Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4297-4312.doi: 10.3864/j.issn.0578-1752.2020.20.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis

LI TaoTao1(),WANG Xia1,MA YouJi1,2(),YIN DeEn1,ZHANG Yong3,ZHAO XingXu3   

  1. 1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, Gansu
    3College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070
  • Received:2020-06-01 Accepted:2020-09-03 Online:2020-10-16 Published:2020-10-26
  • Contact: YouJi MA E-mail:ttli2018@163.com;yjma@gsau.edu.cn

Abstract:

【Objective】 As a RNA-binding protein, BOLL exerts integral roles during spermatogenesis through interactions with other molecules. The present study was aimed to analyze the sequence characteristics of Tibetan sheep BOLL and its expression and distribution patterns in testis which, in turn, explored the regulation and potential biological function of BOLL expression, hoping to offer much needed perspective and molecular insight for deciphering the mechanism of BOLL during sheep spermatogenesis in the future. 【Method】Eight healthy male Tibetan sheep from each of three key developmental stages, including 3 months old (sexually immature), 1 year old (sexually mature) and 3 years old (adult), were selected. The full-length coding sequence (CDS) region of Tibetan sheep BOLL was cloned by real time PCR (RT-PCR) using total RNA from the right testis samples; the sequence and structural signatures of BOLL and its interacting proteins were analyzed via relevant bioinformatics software; the expression and immunolocalization characteristics of BOLL in testicular tissues at three developmental stages were assessed with quantitative RT-PCR (qRT-PCR), Western blot, and immunofluorescence staining; the competing endogenous RNA (ceRNA) regulatory network and GO functional annotation for ovine BOLL were investigated with the aid of related databases, based on previous data of an integrative analysis of transcriptional profiles from Tibetan sheep testicular tissues by our group, and their expression patterns and targeting relationships were verified by qRT-PCR and dual luciferase reporter assay, respectively. 【Result】 The full CDS region of Tibetan sheep BOLL was 888 bp in length, capable of encoding 295 amino acids which contained a RRM domain of 81 amino acids (near the N-terminal) and a DAZ repeat motif of 25 amino acids. Ovine BOLL exhibited high sequence homology and evolutionary conservation with other mammals, especially for goat, cattle, and yak. There was the potential interaction between sheep BOLL protein and 10 proteins associated with the development of male germ cells. With increasing age, mRNA expression of BOLL was consistently up-regulated in Tibetan sheep testes, while protein expression of which was up-regulated followed by down-regulation. BOLL protein predominantly existed in spermatids from post-pubertal (1 year old and 3 years old) testes, and small amounts were present in spermatocytes, as well as spermatogonia in testes throughout development stages. The qRT-PCR results showed that compared with 3 months old, the expression levels of microRNAs (miRNAs) oar-miR-127-5p、oar-miR-382-5p and oar-miR-760-3p exhibited an extremely significant reduction (P<0.01) , while the expression levels for long noncoding RNAs (lncRNAs) LOC105602204, LOC105603195 and LOC105616228, as well as for circular RNAs (circRNAs) circ-ECT2L and circ-SPHKAP exhibited an extremely significant increase in 1 year old and 3 years old (P<0.01). oar-miR-127-5p and oar-miR-760-3p significantly decreased the luciferase activity of BOLL 3′-UTR wild-type, and oar-miR-760-3p significantly decreased the luciferase activities of wild-type Circ-ECT2L and wild-type LOC105616228 reporter genes. 【Conclusion】 This study was the first to report the molecular characteristics and expression patterns of BOLL gene and regulation of its expression in Tibetan sheep testis. BOLL was predominantly expressed in the post-meiotic round and elongating spermatids of Tibetan sheep, and the expression of which was directly targeted and negatively regulated by oar-miR-127-5p and oar-miR-760-3p; and was positively regulated by oar-miR-760-3p -mediated circRNA Circ-ECT2L and lncRNA LOC105616228. In turn, which might may interact with downstream signaling molecules to participate in the differentiation of ovine spermatids into mature spermatozoa.

