Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2885-2894.doi: 10.3864/j.issn.0578-1752.2021.13.016

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Preparation of Soybean Protein-Derived Pro-osteogenic Peptides via Enzymatic Hydrolysis

LI Yu1(),WANG Fang1,WENG ZeBin2,SONG HaiZhao1(),SHEN XinChun1()   

  1. 1College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023
    2College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000
  • Received:2020-10-29 Revised:2021-02-08 Online:2021-07-01 Published:2021-07-12
  • Contact: HaiZhao SONG,XinChun SHEN E-mail:18795845118@163.com;songhaizhaothu@nufe.edu.cn;shenxinchun@nufe.edu.cn

Abstract:

【Objective】 The aim of this study was to develop an effective method and to identify the active peptides and to provide reference for the development of soybean products, so as to promote the proliferation of osteoblasts from soybean protein isolated with the two-step enzymatic hydrolysis. 【Method】The proliferative activity of osteoblast was served as an indicator. Soybean protein isolate (SPI) was hydrolyzed by papain, and the effect of papain hydrolysates on osteoblast proliferation was detected by a MTT assay. The degree of hydrolysis of the papain hydrolysates was determined by the pH-Stat method after 1, 2, 3, 4, 5 and 6 h treatment, respectively. The effects of papain hydrolysates on pro-liferation of osteoblast were determined. Two kinds of ultrafiltration membrane with 30 kDa and 10 kDa cut-off were used to separate the fractions of papain hydrolysates, and their proliferation activities on osteoblast were determined. The enzymatic hydrolysates with the highest pro-proliferative activity of osteoblast were further hydrolyzed with alkaline. The effect of alkaline enzymatic hydrolysate on the proliferation of osteoblast was examined after 0.5, 1, 1.5, 2 and 2.5 h treatment, respectively. The Sephadex G-15 was used to isolate the enzymatic hydrolysates with high pro-proliferative activity of osteoblasts, and the proliferation activity of each component on osteoblasts was determined. Furthermore, the amino acids of the separated fractions were analyzed. The structure of the most active fraction was identified by ESI-TOF MS/MS, and the soybean protein derived from peptides with strong activity to promote osteoblast proliferation was identified. 【Result】 The proliferative rate of osteoblasts was (118.24±2.73)% by the treatment with enzymatic hydrolysis products of papain for 5 h at the concentration of 200 μg/ml. After the enzymatic hydrolysates were separated by ultrafiltration membrane, the active fraction was further hydrolyzed with alkaline protease. The final hydrolysates were separated with gel filtration chromatography (Sephadex G-15). A fraction of component with the strongest pro-proliferative activity on osteoblasts, F3, was identified, and the proliferative rate of osteoblasts treated with this faction was (125.80±2.94)%. Amino acid analysis showed that the contents of hydrophobic amino acids, such as alanine, valine, isoleucine, leucine, and phenylalanine, aromatic amino acids and essential amino acids in F3, were significantly higher than other fractions. In addition, mass spectrometry (ESI-TOF MS/MS) revolved that F3 was mainly composed of 10 small peptides, among which, DAMDGWFRL, GQTPLFPR, ADFYNPK and KDWYDIK had high contents of hydrophobic amino acids, aromatic amino acids and essential amino acids. Moreover, 100 μmol∙L -1 of GQTPLFPR had the strongest pro-proliferative activity on osteoblasts, with a proliferative rate of (129.11±3.12)%.【Conclusion】 Two-step enzymatic hydrolysis combined with ultrafiltration membrane and gel filtration chromatography could identify the most active pro-proliferative peptides from SPI, which provided a technical reference for the preparation of peptides with the bio-activity to stimulate the proliferation of osteoblasts.

