Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 632-641.doi: 10.3864/j.issn.0578-1752.2020.03.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Histone Acetylation on Ganoderma lucidum Growth, Polysaccharide and Ganoderic Acid Biosynthesis

ZHANG ZongYuan1,2,JIANG YongMei1,ZHANG WenXian1()   

  1. 1 College of Life Sciences, Fujian Normal University, Fuzhou 350108
    2 Institute of Biology Co., Ltd., Henan Academy of Sciences, Zhengzhou 450008
  • Received:2019-05-21 Accepted:2019-10-30 Online:2020-02-01 Published:2020-02-13
  • Contact: WenXian ZHANG E-mail:huzx@fjnu.edu.cn

Abstract:

【Objective】Histone acetylation modification plays an important role in the growth, development and metabolic synthesis of fungi. Few epigenetic studies of higher medicinal fungi were reported at present. In this study, the effects of histone acetylation on the growth and development of Ganoderma lucidum (G. lucidum) and the synthesis of its main metabolites were studied by adding chemical epigenetic inhibitor octanedianiline hydroxamic acid (SAHA), which provided a theoretical basis for improving the biosynthesis of G. lucidum polysaccharides and Ganoderma acid (GA) by epigenetic means.【Method】A two-stage cultivation, liquid fermentation combined with static cultivation, was applied to culture G. lucidum. The cell was treated with different concentration of SAHA (0, 0.6, 60, 120, and 180 μmol?L -1) during the liquid static cultivation of G. lucidum. Biomass, sugar consumption, mycelial mat formation, mycelial morphology, sporulation and biosynthesis of GA and G.lucidum polysaccharides were measured or observed by conventional methods. Histone acetylation levels of G. luidum were examined by Western blot, the relative expression levels of polysaccharides biosynthesis genes (e.g. ugp, gls, and pgm), GA biosynthesis genes (e.g. hmg, sqs, se, and ls) and global regulator vet, LaeA gene were detected by qRT-PCR. 【Result】The acetylation level of histone H4 in G. lucidum treated with SAHA increased to 1.6 times as much as that under control group. SAHA inhibited the growth of G. lucidum mycelia and the production of pigments, and changed the morphology of mycelia. The formation of spores was also inhibited, and the higher the concentration of SAHA, the more obvious the inhibition degree. SAHA treatment significantly increased the yield of G. lucidum polysaccharides, up to 50%, and the biosynthesis of GA was inhibited, which decreased by 13%-27% compared with the control. The results of qRT-PCR analysis showed that the gene expression of the key enzymes in G.lucidum polysaccharides and GA synthesis were up-regulated in different degrees under SAHA treatment. The gene expression of the key enzymes in polysaccharides synthesis were increased by 1.5-3.5 times and that of the key enzymes in GA synthesis by 1.8-12.1 times. The expression of vet and LaeA genes, the global regulators, were inhibited, which was 11.3%-62.4% of the control group.【Conclusion】Histone acetylation could regulate the growth and development of G. lucidum through global regulatory factors, thus affecting the biosynthesis of GA, while histone acetylation also had an effect on G. lucidum polysaccharides biosynthesis.

Key words: Ganoderme lucidum, histone acetylation, ganoderic acid, Ganoderma lucidum polysaccharide, SAHA

Table 1

qRT-PCR primers"

基因 Gene 引物序列(5′-3′) Primer sequence (5′-3′) 参考文献 Reference
hmgr F-TCGCAGTGGCACAGGAGC R-CCCGGTGTTGGTGTTAGAAG [36]
sqs F-TGACGCTTCCTGACGAGA R-GTGGCAGTAGAGGTTGTA [36]
ls F-CTTCCGCAAGCACTACCCG R-AGCAGATGCCCCACGAGCC [36]
se F-ACTTCTGCGGGATCATATTGG R-TGTAGGATTTGCTCCTTCAGGT [34]
LaeA F-CTCCGCCGATTCTACTGG R-ACGGTCTAGCCGCTCAAA [34]
vet F-GGACACGACCCTTGGAACA R-CGGAAACGCGAACATAGCC [34]
pgm F-GGGCCTGAGGAAGAGGGTGA R-CGGTTTCG GGGGAGAAGTAG [29]
ugp F-TGGTCTCGGAACTTCTATGGG R-CAGTGCTTCTTCTCGTCCTCA [29]
gls F-TCGTTTGGG TTGGGTCTGT R-GAAGCCCTTGTCGCTCTGC [29]
18S- rRNA F-TATCGAGTTCTGACTGGGTTGT R-ATCCGTTGCTGAAAGTTGTAT [36]

