Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2895-2905.doi: 10.3864/j.issn.0578-1752.2021.13.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds

YU ZhengWang(),ZHOU ZhongXin()   

  1. Key Lab of Agricultural Animal Genetics/Breeding and Reproduction of Ministry of Education/Department of Animal Nutrition and Feed Science, Huazhong Agriculture University, Wuhan 430070
  • Received:2020-05-31 Revised:2021-04-07 Online:2021-07-01 Published:2021-07-12
  • Contact: ZhongXin ZHOU E-mail:1575800877@qq.com;zhongxinzhou@mail.hzau.edu.cn

Abstract:

In recent years, more and more studies have shown that medium-chain fatty acid (MCFAs) resistance to pathogenic bacteria is an important component of innate defense system of mammals, and MCFAs can also induce expressions of endogenous host defense peptides (HDPs) in human, pig and chicken. However, these new functions of MCFAs have not attracted much attention. MCFAs also have a synergistic antibacterial synergistic effect with feeding organic acids or feeding plant essential oils, which can reduce the use of these active substances. In addition, compared with long-chain fatty acids, the addition of MCFAs in the diet can significantly increase the oxygen consumption and mitochondrial respiration rate in the body of animals, but it produces less reactive oxygen species, which is in line with the characteristics of rapid energy supply required by intestinal metabolism and liver metabolism in young animals. Adding low concentration of MCFAs (0.1%-0.5%, mass ratio) to the diet can significantly increase the survival rate of newborn or weaned piglets, the digestibility of crude protein and crude fat as well as the feed conversion rate, regulate the intestinal flora, and improve the intestinal epithelial structure, thus promoting the growth of animals. Based on the above advantages of MCFAs, mixing MCFAs with forage organic acid or plant essential oil to prepare coated particles may be a good way to use it as a substitute for antibiotics in piglets.

Key words: medium chain fatty acid, innate defense system, host defense peptide, synergistic antibiotics, piglets

Table 1

Effects of the addition of a certain concentration of medium chain fatty acids to the basal piglet diet on piglet performance, nutrient apparent digestibility, intestinal microbe and structure, and piglet mortality"

添加浓度和形式
Concentration and form
生长性能
Growth performance
营养物质表观消化率
The apparent digestibility of nutrients
肠道菌群及结构
Intestinal flora and structure
仔猪死亡率
Piglet mortality
参考文献
References
8%中链脂肪酸(60%辛酸 + 40%葵酸)
8% MCFA (60% Caprylic acid + 40% Decanoic acid)
饲料转化效率升高
Feed conversion efficiency decreased
能量和氨基酸消化率提高(P>0.05)
The digestibility of energy and amino was improved. (P >0.05)
—— —— [84]
0.2%中链脂肪酸(辛酸或葵酸或辛酸 +葵酸)
0.2% MCFA (Caprylic acid or Decanoic acid or Caprylic acid + Decanoic acid)
平均日增重显著增加(P<0.01);饲料转化效率提高(P>0.05)
The ADG was increased significantly (P<0.01) and the FCR was improved (P>0.05)
粗蛋白(P<0.0.1)和粗纤维(P<0.05)消化率显著提高
The digestibility of crude protein and crude fiber increased significantly. Crude protein (P<0.0.1); Crude fiber (P<0.05)
产气荚膜梭菌的数量显著降低(P<0.01);绒毛高度和隐窝深度增加,葵酸组达到显著(P<0.01)
The number of clostridium perfringens was decreased significantly (P<0.01). The height of villi and the depth of crypt was increased, the Decanoic acid group reached a significant level
死亡率下降8.2%-11.3%
Mortality was reduced by 9.1% to 18.7%
[80]
0.1%微囊化的桉树中链脂肪酸(桉树油+ 辛酸+ 葵酸)
0.1% E-MCFA (Eucalyptus oil + Caprylic acid + Decanoic acid)
平均日增重和平均日采食量显著增加(P<0.05)
ADG and ADFI were significantly increased (P<0.05)
蛋白质、钙、磷和氨基酸的消化率显著增加(P<0.05)
The digestibility of protein, calcium, phosphorus and amino acids was increased significantly (P<0.05)
—— —— [81]
0.2%中链脂肪酸(辛酸或葵酸)+ 0.5%酸化剂(甲酸+丙酸)
0.2% MCFA (Caprylic acid or Decanoic acid) + 0.5% acidifier (Formic acid + Propionic acid)
体重和平均日增重显著增加(P<0.05);饲料转化效率升高,在35-56d差异显著(P<0.5)
The BW and the ADG were increased significantly. (P<0.05) FCR increased, and the difference was significant from 35 to 56d (P<0.5)
蛋白质、脂肪和粗纤维的消化率显著提高(P<0.05)
The digestibility of protein, fat and crude fiber was significantly improved (P<0.05)
产气荚膜梭菌数量降低;绒毛高度显著增加(P<0.05)
The number of clostridium perfringens and the height of villi were significantly increased (P <0.05)
—— [82]
0.2%中链脂肪酸(辛酸或葵酸)+ 0.5%酸化剂(甲酸+丙酸)
0.2% MCFA(Caprylic acid or Decanoic acid) + 0.5% acidifier (Formic acid + Propionic acid)
体重和平均日增重显著增加(P< 0.05);饲料转化效率升高,在35-56d差异显著(P<0.5)
The BW and the ADG were increased significantly. (P<0.05) FCR increased, and the difference was significant from 35 to 56d (P<0.5).