Key words: BOLL, cloning, Tibetan sheep, testis, spermatogenesis

Table 1

Primer information used for qRT-PCR"

引物名称
Primer name
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
产物长度
Product length(bp)
BOLL GGCGCAAACATCAAATCAGAC GGGCACTCGTTGGGTTATTC 92
β-actin CTTCCAGCCTTCCTTCCTGG GCCAGGGCAGTGATCTCTTT 180
LOC105602204 ATATGACACGACGGGACAGC CACAACCCGGTGCGTATCTA 242
LOC105603195 GGGATTTGTCACTGGGCTCT TGTGTTCTTCCCATTCGCCT 258
LOC105616228 GTCTGGTCGGGAAATGCTGG GGGCTCTCGTAAAACCTCCC 156
Circ-ECT2L AGAGACTCATCTGGGGGTGC TCTGGTTCGCTTTTCGGCT 154
Circ-SPHKAP TTATTTCCGAATGCAGCCCC TCCTCCTTAGTGGTTTCCTTTT 182
oar-miR-760-3p CGGCTCTGGGTCTGTGGG Universal reverse* -
oar-miR-382-5p GAAGTTGTTCGTGGTGGATTC Universal reverse* -
oar-miR-127-5p CTGAAGCTCAGAGGGCTCTG Universal reverse* -
U6 GGAACGATACAGAGAAGATTAGC TGGAACGCTTCACGAATTTGCG -

Fig. 1

Cloning and sequence analysis of Tibetan sheep BOLL CDS region A: Structural diagram of the ovine BOLL (The sequence data is available from GenBank: accession No. NC_040253.1). B: PCR amplification derived from cDNA of Tibetan sheep BOLL gene. M, DL2000 marker. C: Open reading frame (ORF) analysis of Tibetan sheep BOLL cDNA amplification product. D: The nucleotide and deduced amino acid sequences for the cloned BOLL CDS region. ATG and TAA are the start codon and the stop codon, respectively"

Fig. 2

Comparative analysis of BOLL CDS sequence features among different mammals"

Fig. 3

Phylogenetic tree for amino acid sequences of BOLL protein based on Neighbor-joining algorithm The bootstrap values and branch lengths were showed above and below each branch, respectively. A closer phylogenetic relationship with Tibetan sheep BOLL is indicated by the asterisk"

Fig. 4

Spatial structure of Tibetan sheep BOLL protein A: Secondary structure; B: Tertiary structure"

Fig. 5

Network analysis of the proteins interacting with ovine BOLL protein The circles represent proteins, and the straight lines represent the interactions between different proteins. Circle size corresponds to the protein numbers of interacting with this protein, with larger circles indicating the greater the numbers of interacting-proteins. The line thickness denotes the confidence of interactions (confidence threshold 0.4), with thicker lines indicating higher confidence in the protein-protein interaction"

Fig. 6

Expression patterns of BOLL mRNA and protein in developmental Tibetan sheep testes A: Comparison of the changes in mRNA expression of BOLL acquired by RNA-seq and by qRT-PCR validation. All RNA-seq experiments consisted of four biological replicates; all qRT-PCR experiments consisted of eight biological replicates each consisting of three technical replications. The mRNA expression abundance of BOLL obtained from RNA-seq was expressed by the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) value. B: Western blot analysis for BOLL protein; C: The relative level of BOLL protein expression. 3M: 3-month-old; 1Y: 1-year-old; 3Y: 3-year-old. **: Extremely significant difference (P<0.01); ns: Non-significant difference (P>0.05)"

Fig. 7

Immunofluorescence staining of BOLL protein in Tibetan sheep testis A: Immunolocalization of BOLL protein; B: Negative controls. 3M: 3-month-old; 1Y: 1-year-old; 3Y: 3-year-old. DAPI (blue): Nuclear staining; FITC (green): Fluorescent staining; Merge: Colocalization"

Fig. 8

The functional annotation and potential ceRNA regulatory network for ovine BOLL"

Fig. 9

Temporal expression patterns of potential regulatory non-coding RNAs for BOLL gene and verification of the target relationship A: Comparison of the changes in expression of non-coding RNAs obtained by RNA-seq (four biological replicates) and by qRT-PCR validation (eight biological replicates each consisting of three technical replications). The expression abundance of miRNAs, circRNAs, and lncRNAs obtained from RNA-seq was measured by the TPM (Transcripts Per Kilobase of exon model per Million mapped reads), RPM (Reads of exon model per Million mapped reads), and FPKM (Fragments Per Kilobase of exon model per Million mapped fragments), respectively. B: A dual luciferase reporter assay was used to validate the targeting relationships between miRNAs and BOLL or their ceRNAs. 3M: 3-month-old; 1Y: 1-year-old; 3Y: 3-year-old. **: Extremely significant difference (P<0.01); *: Significant difference (P<0.05); ns: Non-significant difference (P>0.05)"