Key words: soybean protein isolate, osteoblast proliferation, two-step enzymatic hydrolysis, separation and purification, active peptide

Fig. 1

Effects of papain hydrolysate concentration on osteoblast proliferation * indicate significant difference (P<0.05), ** indicate extremely significant difference (P<0.01) "

Fig. 2

Relationship between time and degree of hydrolysis and effects of their papain hydrolysates on osteoblast proliferation Different letters indicate significant difference (P<0.05). The same as below "

Fig. 3

Effects of different ultrafiltration fractions on osteoblast proliferation"

Fig. 4

Effects of alcalase hydrolysate on osteoblast proliferation under different time of enzymatic hydrolysis"

Fig. 5

Chromatogram of hydrolysates separated by Sephadex G-15 (A), osteoblast proliferation of different peaks (B)"

Table 1

Amino acid composition of different fractions"

氨基酸名称
Amino acid name
氨基酸含量 Amino acid content (g/100 g)
F1 F2 F3 F4
天冬氨酸 Aspartic acid Asp 10.20±0.66d 8.37±0.68c 4.67±0.33a 6.27±0.36b
苏氨酸 Threonine Thr 2.15±0.19a 3.69±0.23c 3.24±0.23b 2.88±0.28b
丝氨酸 Serine Ser 2.66±0.23a 5.13±0.31b 2.52±0.17a 2.58±0.24a
谷氨酸 Glutamate Glu 20.97±2.17d 14.78±0.92c 6.48±0.52a 12.06±0.69b
甘氨酸 Glycine Gly 2.64±0.23a 3.61±0.23c 3.08±0.23b 3.45±0.33c
丙氨酸 Alanine Ala 1.57±0.14a 4.58±0.28b 7.02±0.42d 5.43±0.52c
半胱氨酸 Cysteine Cys 0.52±0.05d 0.00±0.00a 0.21±0.02c 0.00±0.00a
缬氨酸 Valine Val 3.98±0.17c 3.59±0.28b 4.98±0.19d 2.51±0.24a
甲硫氨酸 Methionine Met 0.76±0.07b 0.25±0.02a 1.88±0.14e 1.56±0.16d
异亮氨酸 Isoleucine Ile 1.90±0.17c 3.91±0.23e 1.69±0.12b 0.86±0.09a
亮氨酸 Leucine Leu 5.39±0.21b 6.49±0.45c 7.58±0.50d 3.61±0.35a
酪氨酸 Tyrosine Tyr 6.43±0.43c 5.47±0.52b 13.57±0.45d 3.97±0.47a
苯丙氨 Phenylalanine Phe 6.38±0.54b 5.79±0.54b 13.06±1.14c 3.41±0.68a
赖氨酸 Lysine Lys 4.69±0.42c 4.14±0.24b 3.57±0.26a 10.34±0.55d
组氨酸 Histidine His 1.83±0.16b 1.53±0.09a 3.60±0.26c 6.77±0.64d
精氨酸 Arginine Arg 5.47±0.47b 4.65±0.28a 5.49±0.40b 7.38±0.71c
脯氨酸 Proline Pro 4.30±0.38a 5.11±0.31b 4.66±0.33a 4.73±0.45ab
疏水性氨基酸 Hydrophobic amino acid 30.71±0.31b 35.19±1.13c 54.44±1.84d 26.08±1.02a
芳香族氨基酸 Aromatic amino acid 12.81±0.29c 11.26±0.52b 26.63±0.78d 7.38±0.54a
必需氨基酸 Essential amino acid EAA 27.08±1.70a 29.39±2.10b 39.60±3.08c 31.94±2.51b

Table 2

Most abundant peptides in the F3 fraction."

序列
Sequence
离子
Ion (m/z)
观察质量
Observed mass
蛋白质
Protein
补充
Accession
KDWYDIK 484.25 (2) 967.49 40S ribosomal protein S3a OS=Glycine max OX=3847 GN=100813273 PE=2 SV=1 C6TI64
DAMDGWFRL 563.76 (2) 1126.50 Truncated Kunitz trypsin inhibitor OS=Glycine max OX=3847 PE=4 SV=1 Q9ATY0
GQTPLFPR 458.26 (2) 915.50 Uncharacterized protein OS=Glycine max OX=3847 GN=100801918 PE=3 SV=1 A0A0R0JL19
ADFYNPK 427.71 (2) 854.40 Soybean glycinin A3-B4 subunit (Fragment) OS=Glycine max OX=3847 PE=2 SV=1 Q39858
DAMDGWFR 499.22 (2) 997.42 Truncated Kunitz trypsin inhibitor OS=Glycine max OX=3847 PE=4 SV=1 Q9ATY0
NNNPFK 367.19 (2) 733.36 Uncharacterized protein OS=Glycine max OX=3847 GN=GLYMA_03G163500 PE=3 SV=1 A0A0R0KKD6
SNDVYLPR 482.25 (2) 963.49 Seed linoleate 9S-lipoxygenase-3 OS=Glycine max OX=3847 GN=LOX1.3 PE=1 SV=1 P09186
GGQLAMINLESR 435.56 (3) 1304.66 Uncharacterized protein OS=Glycine max OX=3847 GN=100796275 PE=2 SV=1 C6TKL7
DAMDGWFR 507.21 (2) 1013.41 Truncated Kunitz trypsin inhibitor OS=Glycine max OX=3847 PE=4 SV=1 Q9ATY0
THINIVVIGHVDSGK 530.29 (3) 1588.88 Elongation factor 1-alpha OS=Glycine max OX=3847 GN=100785429 PE=3 SV=1 A0A0R0ESZ8

