Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3520-3532.doi: 10.3864/j.issn.0578-1752.2019.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Study on the Method for Identification Sesame Capsule Dehiscence Resistance and Evaluation of Capsule Dehiscence Resistance of the Core Collection

LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG()   

  1. Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
  • Received:2019-04-25 Accepted:2019-05-20 Online:2019-10-16 Published:2019-10-28
  • Contact: YanXin ZHANG E-mail:zhangyanxin@caas.cn

Abstract:

【Objective】 The mature sesame capsules are prone to dehisce, which causes yield loss, and it is an important factor influencing mechanized harvesting. Establishment of an easy, accurate, reliable and reproducible method for identification sesame capsule dehiscence (CD) resistance, will be helpful to discover germplasm with CD resistance and breed varieties resistant to CD, consequently promote the mechanization process of sesame production. 【Method】 After 2 weeks of the sesame enters mature stage, the capsules in the middle capsules part of the main stem were used in the identification CD resistance. Five representative germplasms with different CD resistance were used, the sample treatment method was determined by comparing the capsule opening width (COW) and the dehiscence angle C1 before and after drying, the best sampling part was selected by comparing the COW and the dehiscence angle C1 at each node of main stem. Using 308 core collections, total of 10 indices were measured and calculated, such as the capsule length (CL), capsule width (CW), capsule thickness (CT), capsule opening width (COW), capsule dehiscence depth (CDD), peel weight (PW), CDD/CL, PW/CL, dehiscence angle C1 and C2. Through statistical analysis including correlation analysis, principal component analysis, membership functions, and linear regression, the optimal index to evaluating CD resistance was screened out. The classification standard of CD resistance was determined according to the COW variation distribution on sesame core collections with diverse CD resistance. 【Result】 The capsule drying treatment was helpful to eliminate the error, and improve the identification accuracy. There was no significant difference between different plants of each material in the COW and dehiscence angle C1 of capsule from the middle 5 nodes, which were the best sampling parts. Based on statistical analysis of the 308 core collections, the optimal regression equation was established on the D value and individual indexes, that was D=-0.12+0.33X2+ 3.21X10, which showed that COW and PL/CL had significant effects on CD resistance, as the COW was highly significantly positive correlated with the dehiscence angle C1 (the correlation coefficient reached 0.8049), therefore the COW could be used in the identification of the CD resistance. The following classification criteria of sesame CD resistance were determined: Highly Resistant (COW≤0.7 cm), Resistant (0.7 cm<COW≤0.9 cm), Intermediate (0.9 cm<COW≤1.1 cm), Dehiscent (1.1 cm<COW≤1.5 cm), Prone to dehiscence (COW>1.5 cm). 【Conclusion】 When the sesame entered mature stage for 2 weeks or later, the middle capsules from 5 nodes in the middle part of the main stem was sampled and dried, then the COW were measured to accurately evaluate the CD resistance of sesame. The method established in this study was simple, with strong controllability and good repeatability, it was unaffected by environment, the result was reliable and can accurately reflect the CD resistance, therefore, the method can be used for high throughput identification of CD resistance of sesame germplasm. The CD resistance of 308 core collections were evaluated by this method, 11 germplasms with high CD resistance were identified.

Key words: Sesamum indicum L, capsule dehiscence resistance, identification method, capsule opening width, core collection

Fig. 1

Diagram of the capsule opening width (COW) and dehiscence angle"

Fig. 2

Comparison of capsule opening width and dehiscence angle before and after drying"

Fig. 3

Line chart of all measured indices of capsule at each node of the plant LS90-1 CL: Capsule length; COW: Capsule opening width; CDD: Capsule dehiscence depth; CW: Capsule width; CT: Capsule thickness; PW: Peel weight; CDD/CL: Capsule dehiscence depth/capsule length; PW/CL: Peel weight/capsule length. The same as below"

Table 1

Statistical analysis of the capsule opening width between different plants of the same material (P=0.05)"

