Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2870-2884.doi: 10.3864/j.issn.0578-1752.2021.13.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Natural Occurrence and Characteristic Analysis of 40 Mycotoxins in Agro-Products from Yangtze Delta Region

FAN Kai1(),JI Fang2,XU JianHong2,QIAN MingRong3,DUAN JinSheng4,NIE DongXia1,TANG ZhanMin1,ZHAO ZhiHui1,SHI JianRong2,HAN Zheng1()   

  1. 1Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403
    2Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    3Institute of Quality Safety and Nutrition of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
    4Institute of Plant Protection and Quality and Safety of Agricultural Products, Anhui Academy of Agricultural Sciences, Hefei 230001
  • Received:2020-11-02 Revised:2021-02-04 Online:2021-07-01 Published:2021-07-12
  • Contact: Zheng HAN E-mail:fankai1983@gmail.com;hanzheng@saas.sh.cn

Abstract:

【Objective】 The purpose of this survey was to investigate the natural occurrence and contamination characteristics of 40 mycotoxins in agro-products (wheat, maize, rice, tomato and peach) from Yangtze Delta Region, so as to provide a scientific basis for the supervision of agro-products. 【Method】 A total of 720 ago-product samples, including 120 wheat samples, 150 maize samples, 150 rice samples, 150 tomato samples and 150 peach samples, were collected from supermarkets, farmers and farmers' markets in Shanghai, Anhui, Jiangsu and Zhejiang in 2019. The grain samples were extracted with water and acetonitrile containing 1% (V/V) formic acid, and fruit and vegetable samples were extracted with acetonitrile containing 1% (V/V) formic acid. The extractions were salted out with sodium chloride and anhydrous magnesium sulfate, and the concentrations of 40 kinds of important mycotoxins were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Chi-square test and one-way analysis of variance (ANOVA) were utilized to investigate the mycotoxin contamination levels among different types of agro-products in different regions, while Spearman’s rank correlation coefficient was used for the analysis of the relationship between mycotoxin concentrations and temperature and humidity.【Result】In 720 samples, a total of 36 kinds of mycotoxins were detected, mainly including aflatoxins, ochratoxins, alternaria toxins, fumonisins, deoxynivalenol (DON) and its modified forms and zearalenone (ZEN). The detection rate of mycotoxins in total agro-products was 75.3%. Among the positive toxins, fumonisin B 1 (FB1) was the most frequently detected (49.0%), followed by tenuazonic acid (TeA) (37.5%), fumonisin B2 (FB2) (35.7%), tentoxin (Ten) (29.6%), fumonisin B3 (FB3) (29.3%), ZEN (22.6%), DON (21.4%), 3-acetyl-deoxynivalenol (3-ADON) (10.7%), ochratoxin A (OTA) (10.4%), ochratoxin B (OTB) (8.1%), deoxynivalenol-3-glucoside (D3G) (7.2%), ochratoxin C (OTC) (6.4%), aflatoxin B2(AFB2) (5.8%) and 15-acetyl-deoxynivalenol (15-ADON) (5.4%). Additionally, 59.5% of the agricultural products were contaminated with two or more mycotoxins, and the maximum number in one sample was 23. According to GB 2761-2017, the concentrations of AFB1 in one maize sample, OTA in one rice sample, ZEN in 6 wheat samples and 2 maize samples exceeded the relative limit standards. The contamination levels of mycotoxins in agro-products from the Yangtze River Delta region were relatively lower, compared with other studies, which showed significant types and regional differences. The most prevalent mycotoxins were Ten, TeA, DON in wheat, fumonisins in maize, Ten, TeA, fumonisins in rice, and ochratoxins, alternaria toxins, fumonisins in fruits and vegetables, respectively. Regionally, maize samples from Zhejiang were seriously contaminated with DON and ZEN, while the highest concentrations of fumonisins were detected in Anhui maize samples. The detection rates and concentration levels of DON and ZEN in rice samples from Jiangsu were significantly higher than those from other regions. The contamination levels of Ten, TeA, FB1, DON and ZEN in grain samples were in significant correlation with temperature and/or humidity, while no statistical relationship was found in tomato and peach samples. 【Conclusion】 Agro-products from the Yangtze River Delta region were contaminated by various mycotoxins. Although the overall contamination level was relatively low, the multi-mycotoxin co-occurrence in single sample was frequently found, which should be given enough considerations.

