LIU Z H, TANG S, CHEN L, DING C Q, JIANG Y, DING Y F, LI G H. Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicology and Environmental Safety, 2020, 206: 111358. doi: 10.1016/j.ecoenv.2020.111358.
doi: 10.1016/j.ecoenv.2020.111358
[13] SUN J, DAI S X, WANG R G, CHEN S L, LI N Y, ZHOU X Y, LU C F, SHEN X, ZHENG X J, HU Z M, ZHANG Z K, SONG J, XU Y. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiology, 2009, 29(9): 1175-1186. doi: 10.1093/treephys/tpp048.
doi: 10.1093/treephys/tpp048
[14] WU G Q, WANG S M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant, Soil and Environment, 2012, 58(3): 121-127.
doi: 10.17221/374/2011-PSE
[15] WANG Z M, WANG M Y, LIU L, MENG F J. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseu-doacacia L.) subjected to salt stress. International Journal of Molecular Sciences, 2013, 14(10): 20299-20325.
doi: 10.3390/ijms141020299
[16] 颜坤, 赵世杰, 徐化凌, 吴从稳, 陈小兵. 盐胁迫对不同倍性金银花光合特性的影响. 中国农业科学, 2015, 48(16): 3275-3286.
YAN K, ZHAO S J, XU H L, WU C W, CHEN X B. Effects of salt stress on photosynthetic characters in honeysuckle with different ploidies. Scientia Agricultura Sinica, 2015, 48(16): 3275-3286. (in Chinese)
[17] MURATA N, TAKAHASHI S, NISHIYAMA Y, ALLAKHVERDIEV S I. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 2007, 1767(6): 414-421. doi: 10.1016/j.bbabio.2006.11.019.
doi: 10.1016/j.bbabio.2006.11.019
[18] LORETO F, CENTRITTO M, CHARTZOULAKIS K. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environment, 2003, 26: 595-601.
doi: 10.1046/j.1365-3040.2003.00994.x
[19] YANG X H, LIANG Z, WEN X G, LU C M. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Molecular Biology, 2007, 66(1/2): 73-86. doi: 10.1007/s11103-007-9253-9.
doi: 10.1007/s11103-007-9253-9
[20] TAKAHASHI S, MURATA N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 2008, 13(4): 178-182. doi: 10.1016/j.tplants.2008.01.005.
doi: 10.1016/j.tplants.2008.01.005
[21] CHEN H X, LI W J, AN S Z, GAO H Y. Characterization of PSII photochemistry and thermostability in salt-treated Rumex leaves. Journal of Plant Physiology, 2004, 161(3): 257-264. doi: 10.1078/0176-1617-01231.
doi: 10.1078/0176-1617-01231
[22] CHEN P, YAN K, SHAO H B, ZHAO S J. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from yellow river delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE, 2013, 8(12): e83227.
doi: 10.1371/journal.pone.0083227
[23] HUSSAIN S, LURO F, COSTANTINO G, OLLITRAULT P, MORILLON R. Physiological analysis of salt stress behaviour of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany, 2012, 81: 103-112.
doi: 10.1016/j.sajb.2012.06.004
[24] KALAJI H M, GOVINDJEE, BOSA K, KOŚCIELNIAK J, ŻUK-GOŁASZEWSKA K. Effects of salt stress on photosystem II efficiency and CO2 assimilation in two Syrian barley landraces. Photosynthesis Research for Food, Fuel and the Future, 2011, 73: 64-72. doi: 10.1007/978-3-642-32034-7_164.
doi: 10.1007/978-3-642-32034-7_164
[25] TARCHOUNE I, DEGL’INNOCENTI E, KADDOUR R, GUIDI L, LACHAÂL M, NAVARI-IZZO F, OUERGHI Z. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiologiae Plantarum, 2012, 34(2): 607-615. doi: 10.1007/s11738-011-0861-2.
doi: 10.1007/s11738-011-0861-2
[26] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272. doi: 10.3864/j.issn.0578-1752.2012.16.005.
doi: 10.3864/j.issn.0578-1752.2012.16.005
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of Sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. doi: 10.3864/j.issn.0578-1752.2012.16.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.16.005
[27] 赵莹, 杨克军, 赵长江, 李佐同, 王玉凤, 付健, 郭亮, 李文胜. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004.
doi: 10.3864/j.issn.0578-1752.2014.20.004
ZHAO Y, YANG K J, ZHAO C J, LI Z T, WANG Y F, FU J, GUO L, LI W S. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Scientia Agricultura Sinica, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.20.004
[28] BAKER N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113. doi: 10.1146/annurev.arplant.59.032607.092759.
doi: 10.1146/annurev.arplant.59.032607.092759
[29] MATHUR S, JAJOO A, MEHTA P, BHARTI S. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology (Stuttgart, Germany), 2011, 13(1): 1-6. doi: 10.1111/j.1438-8677.2009.00319.x.
doi: 10.1111/j.1438-8677.2009.00319.x.