取样部位Sampling position 单株Single plant LS78 LS83 LS85 LS89 LS90
全部节位平均值
Average value of all nodes
1 0.793b 0.985b 1.198a 1.860a 1.827a
2 0.905a 1.158a 0.944b 1.681a 1.859a
3 0.848ab 0.990b 0.941b 1.686a 1.895a
4 0.873ab 1.028b 0.960b 1.865a 1.946a
中部5节位平均值
Average value of the middle 5 nodes
1 0.898a 1.113a 1.127a 1.875a 1.897a
2 0.887a 1.171a 1.084a 1.748a 1.953a
3 0.883a 1.098a 1.136a 1.925a 1.813a
4 0.832a 1.059a 1.070a 1.751a 2.065a
去除基部5节和顶部5节后其他节位平均值
Average value of the other nodes after removing the base 5 nodes and the top 5 nodes
1 0.886a 1.070a 1.193a 1.886a 1.929a
2 0.929a 1.164a 1.043b 1.730a 1.977a
3 0.910a 0.995a 1.024b 1.744a 1.968a
4 0.889a 1.095a 1.012b 1.845a 1.942a

Table 2

Statistical analysis of the capsule dehiscence angle C1 between different plants of the same material (P=0.05)"

取样部位Sampling position 单株Single plant LS78 LS83 LS85 LS89 LS90
全部节位平均值
Average value of all nodes
1 18.359b 18.876b 24.569a 31.512a 30.521b
2 21.766a 23.300a 19.403b 30.737a 31.779ab
3 21.045a 18.702b 19.030b 30.387a 33.235ab
4 21.935a 20.739b 18.555b 32.998a 35.056a
中部5节位平均值
Average value of the middle 5 nodes
1 20.413a 20.889a 22.995a 31.163a 32.538a
2 20.703a 23.216a 21.873a 30.555a 32.246a
3 21.866a 21.039a 22.098a 32.814a 31.869a
4 20.739a 20.779a 20.366a 29.832a 35.052a
去除基部5节和顶部5节后其他节位平均值
Average value of the other nodes after removing the base 5 nodes and the top 5 nodes
1 20.382b 20.139ab 24.577a 31.557a 31.528b
2 21.715ab 22.865a 21.507b 31.906a 33.556b
3 22.519a 18.941b 20.516b 31.259a 34.291ab
4 22.227a 21.184ab 19.382b 31.810a 34.882a

Table 3

Statistical analysis of the capsule opening width and the C1 between the different materials (P=0.05)"

材料 Material 抗裂蒴性 Capsule dehiscence resistance 裂口宽 Capsule opening width C1
LS78 抗Resistance 0.875d 20.930d
LS83 裂Dehiscence 1.110c 21.480c
LS85 裂Dehiscence 1.104c 21.833c
LS89 易裂Prone to dehiscence 1.825b 31.091b
LS90 易裂Prone to dehiscence 1.932a 32.926a

Table 4

Correlation coefficient between single indexes"

指标
Index
蒴果长
CL
裂口宽
COW
裂口深
CDD
蒴果宽
CW
蒴果厚
CT
果皮重
PW
C1 C2 裂口深/蒴果长
CDD/CL
果皮重/蒴果长
PW/CL
D
D value
蒴果长CL 1.0000
裂口宽COW 0.5062 1.0000
裂口深CDD 0.6554 0.5770 1.0000
蒴果宽CW 0.4282 0.3949 0.2994 1.0000
蒴果厚CT 0.4368 0.2164 0.2965 0.5118 1.0000
果皮重PW 0.7243 0.4019 0.4767 0.7101 0.6662 1.0000
C1 -0.0427 0.8049 0.2332 0.1597 -0.0551 -0.0137 1.0000
C2 -0.1942 0.4027 -0.4335 0.0982 -0.0907 -0.1020 0.6119 1.0000
裂口深/蒴果长
CDD/CL
0.2019 0.4072 0.8486 0.1156 0.0858 0.1585 0.3336 -0.4530 1.0000
果皮重/蒴果长
PW/CL
0.3987 0.2310 0.2576 0.7128 0.6484 0.8948 -0.0108 -0.0427 0.0945 1.0000
DD value 0.5232 0.8394 0.4445 0.7049 0.5221 0.6940 0.6155 0.4104 0.2376 0.6271 1.0000

Table 5

Coefficients and contribution of comprehensive indexes"

