Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1908-1919.doi: 10.3864/j.issn.0578-1752.2018.10.010

• PLANT PROTECTION • Previous Articles     Next Articles

Antimicrobial Effect and Components Analysis of Volatile Organic Compounds from Bacillus pumilus AR03

Jing WANG(), JianMin CAO(), DeXin CHEN, Jun QIU, XiaoQiang WANG, Chao FENG, WenJing WANG   

  1. Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
  • Received:2017-11-03 Accepted:2017-12-18 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 The objective of this study is to determine the antimicrobial activity of volatile organic compounds (VOCs), produced from tobacco rhizosphere soil Bacillus pumilus AR03 strain, and to analyze its main components.【Method】 The antifungal effect of VOCs on the colony, mycelium growth and spore germination of Phytophthora parasitica var. nicotianae and Alternaria alternata was determined by a double Petri dish assay and cavity slide method. The control effect of VOCs on tobacco black shank and brown spot by leaf inoculation was determined in vitro. VOCs were collected by head-space solid phase microextraction (HS-SPME) and identified by gas chromatography-mass spectrometry (GC-MS). Retention index (RI) and internal standard (IS) 1-pentadecence were used for qualitative and quantitative analysis.【Result】 VOCs released from B. pumilus AR03 strain had certain inhibitory effect on the two target pathogens, which showed that the mycelium of P. parasitica grew slowly and thinned, branches increased and twisted, and broke. The mycelium of A. alternata was deformed and no conidial pedicle was produced on the mycelium. Most of the inclusions gathered together and caused the mycelium to dry and constricted. Growth of exposed fungus colonies was inhibited by VOCs, the inhibition rates of VOCs were 56.21% and 59.23%, 64.75% and 59.86%, 66.13% and 61.10%, 67.04% and 70.00%, respectively, against P. parasitica and A. alternata cultured in sealed plates for 2, 4, 6 and 8 d. When the zoospores of P. parasitica and ascospores of A. alternata exposed to these volatile components for 6 h, the germination was delayed and the growth was slow. The number of sporocyst produced by P. parasitica obviously reduced. Most conidiophores of A. alternata expanded abnormally as cystic structure, indicating the fungicidal nature of the volatiles. Moreover, VOCs could significantly inhibit the disease severities of tobacco black shank and brown spot on leaves tests. Direct fumigation for 40 h and 80 h, black shank disease incidence was 92.50% on control and 70.83% on leaves treated by VOCs, the inhibitory of spot expansion was 62.35%. Brown spot disease incidence was 88.33% on control and 60.80% on leaves treated by VOCs, lesions expanded slowly and inhibitory rate was 65.75%. SPME GC-MS analysis showed that seven components of the volatiles were identified, all of which are sesquiterpenes with C15H24 structure. They are dihydrocurcumene (CAS NO. 1461-02-5), (E)-β-famesene (CAS NO. 18794-84-8), γ-curcumene (CAS NO. 451-55-8), α-zingiberene (CAS NO. 495-60-3), π-bisabolene (CAS NO. 495-61-4), β-sesquiphellandrene (CAS NO. 20307-83-9) and γ-E-bisabolene (CAS NO. 53585-13-0). When AR03 was cultured for 1 d, the relative content of β-sesquiphellandrene was the highest (80.64%), followed by (E)-β-famesene and α-zingiberene, the relative content was 7.20% and 6.67%, respectively. With the extension of culturing time, the species of each component were the same, but the relative content was different. Except for dihydrocurcumene, the content of other components showed a decreasing trend, when cultured for 6 d, other ingredients decreased more than 50%, besides dihydrocurcumene keeping relatively stable. 【Conclusion】 VOCs produced by B. pumilus AR03 could develop an additive antifungal effect against fungal pathogens on tobacco. B. pumilus AR03 has potential as an important microbial resource for developing antifungal metabolites and new drugs.

Key words: Bacillus pumilus AR03, volatile organic compounds, Phytophthora parasitica var. nicotianae, Alternaria alternata, SPME GC-MS

Fig. 1

Inhibitory activity of VOCs against A. alternata (A) and P. parasitica (B)"

Fig. 2

Effect of VOCs on mycelial growth of A. alternata and P. parasitica"

Fig. 3

Inhibitory activity of VOCs produced by strain AR03 in vitro leaves"

Table 1

Control effect against tobacco black shank and brown spot of VOCs produced by strain AR03"

处理
Treatment
叶片Leave
烟草黑胫病Tobacco black shank 烟草赤星病Tobacco brown spot
病斑直径
Lesion diameter
(mm)
发病率
Incidence
(%)
抑制率
Inhibition rate
(%)
病斑直径
Lesion diameter
(mm)
发病率
Incidence
(%)
抑制率
Inhibition rate
(%)
挥发性有机物VOCs 9.45 70.83 62.35 2.85 60.80 65.75
CK 25.10 92.50 8.32 88.33

Fig. 4

SPME GC-MS analysis of VOCs produced by strain AR03"

Table 2

Identification of VOCs produced by strain AR03"