Key words: mycotoxins, agricultural products, co-occurrence, Yangtze Delta Region

Table 1

Agro-products collected in this study (n)"

地区 Area 小麦 Wheat 玉米 Maize 稻谷 Rice 番茄 Tomato 桃 Peach 合计 Total
上海 Shanghai 30 30 60 60 60 240
安徽 Anhui 30 30 30 30 30 150
江苏 Jiangsu 30 30 30 30 30 150
浙江 Zhejiang 30 60 30 30 30 180
合计 Total 120 150 150 150 150 720

Fig. 1

Contamination of multiple mycotoxins in agro-products samples"

Table 2

Co-occurrence of multiple mycotoxins in agro-products samples"

农产品
Agro-product
阳性样本中毒素的最大数量
Maximum number of mycotoxins in positive samples
阳性毒素数量占比 Percent of positive mycotoxins number (%)
0 1 2—4 5—7 8—10 >10
小麦Wheat 14 0.0 0.0 49.2 29.2 10.8 10.8
玉米Maize 12 20.7 11.3 29.3 20.7 16.0 2.0
稻谷Rice 23 1.3 4.7 52.0 36.0 4.0 2.0
番茄Tomato 14 60.7 22.7 12.7 0.0 3.3 0.7
桃Peach 7 42.7 30.7 22.7 4.0 0.0 0.0
总Total 23 26.1 14.4 32.5 17.5 6.7 2.8

Table 3

The contamination levels of mycotoxins in different agro-products samples"

真菌毒素
Mycotoxin
小麦 Wheat 玉米 Maize 稻谷 Rice 番茄 Tomato 桃 Peach
检出率Detection rate (%) 均值
Mean (μg∙kg-1)
检出率
Detection rate (%)
均值
Mean (μg∙kg-1)
检出率
Detection rate (%)
均值
Mean (μg∙kg-1)
检出率
Detection rate (%)
均值
Mean (μg∙kg-1)
检出率
Detection rate (%)
均值
Mean (μg∙kg-1)
AFB1** 1.70 0.12 9.30 1.18 2.00 0.19 - - 0.70 0.10
AFB2** 6.70 0.17 14.70 0.55 6.70 0.17 1.30 0.10 - -
AFG1 - - 1.30 0.12 0.70 0.16 - - - -
AFG2** - - - - 10.70 0.23 - - - -
SMC** 4.20 0.11 2.00 0.21 10.70 0.23 2.00 0.21 1.30 0.35
OTA 6.70 0.31 7.30 0.52 15.30 0.29 10.70 0.30 12.00 0.25
OTB* 5.00 0.11 5.30 0.28 14.00 0.32 6.70 0.15 8.70 0.15
OTC 3.30 0.11 4.70 0.13 6.00 0.19 9.30 0.29 8.00 0.27
ALT - - 5.30 0.46 5.30 0.33 3.30 0.31 6.00 0.24
Ten** 100.00 20.50 3.30 0.11 50.00 0.67 2.70 0.11 2.70 0.13
TeA** 75.00 63.33 27.30 3.62 79.30 27.61 5.30 0.49 8.00 0.37
DA 0.80 0.10 - - - - 0.70 0.13 - -
FB1** 55.00 22.91 66.00 422.36 83.30 19.93 13.30 4.49 19.30 1.95
FB2** 41.70 4.68 65.30 84.05 36.70 6.00 10.00 1.60 15.30 1.23
FB3** 29.20 5.12 59.30 40.46 30.70 2.64 8.00 1.11 11.30 0.77
DAS** - - 2.00 0.21 6.00 0.21 - - - -
NEO - - - - 1.30 0.17 - - - -
GLI* - - 3.30 12.13 0.70 1.06 - - 0.70 1.14
CPA** 7.50 1.40 4.70 1.24 - - - - - -
T-2 0.80 0.17 0.70 0.23 2.00 0.86 0.70 0.11 1.30 0.11
HT-2 - - - - 0.70 1.22 - - - -
DON** 81.70 104.74 21.30 17.77 22.00 31.24 - - - -
FUS-X** 4.20 2.44 0.70 2.18 12.00 6.67 - - - -
15-ADON** - - 24.00 9.35 2.00 0.33 - - - -
3-ADON** 39.20 3.76 16.00 2.21 4.00 0.83 - - - -
D3G** 38.30 5.32 0.70 2.52 2.70 1.27 - - - -
PAT - - - - 0.70 2.48 - - - -
CIT 0.80 0.14 0.70 0.33 2.70 0.31 1.30 0.10 1.30 0.20
MPA* - - 0.70 0.26 3.30 5.61 - - 0.70 0.32
ZEN** 28.30 8.93 42.70 2.90 29.30 3.06 4.70 0.39 9.30 0.24
ZAN** 10.80 0.14 2.00 0.21 2.70 0.24 1.30 0.13 - -
α-ZOL** 14.20 0.73 - - 0.70 0.43 0.70 0.21 - -
β-ZOL** 15.00 1.86 0.70 1.01 2.70 0.54 0.70 0.26 - -
α-ZAL - - - - 0.70 0.23 0.70 0.11 - -
β-ZAL - - - - 0.70 0.28 0.70 0.16 - -
PCA - - - - 0.70 0.55 - - - -