指标
Index
蒴果长
CL
裂口宽
COW
裂口深
CDD
蒴果宽
CW
蒴果厚
CT
果皮重
PW
C1 C2 裂口深/蒴果长
CDD/CL
果皮重/蒴果长
PW/CL
贡献率
C
CI(1) 0.3909 0.3222 0.3866 0.3643 0.3335 0.4299 0.1271 -0.0622 0.2341 0.3005 0.4165
CI(2) -0.0480 0.4889 0.0606 -0.0940 -0.1679 -0.1967 0.6244 0.4753 0.1232 -0.2197 0.2232
CI(3) -0.0412 0.0052 -0.4347 0.2610 0.2343 0.1840 0.0352 0.4936 -0.5658 0.2958 0.1891
CI(4) -0.6695 -0.1791 -0.0770 0.1940 0.0638 -0.0460 0.2664 -0.0690 0.4115 0.4743 0.0743

Table 6

Three sesame germplasms with the smallest D value"

种质Germplasm DD value 裂口宽COW C1
228 0.1649 0.517 12.801
225 0.1715 0.613 12.476
305 0.1908 0.513 11.002

Fig. 4

Variable distribution of capsule opening width of 308 sesame core collections"

Fig. 5

Bar chart of capsule opening width of 308 sesame core collections"

Fig. 6

Capsules of identified germplasms with high resistance to capsule dehiscence (upper) and prone to capsule dehiscence (under)"

Table 7

Classification standard for capsule dehiscence resistance and the germplasm number and proportion of each grade"

等级Grade 裂口宽COW (cm) 份数Number 占比Proportion (%)
高抗Highly resistant 裂口宽≤0.7 11 3.57
抗Resistant 0.7<裂口宽≤0.9 58 18.83
中间型Intermediate 0.9<裂口宽≤1.1 122 39.61
裂Dehiscent 1.1<裂口宽≤1.5 104 33.77
易裂Prone to dehiscence 裂口宽>1.5 13 4.22

Table 8

Germplasms with high resistance to capsule dehiscence identified from 308 sesame core collections"