峰编号
Peak number
保留时间Retention time (min) 名称
Name
结构式
Structural formula
CAS编号
CAS number
保留指数(计算)
RI (calculation)
保留指数(文献)
RI (reference)
1 22.824 二氢姜黄烯Dihydrocurcumene C15H24 1461-02-5 1449 1448
2 23.061 (E)-β-金合欢烯(E)-β-Famesene C15H24 18794-84-8 1458 1457
3 23.642 γ-姜黄烯γ-Curcumene C15H24 451-55-8 1482 1479
4 24.024 α-姜烯α-Zingiberene C15H24 495-60-3 1497 1500
5 24.353 π-红没药烯π-Bisabolene C15H24 495-61-4 1511 1509
6 24.720 β-倍半萜水芹烯β-Sesquiphellandrene C15H24 20307-83-9 1526 1525
7 24.914 γ-E-红没药烯γ-E-Bisabolene C15H24 53585-13-0 1535 1535
内标IS 23.906 1-十五烯1-Pentadecene C15H30 13360-61-7

Table 3

Quantitative analysis of VOCs produced by strain AR03"

名称
Name
倍半萜烯代谢物含量 Relative contents of sesquiterpenes (ng)
1 d 3 d 6 d
二氢姜黄烯Dihydrocurcumene 1.07 1.10 1.13
(E)-β-金合欢烯(E)-β-Famesene 10.00 6.99 4.24
γ-姜黄烯γ-Curcumene 2.73 1.88 1.43
α-姜烯α-Zingiberene 9.27 6.32 4.60
π-红没药烯π-Bisabolene 1.74 1.35 1.05
β-倍半萜水芹烯β-Sesquiphellandrene 112.01 82.03 54.66
γ-E-红没药烯γ-E-Bisabolene 2.08 1.27 0.76
[1] CHACÓN O, HERNÁNDEZ I, PORTIELES R, LÓPEZ Y, PUJOL M, BORRÁS-HIDALGO O. Identification of defense-related genes in tobacco responding to black shank disease.Plant Science, 2009, 177(3): 175-180.
doi: 10.1016/j.plantsci.2009.05.009
[2] CARTWRIGHT D K, SPURR H W.Biological control of Phytophthora parasitica var. nicotianae on tobacco seedlings with non-pathogenic binucleate Rhizoctonia fungi. Soil Biology & Biochemistry, 1998, 30(14): 1879-1884.
[3] FRAVEL D R.Commercialization and implementation of biocontrol.Annual Review of Phytopathology, 2005, 43: 337-359.
doi: 10.1146/annurev.phyto.43.032904.092924 pmid: 16078888
[4] HANDELSMAN J, STABB E V.Biocontrol of soilborne plant pathogens.The Plant Cell, 1996, 8: 1855-1869.
[5] COMPANT S, DUFFY B, NOWAK J, LÉMENT C, BARKA E A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects.Applied and Environmental Microbiology, 2005, 71(9): 4951-4959.
doi: 10.1016/S0022-0248(00)00162-7 pmid: 16151072
[6] RAN L X, LIU C Y, WU G J, VAN LOON L C, BAKKER P A.Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control, 2005, 32: 111-120.
[7] BRESSAN W.Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol, 2003, 48: 233-240.
doi: 10.1023/A:1022673226324
[8] BRUNNER K, ZEILINGER S, CILIENTO R, WOO S L, LORITO M, KUBICEK C P, MACH R L.Improvement of the fungal biocontrol agents Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 2005, 71(7): 3959-3965.
doi: 10.1128/AEM.71.7.3959-3965.2005 pmid: 1168994
[9] HUANG H C, HUANG J, SAINDON G, ERICKSON R S.Effect of allyl alcohol and fermented agricultural wastes on carpogenic germination of sclerotia of Sclerotinia sclerotiorum and colonization by Trichoderma spp. Canadian Journal of Plant Pathology, 1997, 19(1): 43-46.
[10] PATIÑO-VERA M, JIMÉNEZ B, BALDRERAS K, ORTIZ M, ALLENDE R, CARRILLO A, GALINDO E. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango, anthracnose. Journal of Applied Microbiology, 2005, 99: 540-550.
doi: 10.1111/j.1365-2672.2005.02646.x pmid: 16108795
[11] KAI M, EFFMERT U, BERG G, PIECHULLA B.Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 2007, 187: 351-360.
[12] RAAIJMAKERS J M, VLAMI M, DE SOUZA J T. Antibiotic production by bacterial biocontrol agents.Antonie van Leeuwenhoek, 2002, 81: 537-547.
[13] DIMKIĆ I, BERIĆ T, STEVIĆ T, PAVLOVIĆ S, ŠAVIKIN K, FIRA D, STANKOVIĆ S.Additive and synergistic effects of Bacillus spp. isolates and essential oils on the control of phytopathogenic and saprophytic fungi from medicinal plants and marigolds seeds. Biological Control, 2015, 87: 6-13.