Fig. 1

Effects of SAHA on the biomass and sugar consumption in the liquid static culture of G. lucidum"

Fig. 2

Effect of SAHA on the white mycelia layer growth in the liquid static culture of G. lucidum"

Fig. 3

Effect of SAHA on the level of histone acetylation of G. lucidum A: The Western blotting of histone of G. lucidum. B: Detection of the level of histone acetylation in G. lucidum by Western blot assay. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 4

Effects of SAHA on aerial mycelia morphology and spore formation in liquid static culture of G. lucidum A: The mycelia morphology on liquid surface were cultured on day 6 at 0 μmol∙L-1 (Ⅰ), 120 μmol∙L-1 (Ⅱ), 180 μmol∙L-1 (Ⅲ) SAHA and the mycelia with spores on liquid surface were cultured on day 9 at 0.09% DMSO (Ⅳ) and 0 μmol∙L-1 (Ⅴ), 0.6 μmol∙L-1 (Ⅵ), 60 μmol∙L-1 (Ⅶ), 120 μmol∙L-1 (Ⅷ), 180 μmol∙L-1 (Ⅸ) SAHA, respectively. B: Sporulation of G. lucidum after treatment with 0.09% DMSO and different concentration of SAHA"

Fig. 5

Effect of SAHA on the production of ganoderic acid in G. lucidum"

Fig. 6

Effect of SAHA on total polysaccharide production of G.lucidum"

Fig. 7

Effect of SAHA on expression of ugp, gls and pgm gene"

Fig. 8

Effect of SAHA on the expression of hmgr, sqs, se and ls gene"

Fig. 9

Effect of SAHA on the expression of vet and LaeA"