[30] YAN K, SHAO H B, SHAO C Y, CHEN P, ZHAO S J, BRESTIC M, CHEN X B. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiologiae Plantarum, 2013, 35(10): 2867-2878. doi: 10.1007/s11738-013-1325-7.
doi: 10.1007/s11738-013-1325-7
[31] ZHAO L, ZHANG Y Q. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, 2015, 14(8): 1588-1597.
doi: 10.1016/S2095-3119(14)60966-7
[32] GUPTA S, SMITH P M C, BOUGHTON B A, RUPASINGHE T W T, NATERA S H A, ROESSNER U. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. Journal of Experimental Botany, 2021, 72(20): 7229-7246. doi: 10.1093/jxb/erab335.
doi: 10.1093/jxb/erab335
[33] AHMAD P, HASHEM A, ABD-ALLAH E F, ALQARAWI A A, JOHN R, EGAMBERDIEVA D, GUCEL S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 2015, 6: 868.
[34] KUMAR K, MANIGUNDAN K, AMARESAN N. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 2017, 57(2): 141-150.
doi: 10.1002/jobm.201600369
[35] MASTOURI F, BJÖRKMAN T, HARMAN G E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 2010, 100(11): 1213-1221. doi: 10.1094/PHYTO-03-10-0091.
doi: 10.1094/PHYTO-03-10-0091
[36] QI W Z, ZHAO L. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 2013, 53(4): 355-364. doi: 10.1002/jobm.201200031.
doi: 10.1002/jobm.201200031
[37] SOLIMAN M H, ALNUSAIRE T S, ABDELBAKY N F, ALAYAFI A A M, HASANUZZAMAN M, ROWEZAK M M, EL-ESAWI M, ELKELISH A. Trichoderma-induced improvement in growth, photosynthetic pigments, proline and glutathione levels in cucurbita pepo seedlings under salt stress. Phyton-International Journal of Experimental Botany, 2020, 89(3): 473-486.
[38] FU J, XIAO Y, WANG Y F, LIU Z H, YANG K J. Saline-alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Scientific Reports, 2021, 11: 11152.
doi: 10.1038/s41598-021-90675-9
[39] MBARKI S CERDA A, BRESTIC M, MAHENDRA R, ABDELLY C, PASCUAL J A. Vineyard compost supplemented with Trichoderma Harzianum T78 improve saline soil quality. Land Degradation and Development, 2017, 28(3): 1028-1037.
doi: 10.1002/ldr.2554
[40] CHEN L H, ZHENG J H, SHAO X H, SHEN S S, YU Z H, MAO X Y, CHANG T T. Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecological Engineering, 2016, 91: 58-64.
doi: 10.1016/j.ecoleng.2016.01.007
[41] ZHANG F L, WANG Y H, LIU C, CHEN F J, GE H L, TIAN F S, YANG T W, MA K S, ZHANG Y. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 2019, 170: 436-445.
doi: 10.1016/j.ecoenv.2018.11.084
[42] ZHANG S W, GAN Y T, XU B L. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology, 2019, 19(1): 22. doi: 10.1186/s12870-018-1618-5.
doi: 10.1186/s12870-018-1618-5
[43] OLJIRA A M, HUSSAIN T, WAGHMODE T R, ZHAO H C, SUN H Y, LIU X J, WANG X Z, LIU B B. Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms, 2020, 10(8): 1565.
[44] 颜坤, 赵世杰, 任承钢, 边兰星, 李萌, 陈小兵. 一种棘孢木霉及其应用: CN106754426B[P]. 2020-05-08.
YAN K, ZHAO S J, REN C G, BIAN L X, LI M, CHEN X B. Trichoderma asperellum and application thereof: CN106754426B[P]. 2020-05-08.. (in Chinese)
[45] YAN K, BIAN T T, HE W J, HAN G X, LV M X, GUO M Z, LU M. Root abscisic acid contributes to defending photoinibition in Jerusalem Artichoke (Helianthus tuberosus L.) under salt stress. International Journal of Molecular Sciences, 2018, 19: 3934.
doi: 10.3390/ijms19123934
[46] YAN K, CHEN W, HE X Y, ZHANG G Y, XU S, WANG L L. Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environmental and Experimental Botany, 2010, 69(2): 198-204.
doi: 10.1016/j.envexpbot.2010.03.008
[47] YAN K, HAN G X, REN C G, ZHAO S J, WU X Q, BIAN T T. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Frontiers in Plant Science, 2018, 9: 479. doi: 10.3389/fpls.2018.00479.
doi: 10.3389/fpls.2018.00479
[48] STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, GOLTSEV V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta-Bioenergetics, 2010, 1797: 122.