Fig. 2

The detection rate of main mycotoxins in agro-products from different areas A: wheat; B: maize; C: rice; D: tomato; E: peach. * and ** indicate the level of significance at P<0.05 andP<0.01, respectively. The same as below "

Fig. 3

The concentration of main mycotoxins in agro-products from different areas A: wheat; B: maize; C: rice; D: tomato; E: peach"

Table 4

Correlation between mycotoxin concentrations in different agro-products and temperature and humidity the product origin"

真菌毒素
Mycotoxin
小麦 Wheat 玉米 Maize 稻谷 Rice 番茄 Tomato 桃 Peach
温度
Temperature
湿度Humidity 温度
Temperature
湿度Humidity 温度
Temperature
湿度Humidity 温度
Temperature
湿度Humidity 温度
Temperature
湿度Humidity
OTA -0.039 -0.138 -0.021 0.018 0.017 0.030 -0.147 -0.120 -0.127 -0.078
Ten 0.354** 0.117 0.128 0.083 -0.107 -0.144 -0.097 0.011 0.040 -0.025
TeA -0.172 -0.174 0.203* 0.165* 0.007 0.051 0.062 0.034 0.043 0.086
FB1 -0.068 0.073 0.176* 0.173* 0.198* 0.142 0.028 0.047 -0.064 -0.089
DON 0.227* 0.269** 0.232** 0.214** -0.132 -0.101 / / / /
ZEN 0.140 0.389** 0.126 0.109 -0.165* -0.111 0.068 0.007 0.093 0.069
[1] MARIN S, RAMOS AJ, CANO-SANCHO G, SANCHIS V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 2013, 60:218-237.
doi: 10.1016/j.fct.2013.07.047
[2] FAN K, XU J J, JIANG K Q, LIU X, MENG J J, DI MAVUNGU JD, GUO W B, ZHANG Z Q, JING J, LI H R, YAO B, LI H, ZHAO Z H, HAN Z. Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environmental Pollution, 2019, 248:865-873.
doi: 10.1016/j.envpol.2019.02.091
[3] BRASE S, ENCINAS A, KECK J, NISING C F. Chemistry and biology of mycotoxins and related fungal metabolites. Chemical Reviews, 2009, 109(9):3903-3990.
doi: 10.1021/cr050001f
[4] IARC working group on the evaluation of carcinogenic risks to humans. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2002, 82:171-175.
[5] 赵亚荣, 曾睿, 陈佩榕, 王琼珊, 王旭, 刘香香, 王富华. 我国大陆地区食品中柄曲霉素和黄曲霉毒素B1的污染调查. 食品安全质量检测学报, 2020, 11(24):9108-9114.
ZHAO Y R, ZENG R, CHEN P R, WANG Q S, WANG X, LIU X X, WANG F H. Investigation on the contamination of sterigmatocystin and aflatoxin B1 in food from mainland China. Journal of Food Safety and Quality, 2020, 11(24):9108-9114. (in Chinese)
[6] LIANG Z H, HUANG K L, LUO Y B. Ochratoxin A and ochratoxin-producing fungi on cereal grain in China: A review. Food Additives and Contaminants Part A, 2015, 32(4):461-470.
doi: 10.1080/19440049.2014.996787
[7] AHANGARKANI F, ROUHI S, AZIZI I G, A review on incidence and toxicity of fumonisins. Toxin Reviews, 2014, 33(3):95-100.
doi: 10.3109/15569543.2013.871563
[8] SELVARAJ JN, WANG Y, ZHOU L, ZHAO Y J, XING F G, DAI X F, LIU Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Additives & Contaminants: Part A, 2015, 32(4):440-452.
[9] LI R, WANG X, ZHOU T, YANG D X, WANG Q, ZHOU Y. Occurrence of four mycotoxins in cereal and oil products in Yangtze Delta region of China and their food safety risks. Food Control, 2014, 35(1):117-122.
doi: 10.1016/j.foodcont.2013.06.042