蛋白质、脂肪和粗纤维的消化率显著提高(P<0.05)
The digestibility of protein, fat and crude fiber was significantly improved (P<0.05)
产气荚膜梭菌数量降低;绒毛高度显著增加(P<0.05)
The number of clostridium perfringens and the height of villi were significantly increased. (P<0.05)

——
[82]
0.3%混合物(MCFA +甲酸钙+乳酸钙+柠檬酸)
0.3% mixture (MCFA + Calcium formate +Calcium lactate + Citric acid)
平均日采食量显著增加(P<0.05);平均日增重,饲料转化效率增加(P>0.05)
The ADFI was increased significantly (P<0.05), the ADG and the FCR were increased. (P>0.05).
氨基酸利用率显著提高(P<0.01)
The amino acid utilization rate was improved significantly (P<0.01)
直肠和回肠中乳酸杆菌的数量显著增加(P<0.05)
The number of lactobacillus in the rectum and ileum significantly increased (P<0.05)
—— [83]
0.2%MCFA(己酸+辛酸+葵酸+月桂酸)+0.01%粪肠球菌
0.2%MCFA (Caproic acid + Octanoic acid + Decanoic acid + Lauric acid) + 0.01% Enterococcus faecalis
平均日增重和饲料转化效率显著提高(P<0.05)。
The ADG and FCR were significantly improved (P<0.05).
干物质、氮、能量的消化率提高(P>0.05)
The digestibility of DM, nitrogen, and energy was increased
对肠道菌群没有影响
No effect on intestinal flora.
—— [85]
0.3%葵酸(或辛酸)+饲料粪肠球菌(0.35×109CFU/kg饲料)
0.3% Decanoic Acid (or Capric acid) + Enterococcus faecalis(0.35×109CFU/kg feed)
体重和平均日增重显著提高;葵酸(P<0.01);辛酸(P<0.05)。
The BW and ADG were significantly improved. Maleic acid (P<0.01); Poignancy (P<0.05).
—— 盲肠和空肠中大肠杆菌和产气荚膜梭菌数量显著降低(P< 0.05); 十二指肠的绒毛高度和隐窝深度显著增加(P<0.01)
The numbers of E. coli and Clostridium perfringens in cecum and jejunum were significantly reduced. (P<0.05)The villi height and crypt depth of duodenum were significantly increased (P<0.01)
死亡率下降
2.2%-4.5%
Mortality was reduced by 2.2% to 4.5%
[79]
0.5%的中链脂肪酸(己酸或辛酸或葵酸)
0.5% MCFA(Caproic acid or Caprylic acid or Decanoic acid)
平均日增重和饲料转化效率提高;葵酸(P<0.05);己酸和辛酸组(P>0.05)
The ADG and FCR were increased. Keiroic acid (P<0.01); Caproic acid or Caprylic acid (P>0.05)
—— 1.5%MCFA混合物对肠道菌群没有影响
The 1.5% MCFA mixture had no effect on intestinal flora.
—— [86]
[1] BRUSSOW H. Growth promotion and gut microbiota: insights from antibiotic use. Environmental Microbiology, 2015, 17(7):2216-2227. DOI: 10.1111/1462-2920.12786.
doi: 10.1111/1462-2920.12786
[2] SHILLING M, MATT L, RUBIN E, VISITACION M P, HALLER N A, GREY S F, WOOLVERTON C J. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on clostridium difficile. Journal of Medicinal Food, 2013, 16(12):1079-1085. DOI: 10.1089/jmf.2012.0303.
doi: 10.1089/jmf.2012.0303
[3] ZENTEK J, BUCHHEIT-RENKO S, FERRARA F, VAHJEN W, VAN KESSEL A G, PIEPER R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Animal Health Research Reviews, 2011, 12(1):83-93. DOI: 10.1017/s1466252311000089.
doi: 10.1017/S1466252311000089
[4] WOOLFORD M K. Microbiological screening of straight chain fatty-acids (c1-c12)as potential silage additives. Journal of the Science of Food and Agriculture, 1975, 26(2):219-228. DOI: 10.1002/jsfa.2740260213.
doi: 10.1002/(ISSN)1097-0010
[5] LIU Y L. Fatty acids, inflammation and intestinal health in pigs. Journal of Animal Science and Biotechnology, 2016, 7(3):321-329.
[6] 刘聪聪, 王树辉, 涂治骁, 陈少魁, 汪龙梅, 秦琴, 张琳, 王秀英, 刘玉兰, 朱惠玲. 中链脂肪酸对脂多糖诱导的断奶仔猪肠黏膜免疫屏障损伤的保护作用. 中国畜牧杂志, 2018, 54(10):70-74.