种质序号
Germplasm code
来源地
Origin
裂口宽
COW (cm)
HD01 中国湖北Hubei, China 0.513
HD02 墨西哥Mexico 0.517
HD03 中国江苏Jiangsu, China 0.552
HD04 中国河北Hebei, China 0.600
HD05 印度India 0.613
HD06 韩国Korea 0.622
HD07 中国湖北Hubei, China 0.624
HD08 中国内蒙古 Inner Mongolia, China 0.647
HD09 中国云南Yunnan, China 0.658
HD10 中国湖南Hunan, China 0.660
HD11 中国台湾Taiwan, China 0.698
[1] 窦福良, 魏东 . 芝麻饼粕中活性成分的提取方法研究进展. 食品科学, 2010,31(19):414.
doi: 10.7506/spkx1002-6630-201019091
DOU F L, WEI D . Research progress in extraction methods of active components from sesame cake. Food Science, 2010,31(19):414. (in Chinese)
doi: 10.7506/spkx1002-6630-201019091
[2] 李娜 . 芝麻的营养成分与食疗保健作用. 中国食物与营养, 2008,13(5):55-57.
LI N . Nutritional components and dietary healthcare of sesame. Food and Nutrition in China, 2008,13(5):55-57. (in Chinese)
[3] 杨梅, 杨文娟, 高媛, 张艳欣, 朱晓冬, 周瑢, 黎冬华, 张秀荣, 吴文华, 王林海 . 芝麻蒴果大小相关性状的QTL定位分析. 中国油料作物学报, 2017,39(6):785-793.
YANG M, YANG W J, GAO Y, ZHANG Y X, ZHU X D, ZHOU R, LI D H, ZHANG X R, WU W H, WANG L H . Quantitative trait locus mapping for sesame capsule size. Chinese Journal of Oil Crop Science, 2017,39(6):785-793. (in Chinese)
[4] 张艳欣, 王林海, 黎冬华, 高媛, 吕海霞, 张秀荣 . 芝麻耐湿性QTL定位及优异耐湿基因资源挖掘. 中国农业科学, 2014,47(3):422-430.
doi: 10.3864/j.issn.0578-1752.2014.03.002
ZHANG Y X, WANG L H, LI D H, GAO Y, LÜ H X, ZHANG X R . Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Scientia Agricultura Sinica, 2014,47(3):422-430. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.002
[5] LANGHAM D R . Progress in mechanizing sesame in the US through breeding. Trends in New Crops and New Uses, 2002: 157-173.
[6] SHIM K B, KANG C H, SEONG J D, HWANG C D, PAEK K Y, RHO J W, LEE Y Y, KIM H Y . A new sesame cultivar, "Kopoom" with shattering resistance, high quality and yielding. Korean Journal of Breeding Science, 2007: 114-115.
[7] YAMADA T, FUNATSUKI H, HAGIHARA S, FUJITA S, TANAKA Y, TSUJI H, ISHIMOTO M, FUJINO K, HAJIKA M . A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 2009,59(4):435-440.
[8] SUZUKI M, FUJINO K, NAKAMOTO Y, ISHIMOTO M . Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Molecular Breeding, 2010,25(3):407-418.
[9] DONG Y, YANG X, LIU J, WANG B H, LIU B L, WANG Y Z . Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014,5(2):3352.
[10] FUNATSUKI H, SUZUKI M, HIROSE A, INABA H, YAMADA T, HAJIKA M, KOMATSU K, KATAYAMA T, SAYAMA T, ISHIMOTO M, FUJINO K . Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(50):17797.
[11] RAMAN H, RAMAN R, KILIAN A, DETERING F, CARLING J, COONBES N, DIFFEY S, KADKOL G, EDWARDS D, MCCULLY M, RUPERAO P PARKIN I A P, BATLEY J, LUCKETT D, WRATTEN N, . Genome-Wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE, 2014,9(7):e101673.
[12] LIU J, WANG J, WANG H, WANG W X, ZHOU R J, MEI D S, CHENG H T, YANG J, RAMAN H, HU Q . Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Frontiers in Plant Science, 2016,7(1058):1-14.
[13] MONGKOLPORN O, KADKOL G P, PANG E C K, TAYLOR P W J . Identification of RAPD markers linked to recessive genes conferring siliqua shatter resistance in Brassica rapa. Plant Breeding, 2010,122(6):479-484.
[14] 刘婷婷, 孙盈盈, 曹石, 杨阳, 吴莲蓉, 左青松, 吴江生, 周广生 . 油菜抗裂角性状研究进展. 作物杂志, 2014(3):5-9.
LIU T T, SUN Y Y, CAO S, YANG Y, WU L R, ZUO Q S, WU J S, ZHOU G S . Research advances on traits of resistance to pod shattering in rapeseed. Crops, 2014(3):5-9. (in Chinese)
[15] LILJEGREN S J, ROEDER A H, KEMPIN S A, GREMSKI K, OSTERGAARD L, GUIMIL S, REYES D K, YANOFSKY M F . Control of fruit patterning in Arabidopsis by indehiscent. Cell, 2004,116(6):843-853.
[16] RAJANI S, SUNDARESAN V . The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 2001,11(24):1914-1922.