[10] YAN P P, LIU Z Z, LIU S Q, YAO L Y, LIU Y, WU Y N, GONG Z Y. Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat Collected in 2017. Toxins, 2020, 12(3):200.
doi: 10.3390/toxins12030200
[11] HAN Z, NIE D X, EDIAGE EN, YANG X L, WANG J H, CHEN B, LI S Q, ON S L W, DE SAEGER S, WU A B. Cumulative health risk assessment of co-occurring mycotoxins of deoxynivalenol and its acetyl derivatives in wheat and maize: Case study, Shanghai, China. Food and Chemical Toxicology, 2014, 74:334-342.
doi: 10.1016/j.fct.2014.10.018
[12] 李雅静, 秦曙, 杨艳梅, 孙红霞, 乔雄梧, 李晋栋. 中国谷物真菌毒素污染研究现状. 中国粮油学报, 2020, 35(3):186-194.
LI Y J, QIN S, YANG Y M, SUN H X, QIAO X W, LI J D. Research status of mycotoxin contamination in grains in China. Journal of the Chinese Cereals and Oils Association, 2020, 35(3):186-194. (in Chinese)
[13] 范楷, 唐占敏, 聂冬霞, 祭芳, 徐剑宏, 钱鸣蓉, 段劲生, 赵志辉, 韩铮. 超高效液相色谱串联质谱测定常见农产品中40种真菌毒素. 食品安全质量检测学报, 2020, 11(19):7019-7029.
FAN K, TANG Z M, NIE D X, JI F, XU J H, QIAN M R, DUAN J S, ZHAO Z H, HAN Z. Simultaneous determination of 40 mycotoxins in common agricultural products by ultra performance liquid chromatography-tandem mass spectrometry. Journal of Food Safety and Quality, 2020, 11(19):7019-7029. (in Chinese)
[14] 宫春波, 王朝霞, 孙月琳, 董峰光. 食品安全风险监测数据统计处理常见问题探讨. 中国食品卫生杂志, 2013, 25(6):575-578.
GONG C B, WANG Z X, SUN Y L, DONG F G. Application of statistic analysis processing on food safety risk surveillance data. Chinese Journal of Food Hygiene, 2013, 25(6):575-578. (in Chinese)
[15] 吴限鑫, 林秋君, 郭春景, 王建忠, 王雪鑫, 李广. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析. 中国粮油学报, 2019, 34(9):130-138.
WU X X, LIN Q J, GUO C J, WANG J Z, WANG X X, LI G. Analysis of limits, testing standards and risk assessment of mycotoxins in major grain and oil products at home and abroad. Journal of the Chinese Cereals and Oils Association, 2019, 34(9):130-138. (in Chinese)
[16] 李志霞, 聂继云, 闫震, 张晓男, 关棣锴, 沈友明, 程杨. 果品主要真菌毒素污染检测、风险评估与控制研究进展. 中国农业科学, 2017, 50(2):332-347.
LI Z X, NIE J Y, YAN Z, ZHANG X N, GUAN D K, SHEN Y M, CHENG Y. Progress in research of detection, risk assessment and control of the mycotoxins in fruits and fruit products. Scientia Agricultura Sinica, 2017, 50(2):332-347. (in Chinese)
[17] 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014, 47(18):3641-3654.
SHI J R, LIU X, QIU J B, JI F, XU J H, DONG F, YIN X C, RAN J J. Deoxynivalenol contamination in wheat and its management. Scientia Agricultura Sinica, 2014, 47(18):3641-3654. (in Chinese)
[18] 王刚, 王玉龙, 张海永, 张晨曦, 杨博磊, 黄淑坚, 刘阳. 真菌毒素形成的影响因素. 菌物学报, 2020, 39(3):477-491.
WANG G, WANG Y L, ZHANG H Y, ZHANG C X, YANG B L, HUANG S J, LIU Y. Factors that affect the formation of mycotoxins: A literature review. Mycosystema, 2020, 39(3):477-491. (in Chinese)
[19] 胡佳薇, 田丽, 王敏娟, 王彩霞, 郭蓉, 乔海鸥. 陕西省120份市售玉米及其制品中真菌毒素的污染状况调查. 现代预防医学, 2017, 44(09):1593-1596, 1606.
HU J W, TIAN L, WANG M J, WANG C X, GUO R, QIAO H O. Mycotoxins contamination in 120 corn products on sale, Shaanxi. Modern Preventive Medicine, 2017, 44(9):1593-1596, 1606. (in Chinese)
[20] 王燕, 董燕婕, 岳晖, 李增梅, 陈业兵, 王玉涛, 邓立刚, 赵善仓. 山东省玉米真菌毒素污染状况调查及分析. 粮油食品科技, 2016, 24(3):69-73.