LIU C C, WANG S H, TU Z X, CHEN S K, WANG L M, QING Q, ZHANG L, WANG X Y, LIU Y L, ZHU H L. Protective effect of medium-chain fatty acids on injury of intestinal mucosal immune barrier induced by Lipopolysaccharide in weaned piglets. China Animal Husbandry & Veterinary Medicine, 2018, 54(10):70-74. (in Chinese)
[7] 赵晓, 张永, 张新胜, 徐庆, 于晓明, 李惠子, 杨雪艳, 刘英华, 薛长勇. 不同脂肪酸组成的油脂对LPS诱导的小鼠肠道炎症的影响. 中国食物与营养, 2017, 23(1):60-63.
ZHAO X, ZHANG Y, ZHANG X S, XV Q, YU X M, LI H Z, YANG X Y, LIU Y H, XUE C Y. Effects of oil composed of different fatty acids on intestinal inflammation induced by LPS in C57BL/6J mice. Food and Nutrition in China, 2017, 23(1):60-63. (in Chinese)
[8] HANCZAKOWSKA E. The use of medium-chain fatty acids in piglet feeding - a review. Annals of Animal Science, 2017, 17(4):967-977. DOI: 10.1515/aoas-2016-0099.
doi: 10.1515/aoas-2016-0099
[9] ZHANG J Y, BAEK D H, KIM I H. Effect of dietary supplemental medium chain fatty acids instead of antibiotics on the growth performance, digestibility and blood profiles in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6):1946-1951. DOI: 10.1111/jpn.13175.
doi: 10.1111/jpn.v103.6
[10] SUNKARA L T, JIANG W, ZHANG G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 2012, 7(11). DOI: 10.1371/journal.pone.0049558.
[11] WU J, MA N, JOHNSTON L J, MA X. Dietary nutrients mediate intestinal host defense peptide expression. Advances in Nutrition, 2020, 11(1):92-102. DOI: 10.1093/advances/nmz057.
[12] WANG J, LU J, XIE X, XIONG J, HUANG N, WEI H, JIANG S, PENG J. Blend of organic acids and medium chain fatty acids prevents the inflammatory response and intestinal barrier dysfunction in mice challenged with enterohemorrhagic Escherichia coli O157:H7. International Immunopharmacology, 2018, 58:64-71. DOI: 10.1016/j.intimp.2018.03.014.
doi: 10.1016/j.intimp.2018.03.014
[13] BALTIC B, STARCEVIC M, DORDEVIC J, MRDOVIC B, MARKOVIC R. Importance of medium chain fatty acids in animal nutrition. 59th International Meat Industry Conference Meatcon 2017. 2017.
[14] 庞培, 田雯, 刘志强, 范觉鑫, 龚金秋, 肖淑华. 中链脂肪酸的抑菌作用及在断奶仔猪料中应用. 广东畜牧兽医科技, 2019, 44(1):21-23.
PANG P, TIAN W, LIU Z Q, FAN J X, GONG J Q, XIAO S H. Bacteriostatic action of medium chain fatty acids and its application in weaned piglets. Guangdong Journal of Animal and Veterinary Science, 2019, 44(1):21-23. (in Chinese)
[15] JACKMAN J A, BOYD R D, ELROD C C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. Journal of Animal Science and Biotechnology, 2020, 11. DOI: 10.1186/s40104-020-00446-1.
[16] 薛永强, 黄志威, 雷志伟, 王新毅. 中短链脂肪酸在无抗饲料中的应用. 饲料研究, 2020, 43(3):133-136.
XUE Y Q, HUANG Z W, LEI Z W, WANG X Y. Application of short -medium chain fatty acids in non-resistant feed. Feed Research, 2020, 43(3):133-136. (in Chinese)
[17] ROSSI R, PASTORELLI G, CANNATA S, CORINO C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Animal Feed Science and Technology, 2010, 162(1-2):1-11. DOI; 10.1016/j.anifeedsci.2010.08.013.
doi: 10.1016/j.anifeedsci.2010.08.013
[18] DIERICK N A, DECUYPERE J A, DEGEYTER I. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition. Archives of Animal Nutrition, 2003, 57(1):49-63. DOI: 10.1080/0003942031000086626.
doi: 10.1080/0003942031000086626
[19] 汪加明, 周庆华, 王宏玲, 李飞务. 饲料中添加中链脂肪酸对断奶仔猪生长性能的影响. 猪业科学, 2017, 34(9):90-91.
WANG J M, ZHOU Q H, WANG H L, LI F W. Effect of adding medium chain fatty acid in feed on growth performance of weaned piglets. Swine Industry Science, 2017, 34(9):90-91.(in Chinese)
[20] 陆蠡珠. 我国脂肪酸的生产和应用. 精细与专用化学品, 2007, 15(1):24-28.