[17] LILJEGREN S J, DITTA G S, ESHED Y, SAVIDGE B, BOWMAN J L, YANOFSKY M F . SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000,404(6779):766-770.
[18] ØSTERGAARD L, KEMPIN S A, BIES D, KLEE H J, YANOFSKY M F . Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnology Journal, 2006,4(1):45-51.
[19] FUNATSUKI H, HAJIKA M, YAMADA T, SUZUKI M, HAGIHARA S, TANAKA Y, FUJITA S, ISHIMOTO M, FUJINO K . Mapping and use of QTLs controlling pod dehiscence in soybean. Breeding Science, 2012,61(5):554-558.
[20] QUICK G R . A quantitative shatter index for soybeans. Experimental Agriculture, 1974,10(2):149.
[21] WEEKS S A, WOLFORD J C, KLEIS R W . A tensile testing method for determining the tendency of soybean pods to dehisce. Transactions of the Asae, 1975,18(3):471-474.
[22] TOMASZEWSKI Z, KOCZOWSKA I . Metoda hodowli rzepiku ozimego TK-6. Biuletyn Institutu Hodowli I Aklimatyzacji Roslin, 1971,5:73-75.
[23] LOOF B, JONSSON R . Results of investigations on resistance to shedding in rape. Sveriges Utsadesforesnings Tidskrift, 1970,80:193-205.
[24] MORGAN C L, BRUCE D M, CHILD R, LADBROOKEA Z L, ARTHURA A E . Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Research, 1998,58(2):153-165.
[25] 谭小力, 张洁夫, 杨莉, 张志燕, 周佳, 姜松, 戚存扣 . 油菜角果裂角力的定量测定. 农业工程学报, 2006,22(11):40-43.
TAN X L, ZHANG J F, YANG L, ZHANG Z Y, ZHOU J, JIANG S, QI C K . Quantitive determination of the strength of rapeseed pod dehiscence. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(11):40-43. (in Chinese)
[26] 文雁成, 傅廷栋, 涂金星, 马朝芝, 沈竞雄, 张书芬 . 甘蓝型油菜抗裂角品种(系)的筛选与分析. 作物学报, 2008,34(1):163-166.
doi: 10.3724/SP.J.1006.2008.00163
WEN Y C, FU T D, TU J X, MA C Z, SHEN J X, ZHANG S F . Screening and analysis of resistance to silique shattering in rape (Brassica napus L.). Acta Agronomica Sinica, 2008,34(1):163-166. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00163
[27] 彭鹏飞, 李云昌, 胡琼, 刘凤兰, 李英德, 徐育松, 梅德圣 . 甘蓝型油菜的抗裂角性鉴定及品种筛选. 华北农学报, 2009,24(6):223-226.
doi: 10.7668/hbnxb.2009.06.046
PENG P F, LI Y C, HU Q, LIU F L, LI Y D, XU Y S, MEI D S . Screen of varieties suitable for machine harvesting from new breeding hybrids or lines in Brassica napus. Acta Agriculturae Boreali-Sinica, 2009,24(6):223-226. (in Chinese)
doi: 10.7668/hbnxb.2009.06.046
[28] LANGHAM D R . Method for making non-dehiscent sesame: US, US006100452A. 2000 -08-08.
[29] 黎冬华, 刘文萍, 张艳欣, 王林海, 危文亮, 高媛, 丁霞, 王蕾, 张秀荣 . 芝麻耐旱性的鉴定方法及关联分析. 作物学报, 2013,39(8):1425-1433.
doi: 10.3724/SP.J.1006.2013.01425
LI D H, LIU W P, ZHANG Y X, WANG L H, WEI W L, GAO Y, DING X, WANG L, ZHANG X R . Identification method of drought tolerance and association mapping for sesame (Sesamum indicum L.). Acta Agronomica Sinica, 2013,39(8):1425-1433. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01425
[30] FUNATSUKI H, ISHIMOTO M, TSUJI H, KAWAGUCHI K, HAJIKA M, FUJINO K . Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed, 2006,125(2):195-197.
[31] 孙超才, 王伟荣, 李延莉, 钱小芳 . 适应机械收获的双低油菜新品种沪油17号的选育. 农业科技通讯, 2007(5):27-28.
SUN C C, WANG W R, LI Y L, QIAN X F . Breeding of a double low rapeseed variety Huyou No.17 which is suitable for machinery harvest. Bulletin of Agricultural Science and Technology, 2007(5):27-28. (in Chinese)
[32] WEN Y C, ZHANG S F, Yi B, WEN J, WANG J P, ZHU J C, HE J P, CAO J H . Identification of QTLs involved in pod-shatter resistance in Brassica napus L. Crop and Pasture Science, 2012,63(12):1082-1089.
[33] 彭鹏飞 . 甘蓝型油菜抗裂角性状的鉴定、遗传分析及QTL定位[D]. 北京: 中国农业科学院, 2009.
PENG P F . Determination, genetic analysis and QTL mapping of pod shatter resistance in rapeseed (Brassica napus L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. ( in Chinese)
[34] SZOT B, TYS J, SZPRYNGIEL M, GROCHOWICZ M . Determination of the reasons for rapeseed losses at combine harvesting and some methods of their limitation. Zeszyty Problemowe Postepow Nauk Rolniczych, 1991,389:221-232.