Fig. 6

Effects of soybean active peptides DAMDGWFRL (A), GQTPLFPR (B), ADFYNPK (C) and KDWYDIK(D) on proliferation activity of osteoblast"

[1] YU S F, YANG T S, CHIU W C, HSU C Y, CHOU C L, SU Y J, LAI H M, CHEN Y C, CHEN C J, CHENG T T. Non-adherence to anti-osteoporotic medications in Taiwan: Physician specialty makes a difference. Journal of Bone & Mineral Metabolism, 2013, 31(3):351-359.
[2] EVANS E M, RACETTE S B, VAN P R E, PETERSON L R, VILLAREAL D T. Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women. Menopause, 2007, 14(3):481-488.
[3] ELAM M L, JOHNSON S A, HOOSHMAND S, FERESIN R G, PAYTON M E, GU J, ARJMANDI B H. A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial. Journal of Medicinal Food, 2015, 18(3):324-331.
doi: 10.1089/jmf.2014.0100
[4] RAISZ L G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. The Journal of Clinical Investigation, 2005, 115(12):3318-3325.
doi: 10.1172/JCI27071
[5] ARJMANDI B H, ALEKEL L, HOLLIS B W, AMIN D, STACEWICZ- SAPUNTZAKIS M, GUO P, KUKREJA S C. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. The Journal of Nutrition, 1996, 126(1):161-167.
[6] ARJMANDI B H, BIRNBAUM R, GOYAL N V, GETLINGER M J, JUMA S, ALEKEL L, HASLER C M, DRUM M L, HOLLIS B W, KUKREJA S C. Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. The American Journal of Clinical Nutrition, 1998, 68(6):1364S-1368S.
doi: 10.1093/ajcn/68.6.1364S
[7] TODA T, SUGIOKA Y, KOIKE T. Soybean isoflavone can protect against osteoarthritis in ovariectomized rats. Journal of Food Science and Technology, 2020, 57(9):3409-3414.
doi: 10.1007/s13197-020-04374-w
[8] SETCHELL K D R, LYDEKING-OLSEN E. Dietary phytoestrogens and their effect on bone: Evidence from in vitro and in vivo, human observational, and dietary intervention studies. American Society for Clinical Nutrition, 2003, 78(3):593-609.
[9] ISHIMI Y, MIYAURA C, OHMURA M, ONOE Y, SATO T, UCHIYAMA Y, ITO M, WANG X, SUDA T, IKEGAMI S. Selective effects of genistein, a soybean isoflavone, on B-Lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology, 1999, 140(4):1893-1900.
doi: 10.1210/endo.140.4.6663
[10] ALEKEL D L, GERMAIN A S, PETERSON C T, HANSON K B, STEWART J W, TODA T. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. The American Journal of Clinical Nutrition, 2000, 72(3):844-852.
doi: 10.1093/ajcn/72.3.844
[11] HO S C, WOO J, LAM S, CHEN Y M, SHAM A, LAU J. Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporosis International, 2003, 14(10):835-842.
doi: 10.1007/s00198-003-1453-9
[12] MESSINA M, MESSINA V. Soyfoods, soybean isoflavones, and bone health: A brief overview. Journal of Renal Nutrition, 2000, 10(2):63-68.
doi: 10.1016/S1051-2276(00)90001-3
[13] 孙娟, 葛声. 大豆异黄酮与围绝经期骨质疏松的研究进展. 中国老年学杂志, 2012, 32(10):2209-2212.
SUN J, GE S. Research progress of soybean isoflavones and perimenopausal osteoporosis. Chinese Journal of Gerontology, 2012, 32(10):2209-2212. (in Chinese)