LU L Z. Production and application of fatty acids in China. Fine and Specialty Chemicals, 2017, 15(1):24-28.(in Chinese)
[21] BHATNAGAR A S, KUMAR P K P, HEMAVATHY J, KRISHNA A G G, Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. Journal of the American Oil Chemists Society, 2009, 86(10):991-999. DOI: 10.1007/s11746-009-1435-y.
doi: 10.1007/s11746-009-1435-y
[22] DAYRIT F M. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists Society, 2015, 92(1):1-15. DOI: 10.1007/s11746-014-2562-7.
doi: 10.1007/s11746-014-2562-7
[23] WANG J H, WANG X X, LI J T, CHEN Y Q, YANG W J, ZHANG L Y. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian-Australasian Journal of Animal Sciences, 2015, 28(2):223-230.
[24] DECUYPERE J A, DIERICK N A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutrition Research Reviews, 2003, 16(2):193-209. DOI: 10.1079/nrr200369.
doi: 10.1079/NRR200369
[25] CRUZ-ESTRADA A, RUIZ-SANCHEZ E, CRISTOBAL-ALEJO J, GONZALEZ-COLOMA A, FEANDRES M, GAMBOA-ANGULO M. Medium-chain fatty acids from eugenia winzerlingii leaves causing insect settling deterrent, nematicidal, and phytotoxic effects. Molecules, 2019, 24(9). DOI: 10.3390/molecules24091724.
[26] FISCHER C L, DRAKE D R, DAWSON D V, BLANCHETTE D R, BROGDEN K A, WERTZ P W. Antibacterial activity of sphingoid bases and fatty acids against Gram-Positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 2012, 56(3):1157-1161. DOI: 10.1128/aac.05151-11.
doi: 10.1128/AAC.05151-11
[27] 张希, 杨明, 宋飞, 张辉, 冯凤琴. 脂肪酸及其衍生物的抑菌活性. 浙江大学学报(农业与生命科学版), 2013, 39(02):155-160.
ZHANG X, YANG M, SONG F, ZHANG H, FENG F Q. Bacteriostatic activities of fatty acids and their derivatives. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2):155-160.(in Chinese)
[28] DESBOIS A P, SMITH V J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 2010, 85(6):1629-1642. DOI: 10.1007/s00253-009-2355-3.
doi: 10.1007/s00253-009-2355-3
[29] YOON B K, JACKMAN J A, VALLE-GONZALEZ E R, CHO N J. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 2018, 19(4). DOI: 10.3390/ijms19041114.
[30] 蒋增良, 张辉, 杜鹃, 冯凤琴. 月桂酸单甘油酯抑菌机理、影响因素及其复配体系的抑菌特性. 中国食品学报, 2016, 16(3):146-151.
JANG Z L, ZHANG H, DU J, FENG F Q. Antibacterial mechanism and influence factors of glycerol monolaurate and antibacterial properties of its combinations. Journal of Chinese Institute of Food Science and Technology, 2016, 16(3):146-151. (in Chinese)
[31] SCHLIEVERT P M, PETERSON M L. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS ONE, 2012, 7(7). DOI: 10.1371/journal.pone.0040350.
[32] KUMAR P, LEE J-H, BEYENAL H, LEE J. Fatty acids as antibiofilm and antivirulence agents. Trends in Microbiology, 2020. DOI: 10.1016/j.tim.2020.03.014.
[33] MESSENS W, GORIS J, DIERICK N, HERMAN L, HEYNDRICKX M. Inhibition of Salmonella typhimuriumby medium-chain fatty acids in anin vitro simulation of the porcine cecum. Veterinary Microbiology, 2010, 141(1-2):73-80.DOI: 10.1016/j.vetmic.2009.08.002.
doi: 10.1016/j.vetmic.2009.08.002
[34] LOPEZ-COLOM P, CASTILLEJOS L, RODRIGUEZ-SORRENTO A, PUYALTO M, JOSE MALLO J, MARIA MARTIN-ORUE S. Efficacy of medium-chain fatty acid salts distilled from coconut oil against two enteric pathogen challenges in weanling piglets. Journal of Animal Science and Biotechnology, 2019, 10(1). DOI: 10.1186/s40104-019-0393-y.
[35] HULANKOVA R, BORILOVA G. In vitro combined effect of oregano essential oil and caprylic acid against Salmonella serovars, Escherichia coli O157:H7, Staphylococcus aureusand Listeria monocytogenes. Acta Veterinaria Brno, 2011, 80(4):343-348. DOI: 10.2754/avb201180040343.
doi: 10.2754/avb201180040343
[36] 祁姣姣, 朱剑锋, 周海泳, 胡学生, 王创, 刘紫芊, 胡文锋. 由中链脂肪酸与植物精油为主要成分组成的复合型酸化剂抑菌性能的研究. 猪业科学, 2018, 35(01):109-113.
QI J J, ZHU J F, ZHOU H Y, HU X S, WANG C, LIU Z X, HU W F. Study on the antibacterial properties of compound acidizing agents composed of medium chain fatty acids and plant essential oils. Swine Industry Science, 2018, 35(01):109-113. (in Chinese)
[37] KIM S A, RHEE M S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Applied and Environmental Microbiology, 2013, 79(21):6552-6560. DOI: 10.1128/aem.02164-13.
doi: 10.1128/AEM.02164-13
[38] 王蕊香, 那木吉拉 银花. 断奶仔猪发生应激原因与防控措施. 畜牧兽医科学(电子版), 2020, (4):47-48.