[1] SHIAO M S, LEE K R, LIN L J, WANG C T . Natural products and biological activities of the Chinese medicinal fungus Ganoderma lucidum. ACS Symposium Series (USA), 1994,547:342-354.
[2] SONE Y, OKUDA R, WADA N, KISHIDA E, MISAKI A . Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agricultural and Biological Chemistry, 1985,49(9):2641-2653.
[3] XU J W, ZHAO W, ZHONG J J . Biotechnological production and application of ganoderic acids. Applied Microbiology and Biotechnology, 2010,87(2):457-466.
[4] 刘高强, 赵艳, 王晓玲, 朱朝阳 . 灵芝多糖的生物合成和发酵调控. 菌物学报, 2011,30(2):198-205.
LIU G Q, ZHAO Y, WANG X L, ZHU C Y . Biosynthesis and fermentation control of polysaccharides from Ganoderma lucidum. Mycosystema, 2011,30(2):198-205. (in Chinese)
[5] 宁玉波, 王红艳, 乔康, 刘秀梅, 王开运 . 灵芝多糖对番茄抗灰霉病的诱导效应. 中国农业科学, 2016,49(11):2103-2112.
NING Y B, WANG H Y, QIAO K, LIU X M, WANG K Y . Induced resistance by polysaccharides isolated from Ganoderma lucidum in tomato against gray mold. Scientia Agricultura Sinica, 2016,49(11):2103-2112. (in Chinese)
[6] 张中霄, 王红艳, 王开运, 王东, 姜莉莉 . 灵芝多糖拌种对小麦抗纹枯病的诱导效应及生长发育影响. 中国农业科学, 2018,51(1):96-104.
ZHANG Z X, WANG H Y, WANG K Y, WANG D, JIANG L L . Induction effect of sharp eyespot of wheat and the effect of wheat growth after Ganoderma lucidum polysaccharides (GLP) seed dressing. Scientia Agricultura Sinica, 2018,51(1):96-104. (in Chinese)
[7] FANG Q H, ZHONG J J . Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnology Progress, 2002,18(1):51-54.
[8] KONG X J, VAN DIEPENINGEN A D, VAN DER LEE T A J, WAALWIJK C, XU J S, XU J, ZHANG H, CHEN W Q, FENG J . The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Frontiers in Microbiology, 2018,9:654. doi: 10.3389/fmicb.2018.00654.
[9] HEDTKE M, RAUSCHER S, ROHRIG J, RODRIGUEZ-ROMERO J, YU Z Z, FISCHER R . Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Molecular Microbiology, 2015,97(4):733-745. doi: 10.1111/mmi.13062.
[10] BRENNA A, GRIMALDI B, FILETICI P, BALLARIO P . Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Molecular Biology of the Cell, 2012,23(19):3863-3872. doi: 10.1091/mbc.E12-02-0142.
[11] CANOVAS D, MARCOS A T, GACEK A, RAMOS M S, GUTIERREZ G, REYES-DOMINGUEZ Y, STRAUSS J . The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics, 2014,197(4):1175-1189. doi: 10.1534/genetics.114.165688.
[12] TRIBUS M, BAUER I, GALEHR J, RIESER G, TROJER P, BROSCH G, LOIDL P, HAAS H, GRAESSLE S . A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Molecular Biology of the Cell, 2010,21(2):345-353. doi: 10.1091/mbc.E09-08-0750.
[13] LAN H H, SUN R L, FAN K, YANG K L, ZHANG F, NIE X Y, WANG X N, ZHUANG Z H, WANG S H . The Aspergillus flavus histone acetyltransferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Frontiers in Microbiology, 2016,7:e74030. doi: 10.3389/fmicb.2016.01324.
[14] ZHANG Q, CHEN L F, YU X, LIU H, AKHBERDI O, PAN J, ZHU X D . A B-type histone acetyltransferase HAT1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora. Journal of basic microbiology, 2016,56(12):1380-1391.
[15] GÓMEZ-RODRÍGUEZ E Y, URESTI-RIVERA E E, PATRÓN- SOBERANO O A, ISLAS-OSUNA M A, FLORES MARTÍNEZ A, RIEGO-RUIZ L, ROSALES-SAAVEDRA M T, CASAS-FLORES S . Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS ONE, 2018,13(4):e0193872. doi: 10.1371/journal.pone.0193872.
[16] TURNER E L, MALO M E, PISCLEVICH M G, DASH M D, DAVIES G F, ARNASON T G, HARKNESS T A A . The Saccharomyces cerevisiae anaphase-promoting complex interacts with multiple histone-modifying enzymes to regulate cell cycle progression. Eukaryotic Cell, 2010,9(10):1418-1431. doi: 10.1128/ec.00097-10.
[17] CAI Q, WANG J J, SHAO W, YING S H, FENG M G . Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana. Pest Management Science 2018, 74(11): 2626-2635. DOI: 10.1002/ps.5054.
[18] BASIMIA T, REZAEE S, ZAMANIZADEH H R, MOUSAVI A . SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus. General Pharmacology the Vascular System, 2013,30(3):357-366.
[19] YANG K L, ZHUANG Z H, ZHANG F, SONG F Q, ZHONG H, RAN F L, YU S, XU G P, LAN F X, WANG S H . Inhibition of aflatoxin metabolism and growth of Aspergillus flavus in liquid culture by a DNA methylation inhibitor. Food Additives & Contaminants: Part A, 2015,32(4):554-563. doi: 10.1080/19440049. 2014.972992.
[20] 邓茂常 . 食用菌生产新技术——液体深层发酵. 资源开发与市场, 1987(2):34-36.
DENG M C . New technology of edible fungi production-submerged liquid fermentation. Resource Development & Market, 1987(2):34-36. (in Chinese)
[21] 林忠平, 孙安慈, 刘永安 . 灵芝深层培养的研究. 微生物学报, 1973,13(2):63-68.
LIN Z P, SUN A C, LIU Y A . Studies on the submerged cultivation of Ling Chin(Ganoderma sp.). Acta microbiologica Sinica, 1973,13(2):63-68. (in Chinese)
[22] 王谦, 李育岳, 杨晓先, 汪麟, 冀宏, 汪虹 . 灵芝深层培养及应用研究. 食用菌学报, 1994,1(2):41-44.