[14] CHIECHI L M, SECRETO G, D′AMORE M, FANELLI M, VENTURELLI E, CANTATORE F, VALERIO T, LASELVA G, LOIZZI P. Efficacy of a soy rich diet in preventing postmenopausal osteoporosis: The Menfis randomized trial. Maturitas, 2002, 42(4):295-300.
doi: 10.1016/S0378-5122(02)00158-5
[15] TANG Y, WU X W, LEI W Q, PANG L J, WAN C, SHI Z Q, ZHAO L, NAGY T R, PENG X Y, HU J B, FENG X, HUL W V, WAN M, CAO X. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 2009, 15(7):757-765.
doi: 10.1038/nm.1979
[16] 余元勋, 尚希福, 何光远, 徐彬. 中国分子骨质疏松症学. 安徽:安徽科学技术出版社, 2016: 8-9.
YU Y X, SHANG X F, HE G Y, XU B. Chinese Molecular Osteoporosis. Anhui:Anhui Science and Technology Press, 2016: 8-9. (in Chinese)
[17] 潘晓文. 三种蛋白水解物对成骨细胞的促增殖和抗凋亡作用[D]. 哈尔滨: 东北农业大学, 2015.
PAN X W. In vitro proliferation and anti-apoptotic effects of three protein hydrolysates towards osteoblasts [D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[18] ADLER-NISSEN J. Enzymatic Hydrolysis of Food Proteins. London: Elsevier Applied Science Publishers, 1986: 12-14.
[19] 卜汉萍, 王璐, 许宙, 程云辉. 免疫活性肽的酶法制备及其活性机制研究进展. 食品与机械, 2014, 30(3):244-248.
BU H P, WANG L, XU Z, CHENG Y H. Progress on preparation and active mechanism of immune-active peptide. Food & Machinery, 2014, 30(3):244-248. (in Chinese)
[20] 罗建勇, 史一白, 刘泽瑾, 吴晨孛, 钱芳, 郭峰, 黄立新. 木瓜蛋白酶水解大豆蛋白制备啤酒糖浆复配液的研究. 农产品加工, 2020(6):1-7, 12.
LUO J Y, SHI Y B, LIU Z J, WU C B, QIAN F, GUO F, HUANG L X. Study on enzymatic hydrolysis of soy protein by papain to prepare beer syrup compound solution. Academic Periodical of Farm Products Processing, 2020(6):1-7, 12. (in Chinese)
[21] 于亚辉, 谢昭鹏, 张帆, 苏煌杰, 方婷. 大豆蛋白酶解物制备鸡肉风味基料. 食品工业, 2020, 41(1):195-199.
YU Y H, XIE Z P, ZHANG F, SU H J, FANG T. Preparation of chicken flavor base by soy protein hydrolysate. The Food Industry, 2020, 41(1):195-199. (in Chinese)
[22] 马福建, 高长城, 解迪, 刘亚男, 邹险峰. 大豆11S球蛋白水解肽的制备及抗氧化研究. 食品研究与开发, 2019, 40(11):89-93.
MA F J, GAO C C, XIE D, LIU Y N, ZOU X F. Preparation and antioxidant activity of soybean 11S globulin hydrolyzed peptide. Food Research and Development, 2019, 40(11):89-93. (in Chinese)
[23] 李皖光, 汪桃花, 王新文, 季一顺. 4种大米蛋白水解度测定方法比较. 粮食科技与经济, 2017, 42(5):35-37.
LI W G, WANG T H, WANG X W, JI Y S. The comparison of four methods in testing degree of hydrolysis. Grain Science and Technology and Economy, 2017, 42(5):35-37. (in Chinese)
[24] 陈思远, 刘永祥, 曹小舟, 张逸婧, 陈海娟, 沈新春. 从麦胚清蛋白分离制备高活性抗氧化肽. 中国农业科学, 2016, 49(12):2379-2388.
CHEN S Y, LIU Y X, CAO X Z, ZHANG Y J, CHEN H J, SHEN X C. The preparation process for isolation of a highly active antioxidant peptide derived from wheat germ albumin. Scientia Agricultura Sinica, 2016, 49(12):2379-2388. (in Chinese)
[25] AMIN M N G, KUSNADI J, HSU J L, DOERKSEN R J, HUANG T C. Identification of a novel umami peptide in tempeh (Indonesian fermented soybean) and its binding mechanism to the umami receptor T1R, Food Chemistry, 2020, 333:127411.