WANG R X, NAMUJILA YING H. Causes and prevention measures of stress in weaned piglets. Graziery Veterinary Sciences (Electronic Version), 2020, (4):47-48. (in Chinese)
[39] KIM S A, RHEE M S. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, beta-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control, 2016, 60:447-454. DOI: 10.1016/j.foodcont.2015.08.022.
doi: 10.1016/j.foodcont.2015.08.022
[40] LILLEHOJ H, LIU Y, CALSAMIGLIA S, FERNANDEZ-MIYAKAWA M E, CHI F, CRAVENS R L, OH S, GAY C G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 2018, 49. DOI: 10.1186/s13567-018-0562-6.
[41] SUIRYANRAYNA M V A N, RAMANA J V. A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 2015, 6. DOI: 10.1186/s40104-015-0042-z.
[42] THORMAR H, HILMARSSON H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chemistry and Physics of Lipids, 2007, 150(1):1-11.DOI: 10.1016/j.chemphyslip.2007.06.220.
doi: 10.1016/j.chemphyslip.2007.06.220
[43] DESBOIS A P, MEARNS-SPRAGG A, SMITH V J. A fatty acid from the diatom phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 2009, 11(1):45-52. DOI: 10.1007/s10126-008-9118-5.
doi: 10.1007/s10126-008-9118-5
[44] FISCHER C L, BLANCHETTE D R, BROGDEN K A, DAWSON D V, DRAKE D R, HILL J R, WERTZ P W. The roles of cutaneous lipids in host defense. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2014, 1841(3):319-322. DOI: 10.1016/j.bbalip.2013.08.012.
[45] DRAKE D R, BROGDEN K A, DAWSON D V, WERTZ P W. Thematic review series: Skin lipids - Antimicrobial lipids at the skin surface. Journal of Lipid Research, 2008, 49(1):4-11. DOI: 10.1194/jlr.R700016-JLR200.
doi: 10.1194/jlr.R700016-JLR200
[46] KENDALL A C, NICOLAOU A. Bioactive lipid mediators in skin inflammation and immunity. Progress in Lipid Research, 2013, 52(1):141-164. DOI: 10.1016/j.plipres.2012.10.003.
doi: 10.1016/j.plipres.2012.10.003
[47] FISCHER C L. Antimicrobial activity of host-derived lipids. Antibiotics-Basel, 2020, 9(2). DOI: 10.3390/antibiotics9020075.
[48] RICKETTS C R, SQUIRE J R, TOPLEY E, LILLY H A. Human skin lipids with particular reference to the self-sterilising power of the skin. Clinical Science, 1951, 10(1):89-111.
[49] ZHOU Z, HUANG J, HAO H, WEI H, ZHOU Y, PENG J. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. Journal of Functional Foods, 2019, 52:348-359. DOI: 10.1016/j.jff.2018.11.028.
doi: 10.1016/j.jff.2018.11.028
[50] KOOPMAN J S. Milk-fat and gastrointestinal illness. American Journal of Public Health, 1984, 74(12):1371-1373. DOI: 10.2105/ajph.74.12.1371.
doi: 10.2105/AJPH.74.12.1371
[51] SPRONG R C, HULSTEIN M F, VAN DER MEER R. High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. Journal of Nutrition, 1999, 129(7):1382-1389.
doi: 10.1093/jn/129.7.1382
[52] MISHRA B, WANG G. The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Frontiers in Immunology, 2012, 3.DOI: 10.3389/fimmu.2012.00221.
[53] VAN DIJK A, HEDEGAARD C J, HAAGSMAN H P, HEEGAARD P M H. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Veterinary Research, 2018, 49. DOI: 10.1186/s13567-018-0558-2.
[54] HANCOCK R E W, HANEY E F, GILL E E. The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology, 2016, 16(5):321-334.DOI: 10.1038/nri.2016.29.
doi: 10.1038/nri.2016.29
[55] LIM C H, PUTHIA M, BUTRYM M, TAY H M, LEE M Z Y, HOU H W, SCHMIDTCHEN A. Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Scientific Reports, 2017, 7. DOI: 10.1038/s41598-017-11464-x.