WANG Y, DONG Y J, YUE H, LI Z M, CHEN Y B, WANG Y T, DENG L G, ZHAO S C. Investigatin and analysis on mycotoxins contamination of maize in Shandong province. Science and Technology of Cereals,Oils and Foods, 2016, 24(3):69-73. (in Chinese)
[21] LIU Z R, ZHANG G Y, ZHANG Y, JIN Q X, ZHAO J, LI J J. Factors controlling mycotoxin contamination in maize and food in the Hebei province, China. Agronomy for Sustainable Development, 2016, 36(2):39.
doi: 10.1007/s13593-016-0374-x
[22] 宫春波, 董峰光, 王朝霞. 烟台市售谷类及其制品中真菌毒素污染状况调查分析. 食品研究与开发, 2018, 39(16):189-194.
GONG C B, DONG F G, WANG Z X. Investigation and analysis of mycotoxins contamination in cereal and its products sold in Yantai market. Food Research and Development, 2018, 39(16):189-194. (in Chinese)
[23] WEI T S, ZHU W F, PANG M H, LIU Y C, DONG J G. Natural occurrence of fumonisins B1 and B2 in corn in four provinces of China. Food Additives & Contaminants: Part B, 2013, 6(4):270-274.
[24] HAN Z, NIE D X, YANG X L, WANG J H, PENG S J, WU A B. Quantitative assessment of risk associated with dietary intake of mycotoxin ochratoxin A on the adult inhabitants in Shanghai city of P.R. China. Food Control, 2013, 32(2):490-495.
doi: 10.1016/j.foodcont.2013.01.031
[25] 杨延友, 高文花, 温红玲, 蒲双双, 宋艳艳, 许洪芝, 赵丽, 李凤琴. 济南市售小米和玉米中赭曲霉素A污染状况研究. 山东大学学报(医学版), 2010, 48(11):125-128.
YANG Y Y, GAO W H, WEN H L, PU S S, SONG Y Y, XU H Z, ZHAO L, LI F Q. Contamination of ochratoxin A in millet and maize sold in Jinan. Journal of Shandong University (Health Sciences), 2010, 48(11):125-128. (in Chinese)
[26] LAI X W, LIU R C, RUAN C Q, ZHANG H, LIU C L. Occurrence of aflatoxins and ochratoxin A in rice samples from six provinces in China. Food Control, 2015, 50:401-404.
doi: 10.1016/j.foodcont.2014.09.029
[27] 马皎洁, 邵兵, 林肖惠, 于红霞, 李凤琴. 我国部分地区2010年产谷物及其制品中多组分真菌毒素污染状况研究. 中国食品卫生杂志, 2011, 23(6):481-488.
MA J J, SHAO B, LIN X H, YU H X, LI F Q. Study on the natural occurrence of multi-mycotoxin in cereal and cereal-based product samples collected from parts of China in 2010. Chinese Journal of Food Hygiene, 2011, 23(6):481-488. (in Chinese)
[28] JI F, XU J H, LIU X, YIN X C, SHI J R. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chemistry, 2014, 157:393-397.
doi: 10.1016/j.foodchem.2014.02.058
[29] 程天笑, 韩小敏, 王硕, 徐文静, 彭雪菲, 李凤琴, 胡利明. 2018年中国4省脱粒小麦中9种真菌毒素污染情况调查. 食品安全质量检测学报, 2020, 11(12):3992-3999.
CHENG T X, HAN X M, WANG S, XU W J, PENG X F, LI F Q, HU L M. Investigation on contamination situation of 9 mycotoxins in wheat kernel from 4 provinces of China in 2018. Journal of Food Safety and Quality, 2020, 11(12):3992-3999. (in Chinese)
[30] SUN X D, SU P, SHAN H. Mycotoxin Contamination of Maize in China. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(5):835-849.
doi: 10.1111/crf3.2017.16.issue-5
[31] YANG X, GAO J, LIU Q, YANG D J. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. Food Additives & Contaminants: Part B, 2019, 12(2):124-134.
[32] SUN X D, SU P, SHAN H. Mycotoxin Contamination of Rice in China. Journal of Food Science, 2017, 82(3):573-584.