doi: 10.1016/j.foodchem.2020.127411
[26] ZHANG Y W, SHEN Y B, ZHANG H J, WANG L, ZHANG H, QIAN H F, QI X G. Isolation, purification and identification of two antioxidant peptides from water hyacinth leaf protein hydrolysates (WHLPH). Journal of European Food Research and Technology, 2018, 244(1):83-96.
doi: 10.1007/s00217-017-2941-z
[27] ZHANG H J, BARTLEY G E, ZHANG H, JING W, FAGERQUIST C K, ZHONG F, YOKOYAMA W. Peptides identified in soybean protein increase plasma cholesterol in mice on hypercholesterolemic diets. Journal of Agricultural and Food Chemistry, 2013, 61(35):8389-8395.
doi: 10.1021/jf4022288
[28] 钟芳, 张晓梅, 麻建国. 具有ACE抑制活性的大豆肽的RP-HPLC分离和结构鉴定. 食品与机械, 2006, 22(6):8-11, 29.
ZHONG F, ZHANG X M, MA J G. Isolation and structure identification of ACE inhibition peptides from soy hydrolytes Fraction with RP-HPLC and amino acid sequence identification. Food & Machinery, 2006, 22(6):8-11, 29. (in Chinese)
[29] XU Z, CHEN H, WANG Z Y, FAN F J, SHI P J, TU M L, DU M. Isolation and characterization of peptides from mytilus edulis with osteogenic activity in mouse MC3T3-E1 preosteoblast cells. Journal of Agricultural and Food Chemistry, 2019, 67(5):1572-1584.
doi: 10.1021/acs.jafc.8b06530
[30] MIN S K, KANG H K, JUNG S Y, JANG D H, MIN B M. A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death and Difference, 2018, 25(2):268-281.
[1] JIA Feng, GUO YuRong, YANG Xi, LIU Dong, LI Jie. Isolation and Purification of Polysaccharide from Fermented Apple Pomace and Its Relationship with Processing Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(10): 1873-1884.
[2] ZHANG Yi-jing, CHEN Hai-juan, Lü Yi, LIU Yong-xiang, TANG Xiao-zhi, SHEN Xin-chun. Effects of Sodium Carboxymethyl Cellulose on Adhesion Properties of Soybean Protein Isolate onto Porcine Bones [J]. Scientia Agricultura Sinica, 2016, 49(8): 1550-1558.
[3] SU Xiao-fang, LI Shu-jing, ZHANG Bo, ZHANG Jin-chuang, ZHANG Wei. Thermal Transition Properties of Soybean Protein Isolate-Corn Starch-Wheat Gluten Mixtures [J]. Scientia Agricultura Sinica, 2016, 49(18): 3618-3627.
[4] CHEN Si-yuan, LIU Yong-xiang, CAO Xiao-zhou, ZHANG Yi-jing, CHEN Hai-juan, SHEN Xin-chun. The Preparation Process for Isolation of a Highly Active Antioxidant Peptide Derived from Wheat Germ Albumin [J]. Scientia Agricultura Sinica, 2016, 49(12): 2379-2388.
[5] SU Dong-Xiao-1, 2 , ZHANG Rui-Fen-1, ZHANG Ming-Wei-1, HUANG Fei-1, 2 , WEI Zhen-Cheng-1, ZHANG Yan-1, TI Hui-Hui-1, DENG Yuan-Yuan-1, TANG Xiao-Jun-1. Separation and Purification of Polyphenol in Litchi Pulp by Macroporous Resin [J]. Scientia Agricultura Sinica, 2014, 47(14): 2897-2906.
[6] ,,,,. The Bioactivity of Mutant Isolates from Botrytis cinerea [J]. Scientia Agricultura Sinica, 2005, 38(06): 1174-1181 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!