[1] XIN G S, LONG R J, GUO X S, IRVINE J, DING L M, DING L L, SHANG Z H. Blood mineral status of grazing Tibetan sheep in the Northeast of the Qinghai-Tibetan Plateau. Livestock Science, 2011,136:102-107. doi: 10.1016/j.livsci.2010.08.007.
doi: 10.1016/j.livsci.2010.08.007
[2] ZHOU R, WU J, LIU B, JIANG Y, CHEN W, LI J, HE Q, HE Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular Life Sciences, 2019,76(14):2681-2695. doi: 10.1007/s00018-019-03101-9.
pmid: 30980107
[3] 葛少钦, 康现江, 刘桂荣, 穆淑梅. 精子发生过程中的相关基因. 遗传, 2008,30(1):3-12. doi: 10.3724/sp.j.1005.2008.00003.
GE S Q, KANG X J, LIU G R, MU S M. Genes involved in spermatogenesis. Hereditas (Beijing), 2008,30(1):3-12. (in Chinese)
[4] CHALMEL F, ROLLAND A. Linking transcriptomics and proteomics in spermatogenesis. Reproduction, 2015,150(5):R149-157. doi: 10.1530/rep-15-0073.
pmid: 26416010
[5] SEKINé K, FURUSAWA T, HATAKEYAMA M. The boule gene is essential for spermatogenesis of haploid insect male. Developmental Biology, 2015,399(1):154-163. doi: 10.1016/j.ydbio.2014.12.027.
doi: 10.1016/j.ydbio.2014.12.027 pmid: 25592223
[6] FU X, CHENG S, WANG L, YIN S, DE F M, W S. DAZ family proteins, key players for germ cell development. International Journal of Biological Sciences, 2015,11(10):1226-1235. doi: 10.7150/ijbs.11536.
pmid: 26327816
[7] AHMADIVAND S, FARAHMAND H, TEIMOORI-TOOLABI L, MIRVAGHEFI A, EAGDERI S, GEERINCKX T, SHOKRPOOR S, RAHMATI-HOLASOO H. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor. General and Comparative Endocrinology, 2016,225:235-241. doi: 10.1016/j.ygcen.2015.05.011.
doi: 10.1016/j.ygcen.2015.05.011 pmid: 26027538
[8] JI M, TANG S, PEI W, NING M, MA Y, LI X, GUAN W. Generation of haploid spermatids from chicken embryonal primordial germ cells. International Journal of Molecular Medicine, 2018,42(1):53-60. doi: 10.3892/ijmm.2018.3602.
doi: 10.3892/ijmm.2018.3602 pmid: 29620249
[9] VANGOMPEL M, XU E. A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule. Human Molecular Genetics, 2010,19(12):2360-2369. doi: 10.1093/hmg/ddq109.
doi: 10.1093/hmg/ddq109 pmid: 20335278
[10] GONZáLEZ C, MOVERER L, CALANDRA R, GONZáLEZ- CALVAR S, VITULLO A. Age-related and photoperiodic variation of the DAZ gene family in the testis of the Syrian hamster (Mesocricetus auratus). Zygote, 2018,26(2):127-134. doi: 10.1017/s0967199418000023.
doi: 10.1017/S0967199418000023 pmid: 29573758
[11] LI M, LIU C, ZHU H, SUN J, YU M, NIU Z, LIU W, PENG S, HUA J. Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs). Journal of Cellular Biochemistry, 2013,114(2):294-302. doi: 10.1002/jcb.24368.
doi: 10.1002/jcb.24368
[12] ZHANG Q, LI J, LI Q, LI X, LIU Z, SONG D, XIE Z. Cloning and characterization of the gene encoding the bovine BOULE protein. Molecular Genetics and Genomics, 2009,281(1):67-75. doi: 10.1007/s00438-008-0394-6.
doi: 10.1007/s00438-008-0394-6 pmid: 18987886
[13] SHARMA S, SCHLATT S, VAN P A, NEUHAUS N. Characterization and population dynamics of germ cells in adult macaque testicular cultures. PLoS One, 2019,14(6):e0218194. doi: 10.1371/journal.pone.0218194.
doi: 10.1371/journal.pone.0218194 pmid: 31226129
[14] KOSTOVA E, YEUNG C, LUETJENS C, BRUNE M, NIESCHLAG E, J G. Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Molecular Human Reproduction, 2007,13(2):85-93. doi: 10.1093/molehr/gal101.
doi: 10.1093/molehr/gal101 pmid: 17114206
[15] KEE K, ANGELES V, FLORES M, NGUYEN H, REIJO PERA R. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 2009,462(7270):222-225. doi: 10.1038/nature08562.
doi: 10.1038/nature08562 pmid: 19865085
[16] ABOFOUL-AZAB M, LUNENFELD E, LEVITAS E, ZEADNA A, YOUNIS J, BAR-AMI S, HULEIHEL M. Identification of premeiotic, meiotic, and postmeiotic cells in testicular biopsies without sperm from Sertoli cell-only syndrome patients. International Journal of Molecular Sciences, 2019,20(3):470. doi: 10.3390/ijms20030470.