[35] 李耀明, 朱俊奇, 徐立章, 赵湛 . 基于悬空压裂法的油菜角果抗裂角力测试实验. 农业工程学报, 2012,28(8):111-114.
LI Y M, ZHU J Q, XU L Z, ZHAO Z . Experiment on strength of rapeseed pod dehiscence based on impending fracturing method. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(8):111-114. (in Chinese)
[36] 文雁成, 傅廷栋, 涂金星, 马朝芝, 沈金雄, 文静, 张书芬 . 影响甘蓝型油菜角果抗裂特性的因素分析. 中国油料作物学报, 2010,32(1):25-29.
WEN Y C, FU T D, TU J X, MA C Z, SHEN J X, WEN J, ZHANG S F . Factors analysis of silique shatter resistance in rapeseed (Brassica napus L.). Chinese Journal of Oil Crop Science, 2010,32(1):25-29. (in Chinese)
[37] KADKOL G P, HALLORAN G M, MACMILLAN R H . Evaluation of Brassica, genotypes for resistance to shatter: II. Variation in siliqua strength within and between accessions. Euphytica, 1985,34(3):915-924.
[38] ASHRI A, LADIJINSKI G . Anatomical effects of the capsule dehiscence alleles in sesame. Crop Science, 1964,4:136-138.
[39] BEDIGIAN D . Evolution of sesame revisited: domestication, diversity and prospects. Genetic Resources & Crop Evolution, 2003,50:779-787.
[1] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[2] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[3] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[4] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[5] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[6] DAI Pan-hong, SUN Jun-ling, HE Shou-pu, WANG Li-ru, JIA Yin-hua, PAN Zhao-e, PANG Bao-yin, DU Xiong-ming, WANG Mi. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton [J]. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708.
[7] LIU Juan, LIAO Kang, ZHAO Shi-rong, CAO Qian, SUN Qi, LIU Huan. The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers [J]. Scientia Agricultura Sinica, 2015, 48(10): 2017-2028.
[8] ZHAO Li-Na, REN Xiao-Di, HU Ya-Ya, ZHANG Tao, ZHANG Na, YANG Wen-Xiang, LIU Da-Qun. Evaluation of Wheat Leaf Rust Resistance of 23 Chinese Wheat Mini-Core Collections [J]. Scientia Agricultura Sinica, 2013, 46(3): 441-450.
[9] WANG Hong-Xia-1, ZHAO Shu-Gang-2, GAO Yi-3, XUAN Li-Chun-4, ZHANG Zhi-Hua-1. A Construction of the Core-Collection of Juglans regia L. Based on AFLP Molecular Markers [J]. Scientia Agricultura Sinica, 2013, 46(23): 4985-4995.
[10] GUO Da-Long, LIU Chong-Huai, ZHANG Jun-Yu, ZHANG Guo-Hai. Construction of Grape Core Collections [J]. Scientia Agricultura Sinica, 2012, 45(6): 1135-1143.
[11] YANG Mei, FU Jie, XIANG Qiao-Yan, LIU Yan-Ling. The Core-Collection Construction of Flower Lotus Based on AFLP Molecular Markers [J]. Scientia Agricultura Sinica, 2011, 44(15): 3193-3205.
[12] LIU Zhi-zhai,SONG Yan-chun,SHI Yun-su,CAI Yi-lin,CHENG Wei-dong,QIN Lan-qiu,LI Yu,WANG Tian-yu
. Racial Classification and Characterization of Maize Landraces in China
[J]. Scientia Agricultura Sinica, 2010, 43(5): 899-910 .
[13] LIU Zun-chun,ZHANG Chun-yu,ZHANG Yan-min,ZHANG Xiao-yan,WU Chuan-jin,WANG Hai-bo,SHI Jun,CHEN Xue-sen
. Study on Method of Constructing Core Collection of Malus sieversii Based on Quantitative Traits
[J]. Scientia Agricultura Sinica, 2010, 43(2): 358-370 .
[14] REN Xiao-ping,ZHANG Xiao-jie,LIAO Bo-shou,LEI Yong,HUANG Jia-quan,CHEN Yu-ning,JIANG Hui-fang
. Analysis of Genetic Diversity in ICRISAT Mini Core Collection of Peanut (Arachis hypogaea L.) by SSR Markers
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2848-2858 .
[15] SONG Xi-e,LI Ying-hui,CHANG Ru-zhen,GUO Ping-yi,QIU Li-juan
. Population Structure and Genetic Diversity of Mini Core Collection of Cultivated Soybean (Glycine max (L.) Merr.) in China
[J]. Scientia Agricultura Sinica, 2010, 43(11): 2209-2219 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!