doi: 10.1111/jfds.2017.82.issue-3
[33] 卢素格, 张榕杰, 马青青, 翟志雷, 张二鹏. 2016-2017年河南省小麦粉中4种交链孢毒素污染情况调查. 中国食品卫生杂志, 2018, 30(6):612-615.
LU S G, ZHANG R J, MA Q Q, ZHAI Z L, ZHANG E P. Investigation on contamination of 4 alternaria toxins in wheat flour in Henan Province in 2016-2017. Chinese Journal of Food Hygiene, 2018, 30(6):612-615. (in Chinese)
[34] XU W J, HAN X M, LI F Q, ZHANG L S. Natural occurrence of alternaria toxins in the 2015 wheat from Anhui province, China. Toxins, 2016, 8(11):308.
doi: 10.3390/toxins8110308
[35] 沈友明, 聂继云, 李志霞, 李海飞, 毋永龙, 张建一. 果品中真菌毒素的污染、毒性、生物合成及影响因素研究进展. 食品科学, 2018, 39(9):294-304.
SHEN Y M, NIE J Y, LI Z X, LI H F, WU Y L, ZHANG J Y. Progress in research on mycotoxins contamination, toxicity, biosynthesis and regulatory factors of mycotoxins in fruits. Food Science, 2018, 39(9):294-304. (in Chinese)
[36] FRAEYMAN S, CROUBELS S, DEVREESE M, ANTONISSEN G. Emerging fusarium and alternaria mycotoxins: Occurrence, toxicity and toxicokinetics. Toxins, 2017, 9:228.
doi: 10.3390/toxins9070228
[37] ZHANG Z Q, NIE D X, FAN K, YANG J H, GUO W B, MENG J J, ZHAO Z H, HAN Z. A systematic review of plant-conjugated masked mycotoxins: occurrence, toxicology, and metabolism. Critical Reviews in Food Science and Nutrition, 2020, 60(9):1523-1537.
doi: 10.1080/10408398.2019.1578944
[38] 李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007-2008年中国谷物中隐蔽型脱氧雪腐镰刀菌烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011, 45(1):57-63.
LI F Q, YU C C, SHAO B, WANG W, YU H X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chinese Journal of Preventive Medicine, 2011, 45(1):57-63. (in Chinese)
[39] 朱群英, 索莉莉, 胡美华. 液质联用同位素内标法同时测定小麦粉中7种真菌毒素. 现代预防医学, 2014, 41(23):4362-4365, 4377.
ZHU Q Y, SUO L, HU M H. Simultaneous determination of 7 mycotoxins in wheat flour by ultra performance liquid chromatography- tandem mass spectrometry using isotope internal standard. Modern Preventive Medicine, 2014, 41(23):4362-4365, 4377. (in Chinese)
[40] DONG F, WANG S, YU M, SUN Y, XU J H, SHI J R. Natural occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in various wheat cultivars grown in Jiangsu province, China. World Mycotoxin Journal, 2017, 10(3):285-293.
doi: 10.3920/WMJ2016.2158
[41] SIMSEK S, BURGESS K, WHITNEY K L, GU Y, QIAN S Y. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control, 2012, 26(2):287-292.
doi: 10.1016/j.foodcont.2012.01.056
[42] 龚蕾, 韩智, 程慧, 刘杰, 彭青枝. 谷物及其制品中脱氧雪腐镰刀菌烯醇及其衍生物的检测及污染规律分析. 食品科学, 2020, 41(4):307-312.
GONG L, HAN Z, CHENG H, LIU J, PENG Q Z. Determination and contamination pattern of deoxynivalenol and derivatives in cereals and their products. Food Science, 2020, 41(4):307-312. (in Chinese)
[43] 余佃贞, 田野, 武爱波. 粮食中隐蔽型真菌毒素污染的研究进展. 食品安全质量检测学报, 2018, 9(2):349-354.
YU D Z, TIAN Y, WU A B. Research advance of masked mycotoxins contaminated in grains. Journal of Food Safety and Quality, 2018, 9(2):349-354. (in Chinese)
[44] EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal, 2014, 12:3802.