[56] HILCHIE A L, WUERTH K, HANCOCK R E W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology, 2013, 9(12):761-768. DOI: 10.1038/nchembio.1393.
doi: 10.1038/nchembio.1393
[57] MANSOUR S C, PENA O M, HANCOCK R E W. Host defense peptides: front-line immunomodulators. Trends in Immunology, 2014, 35(9):443-450. DOI: 10.1016/j.it.2014.07.004.
doi: 10.1016/j.it.2014.07.004
[58] YEUNG A T Y, GELLATLY S L, HANCOCK R E W. Multifunctional cationic host defence peptides and their clinical applications. Cellular and Molecular Life Sciences, 2011, 68(13):2161-2176. DOI: 10.1007/s00018-011-0710-x.
doi: 10.1007/s00018-011-0710-x
[59] ZHANG S, CAI H, CAO D, DENG J, JIA J, LI J, MING F, ZHAO P, MA M, LIANG Q, ZENG M, ZHANg L. Recombinant plasmids containing CpG with porcine host defense peptides (PR- 39/pBD-1) modulates the innate and adaptive intestinal immune responses (including maternal-derived) in piglets. International Immunopharmacology, 2019, 70:467-476.DOI: 10.1016/j.intimp.2019.03.007.
doi: 10.1016/j.intimp.2019.03.007
[60] 张萌萌, 姜宁, 张爱忠, 张晨雪. 饲料添加剂影响内源性抗菌肽表达和免疫调节机制. 动物营养学报, 2019, 31(1):90-96.
ZHANG M M, JIANG N, ZHANG A Z, ZHANG C X. Feed additives affect endogenous antimicrobial peptide expression and immune regulation mechanism. Chinese Journal of Animal Nutrition, 2019, 31(1):90-96. (in Chinese)
[61] ZENG X, SUNKARA L T, JIANG W, BIBLE M, CARTER S, MA X, QIAO S, ZHANG G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 2013, 8(8). DOI: 10.1371/journal.pone.0072922.
[62] JIANG W, SUNKARA L T, ZENG X, DENG Z, MYERS S M, ZHANG G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides, 2013, 50:129-138. DOI: 10.1016/j.peptides.2013.10.008.
doi: 10.1016/j.peptides.2013.10.008
[63] BECHINGER B, GORR S U. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research, 2017, 96(3):254-260. DOI: 10.1177/0022034516679973.
doi: 10.1177/0022034516679973
[64] 陈永宏, 罗芳, 陶金忠, 王晶. 营养物质对动物内源性宿主防御肽表达的调节作用. 畜牧兽医学报, 2020, 51(8):1775-1783.
CHEN Y H, LUO F, TAO J Z, WANG J. Regulation of nutrients on the expression of endogenous host defense peptide in animals. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8):1775-1783. (in Chinese)
[65] CHEUNG G Y C, FISHER E L, MCCAUSLAND J W, CHOI J, COLLINS J W M, DICKEY S W, OTTO M. Antimicrobial peptide resistance mechanism contributes to staphylococcus aureus infection. Journal of Infectious Diseases, 2018, 217(7):1153-1159. DOI: 10.1093/infdis/jiy024.
doi: 10.1093/infdis/jiy024
[66] DENG Z, WANG J, LYU W, WIENEKE X, MATTS R, MA X, ZHANG G. Development of a cell-based high-throughput screening assay to identify porcine host defense peptide-inducing compounds. Journal of Immunology Research, 2018. DOI: 10.1155/2018/5492941.
[67] PAPAMANDJARIS A A, MACDOUGALL D E, JONES P J H. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sciences, 1998, 62(14):1203-1215. DOI: 10.1016/s0024-3205(97)01143-0.
doi: 10.1016/S0024-3205(97)01143-0
[68] CHIANG S H, PETTIGREW J E, CLARKE S D, CORNELIUS S G. Limits of medium-chain and long-chain triacylglycerol utilization by neonatal piglets. Journal of Animal Science, 1990, 68(6):1632-1638.
doi: 10.2527/1990.6861632x
[69] SCHOENFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective, Journal of Lipid Research, 2016, 57(6): 943-954. 10.1194/jlr.R067629.
doi: 10.1194/jlr.R067629
[70] SCHONFELD P, WOJTCZAK A B, GEELEN M J H, KUNZ W, WOJTCZAK L. On the mechanism of the so-called uncoupling effect of medium-chain and short-chain fatty-acids. Biochimica Et Biophysica Acta, 1988, 936(3):280-288. DOI: 10.1016/0005-2728(88)90003-5.
[71] GEBHARDT J T, THOMSON K A, WOODWORTH J C, DRITZ S S, TOKACH M D, DEROUCHEY J M, GOODBAND R D, JONES C K, COCHRANE R A, NIEDERWERDER M C, FERNANDO S, ABBAS W, BURKEY T E. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. Journal of Animal Science, 2020, 98(1). DOI: 10.1093/jas/skz358.
[72] MONTGOMERY M K, OSBORNE B, BROWN S H J, SMALL L, MITCHELL T W, COONEY G J, TURNER N. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research, 2013, 54(12):3322-3333. DOI: 10.1194/jlr.M040451.
doi: 10.1194/jlr.M040451
[73] ISHIZAWA R, MASUDA K, SAKATA S, NAKATANI A. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles. Journal of Oleo Science, 2015, 64(4):415-421. DOI: 10.5650/jos.ess14199.
doi: 10.5650/jos.ess14199
[74] DING J, LOIZIDES-MANGOLD U, RANDO G, ZOETE V, MICHIELIN O, REDDY J K, WAHLI W, RIEZMAN H, THORENS B. The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Reports, 2013, 5(1):248-258. DOI: 10.1016/j.celrep.2013.08.032.
doi: 10.1016/j.celrep.2013.08.032
[75] 王钰飞, 齐岩, 铃田靖幸, 陈燕军, 优克刚, 安福生, 薛廷伍. 中链脂肪酸在新生仔猪上的研究与应用. 动物营养学报, 2015, 27(7):1997-2004.