[49] YAN K, WU C W, ZHANG L H, CHEN X B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Frontiers in Plant Science, 2015, 6: 227.
[50] ZHANG Z S, JIN L Q, LI Y T, TIKKANEN M, LI Q M, AI X Z, GAO H Y. Ultraviolet-B radiation (UV-B) relieves chilling-light- induced PSI photoinhibition and accelerates the recovery of CO2 assimilation in cucumber (Cucumis sativus L.) leaves. Scientific Reports, 2016, 6: 34455. doi: 10.1038/srep34455.
doi: 10.1038/srep34455
[51] ZHAO N, WANG S J, MA X J, ZHU H P, SA G, SUN J, LI N F, ZHAO C J, ZHAO R, CHEN S L. Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress. Trees, 2016, 30(3): 825-837. doi: 10.1007/s00468-015-1324-y.
doi: 10.1007/s00468-015-1324-y
[52] FENG X H, AN P, GUO K, LI X G, ZHANG X M. Growth, root compensation and ion distribution in Lycium chinense under heterogeneous salinity stress. Scientia Horticulturae, 2017, 226: 24-32.
doi: 10.1016/j.scienta.2017.08.011
[53] YAN K, HE W J, BIAN L X, ZHANG Z S, TANG X L, AN M X, LI L X, HAN G X. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. BMC Plant Biology, 2020, 20: 155.
doi: 10.1186/s12870-020-02371-x
[54] STRASSER R J, SRIVASTAVA A, GOVINDJEE K S. Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 1995, 61: 32-42.
doi: 10.1111/j.1751-1097.1995.tb09240.x
[55] STRASSER R J, SRIVASTAVA A, MICHAEL T S. Analysis of the chlorophyll fluorescence transient//PAPAGEORGIOU G, GOVINDJEE K S. Chlorophyll Fluorescence a Signature of Photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004: 321-362.
[56] APPENROTH K J, STOCKEL J, SRIVASTAVA A, STRASSER R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 2001, 115: 49-64.
doi: 10.1016/S0269-7491(01)00091-4
[57] LI J, BAO S Q, ZHANG Y H, MA X J, MISHRA-KNYRIM M, SUN J, SA G, SHEN X, POLLE A, CHEN S L. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under sodium chloride stress. Plant Physiology, 2012, 159(4): 1771-1786. doi: 10.1104/pp.112.195370.
doi: 10.1104/pp.112.195370
[58] DIMITROVA V L, PAUNOV M M, GOLTSEV V, GENEVA M P, MARKOVSKA Y K. Effect of soil salinity on growth, metal distribution and photosynthetic performance of two Lycium species. Photosynthetica, 2019, 57(1): 32-39.
doi: 10.32615/ps.2019.006
[59] GUO Y, YU Q, FENG X H, XIE Z X, LIU X J. Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress. Archives of Biological Sciences, 2015, 67(4): 1185-1194.
doi: 10.2298/ABS150211094G
[60] TANG X Q, ZHANG H L, SHABALA S, LI H Y, YANG X Y, ZHANG H X. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. Tree Physiology, 2021, 41(7): 1264-1277. doi: 10.1093/treephys/tpaa174.
doi: 10.1093/treephys/tpaa174
[61] ZHAO K F, FAN H, ZHOU S, SONG J. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Science, 2003, 165: 837-844.
doi: 10.1016/S0168-9452(03)00282-6
[1] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[2] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[3] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[4] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[5] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[6] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
[7] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[8] Hui WANG,YuLu GAO,Meng YU,YuanPeng DU,YongJiang SUN,Heng ZHAI. Effect of Root Irrigation of Acetic Acid and Wine on Photoinhibition of Grape Under Seawater Stress [J]. Scientia Agricultura Sinica, 2018, 51(21): 4210-4218.
[9] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[10] Lei NING, ShuGuang WANG, PengJu JU, XingXuan BAI, LinHao GE, Xin QI, QiYan JIANG, XianJun SUN, Ming CHEN, DaiZhen SUN. Rice Overexpression of Millet SiANT1 Gene Increases Salt Tolerance [J]. Scientia Agricultura Sinica, 2018, 51(10): 1830-1841.
[11] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[12] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[13] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[14] WANG Hui-fei, SUN Yan-xiang, FENG Xue, ZHANG Yi-ming, YANG Jiang-tao, MA Mei-fang, CHEN Guang. Cloning and Expression Analysis of Argininosuccinate Synthetase Gene GhASS1 from Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2016, 49(7): 1242-1253.
[15] ZHOU Zhen-xiang, LI Zhi-kang, CHEN Ying, WANG Zhi-qin, YANG Jian-chang, GU Jun-fei. Effects of Reduced Chlorophyll Content on Photoinhibition and Photosynthetic Electron Transport in Rice Leaves [J]. Scientia Agricultura Sinica, 2016, 49(19): 3709-3720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!