WANG Q, LI Y Y, YANG X X, WANG L, JI H, WANG H . Submerged culture of Ganoderma lucidum and its application. Acta Edulis Fungicide, 1994,1(2):41-44. (in Chinese)
[23] LEE S Y, KANG T S, LEE M C . Condition of exo-polysacchride production from submerged mycelial culture of Ganoderma lucidum by using air-lift fermenter system. Korean Journal of Biotechnology and Bioengineering, 1998,13:547-553.
[24] 方庆华, 钟建江 . 灵芝真菌发酵生产灵芝多糖和灵芝酸. 华东理工大学学报(自然科学版), 2001,27(3):254-257.
FANG Q H, ZHONG J J . Simultaneous production of polysaccharide and ganoderic acid by submerged fermentation of Ganoderma lucidum. Journal of East China University of Science and Technology (Natural Science Edition), 2001,27(3):254-257. (in Chinese)
[25] LIANG C X, LI Y B, XU J W, WANG J L, MIAO X L, TANG Y J, GU T Y, ZHONG J J . Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Applied Microbiology & Biotechnology, 2010,86(5):1367-1374.
[26] XU Y N, ZHONG J J . Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnology Advances, 2012,30(6):1301-1308.
[27] ZHAO W, XU J W, ZHONG J J . Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen- limiting conditions. Bioresource Technology, 2011,102(17):8185-8190.
[28] ZHANG W X, ZHONG J J . Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. Journal of Bioscience and Bioengineering, 2010,109(1):37-40.
[29] JI S L, LIU R, REN M F, LI H J, XU J W . Enhanced production of polysaccharide through the overexpression of homologous uridine diphosphate glucose pyrophosphorylase gene in a submerged culture of Lingzhi or Reishi Medicinal Mushroom,Ganoderma lucidum(Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 2015,17(5):435-442.
[30] 刘柯, 李焕军, 张德怀, 岳同辉, 李娜, 徐军伟 . 灵芝细胞中异源表达透明颤菌血红蛋白基因提高胞外多糖的产量. 食用菌学报, 2017,24(3):35-41.
LIU K, LI H J, ZHANG D H, YUE T H, LI N, XU J W . Heterologous expression of vitreoscilla hemoglobin in ganoderma lingzhi for increased exopolysaccharide production. Acta Edulis Fungi, 2017,24(3):35-41.(in Chinese)
[31] WILLIAMS R B, HENRIKSON J C, HOOVER A R, LEE A E, CICHEWICZ R H . Epigenetic remodeling of the fungal secondary metabolome. Organic & Biomolecular Chemistry, 2008,6(11):1895-1897.
[32] FISCH K M, GILLASPY A F, GIPSON M, HENRIKSON J C, HOOVER A R, JACKSON L, NAJAR F Z W GELE H, CICHEWICZ R H. , Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 2009,36(9):1199-1213.
[33] TANG Y J, ZHONG J J . Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 2003,32:478-484.
[34] 蓝丽雯 . DNA甲基化调控灵芝酸生物合成代谢的研究[D]. 福州: 福建师范大学, 2016.
LAN L W . Study on the regulation of DNA methylation on ganoderic acids biosynthesis in Ganoderma lucidum[D]. Fuzhou: Fujian Normal University, 2016. ( in Chinese)
[35] 胡彬彬, 林连兵, 魏云林, 季秀玲, 张琦 . 一种高效的真菌总蛋白质提取方法. 中国生物工程杂志, 2013,33(9):53-58.
HU B B, LIN L B, WEI Y L, JI X L, ZHANG Q . An efficient fungal protein extraction method. China Biotechnology, 2013,33(9):53-58.
[36] ZHANG W X, TANG Y J, ZHONG J J . Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum. Bioprocess & Biosystems Engineering, 2010,33(6):683-690.
[37] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
[38] 张虎 . 组蛋白去乙酰化酶Rpd3对橘青霉美伐他汀生物合成和生长发育的调控[D]. 重庆: 西南大学, 2017.
ZHANG H . The regulation of histone deacetylase Rpd3 on meiastatin biosynthesis and growth and development in Penicillium citrinum[D]. Chongqing: Southwest University, 2017. ( in Chinese)
[39] 叶柳青 . 曲古抑囷素A对黄曲霉产毒和生长调控机制的初步研究[D]. 福州: 福建农林大学, 2015.
YE L Q . Regulation of Trichostatin A on toxin production and growth of Aspergillus flavus[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. ( in Chinese)
[40] LEE I, OH J H, SHWAB E K, DAGENAIS T R, ANDES D, KELLER N P . HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genetics & Biology Fg & B, 2009,46(10):782.
[41] 陈慧, 杨海龙, 刘高强 . 灵芝三萜的生物合成和发酵调控. 菌物学报, 2015,34(1):1-9.
CHEN H, YANG H L, LIU G Q . Biosynthesis and fermentation control of triterpenoids from Ganoderma lingzhi. Mycosystema, 2015,34(1):1-9. (in Chinese)
[42] CALVO A M, WILSON R A, WOO B J, KELLER N P . Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002,66(3):447-459.
[43] KALE S P, MILDE L T, MARISA K, FRISVAD J C, KELLER N P, BOK J W . Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics & Biology, 2008,45(10):1422-1429.
[44] ATOUI A, KASTNER C, LAREY C M, THOKALA R, ETXEBESTE O, ESPESO E A, FISCHER R, CALVO A M . Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genetics and Biology, 2010,47(12):962-972.
[45] CHETTRI P, CALVO A M, CARY J W, DHINGRA S, GUO Y, MCDOUGAL R L, BRADSHAW R E . The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism. Fungal Genetics and Biology, 2012,49(2):141-151.
[46] BAYRAM O S, BAYRAM O, VALERIUS O, PARK H S, IRNIGER S, GERKE J, NI M, HAN K H, YU J H, BRAUS G H . LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genetics, 2010,6(12):e1001226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!