doi: 10.2903/j.efsa.2014.3802
[45] TEBELE S M, GBASHI S, ADEBO O, CHANGWA R, NAIDU K, NJOBEH P B. Quantification of multi-mycotoxin in cereals (maize, maize porridge, sorghum and wheat) from Limpopo province of South Africa. Food Additives & Contaminants: Part A, 2020, 37(11):1922-1938.
[46] KAMALA A, ORTIZ J, KIMANYA M, HAESAERT G, DONOSO S, TIISEKWA B, DE MEULENAER B. Multiple mycotoxin co- occurence in maize grown in three agro-ecological zones of Tanzania. Food Control, 2015, 54:208-215.
doi: 10.1016/j.foodcont.2015.02.002
[47] JUAN C, BERRADA H, MAÑES J, OUESLATI S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food and Chemical Toxicology, 2017, 103:148-156.
doi: 10.1016/j.fct.2017.02.037
[48] ASSUNCÃO R, SILVA MJ, ALVITO P C. Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin Journal, 2016, 9(5):1-22.
doi: 10.3920/WMJ2016.x001
[49] 武琳霞, 李培武, 丁小霞, 岳晓凤, 白艺珍. 农产品真菌毒素混合污染与累积风险评估研究进展. 食品安全质量检测学报, 2018, 9(14):3551-3560.
WU L X, LI P W, DING X X, YUE X F, BAI Y Z. Advances in research on co-occurrence and cumulative risk assessment of mycotoxins in agricultural products. Journal of Food Safety & Quality, 2018, 9(14):3551-3560. (in Chinese)
[1] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[2] XU ShiWei,DI JiaYing,LI GanQiong,ZHUANG JiaYu. The Methodology and Application of Agricultural Monitoring and Early Warning Model Cluster [J]. Scientia Agricultura Sinica, 2020, 53(14): 2859-2871.
[3] TANG ChaoHua , ZHAO QingYu , ZHANG Kai , LI Shuang , QIN YuChang , ZHANG JunMin . Promoting the Development of Nutritionally-Guided Agriculture in Research and Development of Selenium-Enriched Agri-Products in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3122-3133.
[4] ZHU Hong , LIANG KeHong , XU HaiQuan , QIU Ju , GUO YanZhi , HUANG JiaZhang , ZHU DaZhou , SUN JunMao . Review and Suggestion for Nutrition Standard of Agricultural Products in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3145-3154.
[5] LIANG Ying,LI Yi,ZHANG LiuJuan,LIU XianJin,LU BaiYi. Discussion on the Definition and Screening Method of Characteristic Quality Indicators of Edible Agricultural Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3155-3162.
[6] PANG XueLi,SUN YuQing,KONG FanYu,QIU Jun,ZHANG JiGuang. Advances and Perspectives in Research of Volatile Flavor Quality of Agricultural Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3192-3198.
[7] XU YueQing,WANG DanDan,ZHAO XinNan,YU Li,WANG XiuPin,ZHANG LiangXiao,ZHANG Qi,ZHANG Wen,LI PeiWu. Advances in Research on Physiological Functions of Vitamin K1 and Its Detection Methods in Agricultural Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3207-3217.
[8] LI Pei-Wu, DING Xiao-Xia, BAI Yi-Zhen, ZHOU Hai-Yan, YIN 南Ri. Advance in Research on Risk Assessment of Aflatoxin in Agricultural Products [J]. Scientia Agricultura Sinica, 2013, 46(12): 2534-2542.
[9] YU Hua, WU Zhen-Hua. Coding for Agricultural Product Trace [J]. Scientia Agricultura Sinica, 2011, 44(23): 4801-4806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!