[17] XU E, LEE D, KLEBES A, TUREK P, KORNBERG T, REIJO PERA R. Human BOULE gene rescues meiotic defects in infertile flies. Human Molecular Genetics, 2003,12(2):169-175. doi: 10.1093/hmg/ddg017.
pmid: 12499397
[18] LIN Y, KUO P, LIN Y, TENG Y, LIN J S N. Messenger RNA transcripts of the meiotic regulator BOULE in the testis of azoospermic men and their application in predicting the success of sperm retrieval. Human Reproduction, 2005,20(3):782-788. doi: 10.1093/humrep/deh647.
doi: 10.1093/humrep/deh647
[19] ZHANG X, YU S, YANG Q, WANG K, ZHANG S, PAN C, YAN H, DANG R, LEI C, CHEN H, LAN X. Goat Boule: Isoforms identification, mRNA expression in testis and functional study and promoter methylation profiles. Theriogenology, 2018,116:53-63. doi: 10.1016/j.theriogenology.2018.05.002.
doi: 10.1016/j.theriogenology.2018.05.002 pmid: 29778921
[20] LI B, NGO S, WU W, XU H, XIE Z, LI Q, PAN Z. Identification and characterization of yak (Bos grunniens) b-Boule gene and its alternative splice variants. Gene, 2014,550(2):193-199. doi: 10.1016/j.gene.2014.08.028.
pmid: 25149018
[21] CASSOLA A, NOé G, FRASCH A. RNA recognition motifs involved in nuclear import of RNA-binding proteins. RNA Biology, 2010,7(3):339-344. doi: 10.4161/rna.7.3.12087.
doi: 10.4161/rna.7.3.12087 pmid: 20458169
[22] YEN P, CHAI N, SALIDO E. The human DAZ genes, a putative male infertility factor on the Y chromosome, are highly polymorphic in the DAZ repeat regions. Mammalian Genome, 1997,8(10):756-759. doi: 10.1007/s003359900560.
doi: 10.1007/s003359900560 pmid: 9321470
[23] EWIS A, LEE J, KUROKI Y, SHINKA T, NAKAHORI Y. Yfm1, a multicopy marker specific for the Y chromosome and beneficial for forensic, population, genetic, and spermatogenesis-related studies. Journal of Human Genetics, 2002,47(10):523-528. doi: 10.1007/ s100380200078.
doi: 10.1007/s100380200078 pmid: 12376741
[24] JIN F, HAMADA M, MALUREANU L, JEGANATHAN K, ZHOU W, MORBECK D, VAN DEURSEN J. Cdc20 is critical for meiosis I and fertility of female mice. Plos Genetics, 2010,6(9):e1001147. doi: 10.1371/journal.pgen.1001147.
doi: 10.1371/journal.pgen.1001147 pmid: 20941357
[25] CHEN Y, LI X, LIAO H, LEUNG X, HE J, WANG X, LI F, YUE H, XU W. CFTR mutation compromises spermatogenesis by enhancing miR-15b maturation and suppressing its regulatory target CDC25A. Biology of Reproduction, 2019,101(1):50-62. doi: 10.1093/biolre/ioz062.
doi: 10.1093/biolre/ioz062 pmid: 30985893
[26] 周阳, 骆骅, 李伯江, 贾超, 谢庄, 赵兴波, 钟金城, 李齐发. 牦牛和犏牛睾丸组织DDX4基因mRNA表达水平与启动子区甲基化. 中国农业科学, 2013,46(3):630-638. doi: 10.3864/j.issn.0578-1752.2013.03.020.
ZHOU Y, LUO H, LI B J, JIA C, XIE Z, ZHAO X B, ZHONG J C, LI Q F. mRNA expression level and promoter methylation of DDX4 gene in testes of yak and cattle-yak. Scientia Agricultura Sinica, 2013,46(3):630-638. (in Chinese)
[27] IKE A, YAMADA S, TANAKA H, NISHIMUNE Y, NOZAKI M. Structure and promoter activity of the gene encoding ornithine decarboxylase antizyme expressed exclusively in haploid germ cells in testis (OAZt/Oaz3). Gene, 2002,298(2):183-193. doi: 10.1016/s0378-1119(02)00978-2.
doi: 10.1016/s0378-1119(02)00978-2 pmid: 12426106
[28] SOUSA MARTINS J, LIU X, OKE A, ARORA R, FRANCIOSI F, VIVILLE S, LAIRD D, FUNG J, CONTI M. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. Journal of Cell Science, 2016,129(6):1271-1282. doi: 10.1242/jcs.179218.
doi: 10.1242/jcs.179218 pmid: 26826184
[29] TAY J, RICHTER J. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Developmental Cell, 2001,1(2):201-213. doi: 10.1016/s1534-5807(01)00025-9.
doi: 10.1016/s1534-5807(01)00025-9 pmid: 11702780