WANG Y F, QI Y, YASUYUKI S, CHEN Y J, KATSUGO Y, AN F S, XUE T W. Research and application of medium-chain fatty acids in neonatal piglets. Chinese Journal of Animal Nutrition, 2015, 27(7):1997-2004. (in Chinese)
[76] PANYAKAEW P, BOON N, GOEL G, YUANGKLANG C, SCHONEWILLE J T, HENDRIKS W H, FIEVEZ V. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls. Animal, 2013, 7(12):1950-1958.DOI: 10.1017/s1751731113001766.
doi: 10.1017/S1751731113001766
[77] KHOSRAVINIA H. Effect of dietary supplementation of medium- chain fatty acids on growth performance and prevalence of carcass defects in broiler chickens raised in different stocking densities. Journal of Applied Poultry Research, 2015, 24(1):1-9. DOI: 10.3382/japr/pfu001.
doi: 10.3382/japr/pfu001
[78] 王建军, 王恬. 中链脂肪酸的生物学特性及其在动物生产中的应用. 动物营养学报, 2011, 23(7):1073-1078.
WANG J J, WANG T. Medium-chain fatty acids and their application in animal production. Chinese Journal of Animal Nutrition, 2011, 23(27):1073-1078. (in Chinese)
[79] HANCZAKOWSKA E, SWIATKIEWICZ M, NATONEK- WISNIEWSKA M, OKON K. Medium chain fatty acids (MCFA) and/or probiotic Enterococcus faecium as a feed supplement for piglets. Livestock Science, 2016, 192:1-7. doi: 10.1016/j.livsci.2016.08.002.
doi: 10.1016/j.livsci.2016.08.002
[80] HANCZAKOWSKA E, SZEWCZYK A, OKON K. Effects of dietary caprylic and capric acids on piglet performance and mucosal epithelium structure of the ileum. Journal of Animal and Feed Sciences, 2011, 20(4):556-565. DOI: 10.22358/jafs/66213/2011.
doi: 10.22358/jafs/66213/2011
[81] HAN Y K, HWANG I L H, THACKER P A. Use of a micro- encapsulated eucalyptus-medium chain fatty acid product as an alternative to zinc oxide and antibiotics for weaned pigs. Journal of Swine Health and Production, 2011, 19(1):34-43.
[82] HANCZAKOWSKA E, SZEWCZYK A, SWIATKIEWICZ M, OKON K. Short- and medium-chain fatty acids as a feed supplement for weaning and nursery pigs. Polish Journal of Veterinary Sciences, 2013, 16(4):647-654. DOI: 10.2478/pjvs-2013-0092.
doi: 10.2478/pjvs-2013-0092
[83] KUANG Y, WANG Y, ZHANG Y, SONG Y, ZHANG X, LIN Y, CHE L, XU S, WU D, XUE B, FANG Z. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Animal Feed Science and Technology, 2015, 208:145-157. DOI: 10.1016/j.anifeedsci.2015.07.010.
doi: 10.1016/j.anifeedsci.2015.07.010
[84] CERA K R, MAHAN D C, REINHART G A. Postweaning swine performance and serum profile responses to supplemental medium- chain free fatty-acids and tallow. Journal of Animal Science, 1989, 67(8):2048-2055.
doi: 10.2527/jas1989.6782048x
[85] DEVI S M, KIM I H. Effect of medium chain fatty acids (MCFA) and probiotic (Enterococcus faecium) supplementation on the growth performance, digestibility and blood profiles in weanling pigs. Veterinarni Medicina, 2014, 59(11):527-535. DOI: 10.17221/7817-vetmed.
doi: 10.17221/VETMED
[86] GEBHARDT J T, THOMSON K A, WOODWORTH J C, DRITZ S S, TOKACH M D, DEROUCHEY J M, GOODBAND R D, JONES C K, COCHRANE R A, NIEDERWERDER M C, FERNANDO S, ABBAS W, BURKEY T E. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. Journal of Animal Science, 2020, 98(1). DOI: 10.1093/jas/skz358.
[87] PAULO F, SANTOS L. Design of experiments for microencapsulation applications: A review. Materials Science & Engineering C-Materials for Biological Applications, 2017, 77:1327-1340. DOI: 10.1016/j.msec.2017.03.219.
[88] ZENTEK J, BUCHHEIT-RENKO S, MANNER K, PIEPER R, VAHJEN W. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Archives of Animal Nutrition, 2012, 66(1):14-26. DOI: 10.1080/1745039x.2011.644916.
doi: 10.1080/1745039X.2011.644916
[89] OMONIJO F A, KIM S, GUO T, WANG Q, GONG J, LAHAYE L, BODIN J-C, NYACHOTI M, LIU S, YANG C. Development of novel microparticles for effective delivery of thymol and lauric acid to pig intestinal tract. Journal of Agricultural and Food Chemistry, 2018, 66(37):9608-9615. DOI: 10.1021/acs.jafc.8b02808.
doi: 10.1021/acs.jafc.8b02808
[90] HOSSAIN M M, JAYARAMAN B, KIM S C, LEE K Y, KIM I H, NYACHOTI C M. Effects of a matrix-coated organic acids and medium-chain fatty acids blend on performance, and in vitro fecal noxious gas emissions in growing pigs fed in-feed antibiotic-free diets. Canadian Journal of Animal Science, 2018, 98(3):433-442. DOI: 10.1139/cjas-2017-0053.
doi: 10.1139/cjas-2017-0053
[1] LIN XiaJing,CHEN Fang,JIANG ShouQun,JIANG ZongYong. Effects of Soybean Isoflavones on Growth Performance, Antioxidant Performance and Intestinal Morphology of Early-Weaned Piglets [J]. Scientia Agricultura Sinica, 2020, 53(10): 2101-2111.
[2] ZHOU Min, ZHOU XueMei, YANG LiJie, HUANG LiBo, FENG Lei, SHAO MingHui, YANG Chen, YANG WeiRen, YANG ZaiBin, JIANG ShuZhen. Effects of Zearalenone on Expression of Heat Shock Protein 70 and Morphology of Uterus Tissues of Post-Weaning Piglets [J]. Scientia Agricultura Sinica, 2018, 51(4): 778-788.
[3] ZHU Hong-long, YANG Jie, LI Jian, PAN Xiao-qing, QIN Feng, ZHOU Zhong-kai, FENG Guo-xing, GU Hong-ru. Comparative Analysis of Growth Performance, Behavior, and Salivary Cortisol Hormone of Piglets Housed in Two Rearing Environments [J]. Scientia Agricultura Sinica, 2016, 49(7): 1382-1390.
[4] LU Yang, HU Er-yong, ZI Zheng-hao, SUN Guo-rong, XIA Dong . Improvement of the Effects of Phytase Application by Lowering the High Level of Copper in Piglets Diets [J]. Scientia Agricultura Sinica, 2015, 48(14): 2884-2890.
[5] YANG Feng-juan, ZENG Xiang-fang, QIAO Shi-yan. Effect of Lactobacillus reuteri I5007 on Intestinal Morphology, Disaccharidase Activity and Tight Junction Protein Expression in Newborn Piglets [J]. Scientia Agricultura Sinica, 2014, 47(22): 4506-4515.
[6] JIANG Shu-zhen, SUN Hua, HUANG Li-bo, YANG Zai-bin, WANG Shu-jing, LIU Fa-xiao, F. Chi. Effects of Zearalenone Contaminated Diets on Serum Metabolite and Histopathology of Liver and Kidney in Weaned Piglets [J]. Scientia Agricultura Sinica, 2014, 47(18): 3708-3715.
[7] ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164.
[8] WANG Yuan-Xiao, ZHANG Li-Li, ZHOU Gen-Lai, WANG Tian. Effect of Supplement of Soya Lecithine on Mucosal Anti-Oxidation and Heat Shock Protein 70 Content in Intrauterine Growth Retardation Piglets [J]. Scientia Agricultura Sinica, 2012, 45(13): 2711-2717.
[9] FU Da-bo,WANG You-wei,HOU Yong-qing,DING Bin-ying,WANG Lei,LIU Yu-lan,ZHU Hui-ling
.

Effects of α-Ketoglutarate on Muscle Energy Metabolism in Weanling Pigs Chronically Challenged with Lipopolysaccharide

[J]. Scientia Agricultura Sinica, 2011, 44(4): 814-822 .
[10] ZHU Ye-meng,XIE Zheng-jun,LI Yun-tao,HAN Xin-yan
. Effects of Chitosan-Copper on Growth Performance and Intestinal Flora and Its Morphology in Weanling Piglets
[J]. Scientia Agricultura Sinica, 2011, 44(2): 387-394 .
[11] DING Yue-Yun, ZHOU Fen, ZHANG Wei, ZHANG Chen-Hua, YIN Zong-Jun. Effects of Astragalus, Angelica, Rhodiola on the Growth Performance and Some Physiological Functions of Weaning Piglets [J]. Scientia Agricultura Sinica, 2011, 44(16): 3469-3476.
[12] YAN Fu-yong,YIN Yu-long,KONG Xiang-feng,YIN Fu-gui,YANG Feng,ZHANG Yu-zhe
. Effects of Dietary Supplementation of Acanthopanax senticosus Extracts on Weanling Stress in Piglets #br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4490-4496 .
[13] . The relationship between PCV-2 location and apoptosis in lymph nodes of pigs infected PCV-2 [J]. Scientia Agricultura Sinica, 2008, 41(1): 237-242 .
[14] ,,,,,. Effect of Zinc Resources and Levels on Serum Hormone Levels of Weanling Stress Piglets [J]. Scientia Agricultura Sinica, 2006, 39(06): 1241-1247 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!