[30] SAITO M, KUMAMOTO K, ROBLES A, HORIKAWA I, FURUSATO B, OKAMURA S, GOTO A, YAMASHITA T, NAGASHIMA M, LEE T, BAXENDALE V, RENNERT O, TAKENOSHITA S, YOKOTA J, SESTERHENN I, TRIVERS G, HUSSAIN S, HARRIS C. Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PloS One, 2010,5(11):e15541. doi: 10.1371/journal.pone.0015541.
doi: 10.1371/journal.pone.0015541 pmid: 21124965
[31] RICHBURG J, MYERS J, BRATTON S. The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Seminars in Cell Developmental Biology, 2014,30:27-35. doi: 10.1016/j.semcdb.2014.03.001.
pmid: 24632385
[32] SHENG K, LIANG X, HUANG S, XU W. The role of histone ubiquitination during spermatogenesis. BioMed Research International, 2014,2014:870695. doi: 10.1155/2014/870695.
[33] LOVELAND K, MAJOR A, BUTLER R, YOUNG J, JANS D, MIYAMOTO Y. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian Journal of Andrology, 2015,17(4):537-544. doi: 10.4103/1008-682x.154310.
doi: 10.4103/1008-682X.154310 pmid: 25994647
[34] BERKOVITS B, WANG L, GUARNIERI P, WOLGEMUTH D. The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3'-UTR truncation in round spermatids. Nucleic Acids Research, 2012,40(15):7162-7175. doi: 10.1093/nar/gks342.
doi: 10.1093/nar/gks342 pmid: 22570411
[35] LI M, YU M, LIU C, ZHU H, HUA J. Expression of miR-34c in response to overexpression of Boule and Stra8 in dairy goat male germ line stem cells (mGSCs). Cell Biochemistry and Function, 2013,31(4):281-288. doi: 10.1002/cbf.2970.
doi: 10.1002/cbf.2970
[36] LI T, WANG X, ZHANG H, CHEN Z, ZHAO X, MA Y. Histomorphological comparisons and expression patterns of BOLL gene in sheep testes at different development stages. Animals, 2019,9(3):105. doi: 10.3390/ani9030105.
[37] GONZALEZ C, DORFMAN V, VITULLO A. IGF1 regulation of BOULE and CDC25A transcripts via a testosterone-independent pathway in spermatogenesis of adult mice. Reproductive Biology, 2015,15(1):48-55. doi: 10.1016/j.repbio.2014.10.003.
[38] MIAO X, LUO Q, ZHAO H, QIN X. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep. Scientific Reports, 2016,6:35299. doi: 10.1038/srep35299.
doi: 10.1038/srep35299 pmid: 27731399
[39] SANTOS R, MORENO C, ZHANG W. Non-coding RNAs in lung tumor initiation and progression. International Journal of Molecular Sciences, 2020,21(8):2774. doi: 10.3390/ijms21082774.
doi: 10.3390/ijms21082774
[40] 陈瑞, 于帅, 陈晓旭, 杜健, 朱振东, 潘传英, 曾文先. 非编码RNA对哺乳动物精子发生过程的调控. 中国农业科学, 2017,50(2):380-390. doi: 10.3864/j.issn.0578-1752.2017.02.016.
doi: 10.3864/j.issn.0578-1752.2017.02.016
CHEN R, YU S, CHEN X X, DU J, ZHU Z D, PAN C Y, ZENG W X. Regulatory role of noncoding rnas during spermatogenesis. Scientia Agricultura Sinica, 2017,50(2):380-390. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.02.016
[41] CAI Y, LEI X, CHEN Z, MO Z. The roles of cirRNA in the development of germ cells. Acta Histochemica, 2020,122(3):151506. doi: 10.1016/j.acthis.2020.151506.
doi: 10.1016/j.acthis.2020.151506 pmid: 32008790
[42] TAKEDA Y, MISHIMA Y, FUJIWARA T, SAKAMOTO H, INOUE K. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PloS One, 2009,4(10):e7513. doi: 10.1371/journal.pone.0007513.
doi: 10.1371/journal.pone.0007513 pmid: 19838299
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[3] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[4] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[5] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[6] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[7] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[8] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[9] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[10] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[11] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[12] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[13] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[14] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[15] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!