doi: 10.1016/j.biocontrol.2015.04.011
[14] MARI M, BAUTISTA-BAŇOS S, SIVAKUMAR D. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds.Postharvest Biology and Technology, 2016, 122: 70-81.
doi: 10.1016/j.postharvbio.2016.04.014
[15] FIDDAMAN P J, ROSSALL S.Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal of Applied Bacteriology, 1994, 76(4): 395-405.
doi: 10.1111/j.1365-2672.1994.tb01646.x pmid: 8200865
[16] GOTOR-VILA A, TEIXIDÓ N, DI FRANCESCO A D, USALL J, UGOLINI L, TORRES R, MARI M. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 2017, 64: 219-225.
doi: 10.1016/j.fm.2017.01.006 pmid: 28213029
[17] RAZA W,WANG J C H, WU Y CH,LING N,WEI Z H,HUANG Q W,SHEN Q R.Effects of volatile organic compounds by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Applied Microbiology and Biotechnology, 2016, 100(17): 7639-7650.
[18] 王静, 赵廷昌, 孔凡玉, 何月秋, 张成省, 刘建华, 刘伟成. 拮抗细菌对烟草青枯病的温室防病及促生效果. 植物保护, 2007, 33(5): 103-106.
WANG J, ZHAO T C, KONG F Y, HE Y Q, ZHANG C S, LIU J H, LIU W C.Disease-preventing and growth-promoting effect of antifungal against tobacco wilt.Plant Protection, 2007, 33(5): 103-106. (in Chinese)
[19] 王静, 孔凡玉, 秦西云, 张成省, 张秀玉. 短小芽孢杆菌AR03对烟草黑胫病菌的拮抗活性及其田间防效. 中国烟草学报, 2010, 16(5): 78-81.
doi: 10.3969/j.issn.1004-5708.2010.05.015
WANG J, KONG F Y, QIN X Y, ZHANG C S, ZHANG X Y.Inhibition and bio-control activity of Bacillus pumilus AR03 against tobacco black shank. Acta Tabacaria Sinica, 2010, 16(5): 78-81. (in Chinese)
doi: 10.3969/j.issn.1004-5708.2010.05.015
[20] 王静, 孔凡玉, 陈晓红, 田华. 短小芽胞杆菌AR03对烟草炭疽病的抑制作用. 植物保护, 2015, 41(1): 104-107.
doi: 10.3969/j.issn.0529-1542.2015.01.020
WANG J, KONG F Y, CHEN X H, TIAN H.The inhibitory effect of Bacillus pumilus AR03 against tobacco anthracnose. Plant Protection, 2015, 41(1): 104-107. (in Chinese)
doi: 10.3969/j.issn.0529-1542.2015.01.020
[21] 王静, 田华, 孔凡玉, 王贻鸿, 张成省, 冯超. 短小芽孢杆菌AR03对烟草赤星病菌和白粉病菌的防治. 应用生态学报, 2015, 26(10): 3167-3173.
WANG J, TIAN H, KONG F Y, WANG Y H, ZHANG C S, FENG C.Inhibition of Bacillus pumilus AR03 on Alternaria alternata and Erysiphe cichoracearum on tobacco. Chinese Journal of Applied Ecology, 2015, 26(10): 3167-3173. (in Chinese)
[22] 周翠, 乔鲁芹, 金静, 马跃, 赵相涛, 刘会香. 一株枯草芽孢杆菌挥发性物质的抑菌作用初步研究. 农药学学报, 2011, 13(2): 201-204.
doi: 10.3969/j.issn.1008-7303.2011.02.18
ZHOU C, QIAO L Q, JIN J, MA Y, ZHAO X T, LIU H X.Preliminary study on the inhibitory effect of the volatile substances produced by Bacillus substilis.Chinese Journal of Pesticide Science, 2011, 13(2): 201-204. (in Chinese)
doi: 10.3969/j.issn.1008-7303.2011.02.18
[23] ZOU C S, MO M H, GU Y Q, ZHOU J P, ZHANG K Q.Possible contributions of volatile-producing bacteria to soil fungistasis.Soil Biology & Biochemistry, 2007, 39(9): 2371-2379.
doi: 10.1016/j.soilbio.2007.04.009
[24] TAHIR H A S, GU Q, WU H J, RAZA W, HANIF A, WU L M, COLMAN M V, GAO X W. Plant growth promotion by Volatile organic compounds produced by Bacillus subtilis SYST 2. Frontiers in Microbiology, 2017, 8: Article 171.
[25] FERNANDO W G D, RAMARATHNAM R, KRISHNAMOORTHY A S, SAVCHUK S C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol.Soil Biology & Biochemistry, 2005, 37(5): 955-964.
doi: 10.1016/j.soilbio.2004.10.021
[26] WHEATLEY R E.The consequences of volatiles organic compound mediated bacterial and fungal interactions.Antonie Van Leeuwenhoek, 2002, 81: 357-364.
doi: 10.1023/A:1020592802234 pmid: 202020022020208120357364
[27] ROBINSON P M, MCKEE N D, THOMPSON L A A,HARPER D B, HAMILTON J T G. Autoinhibition of germination and growth in Geotrichum candidum. Mycological Research, 1989, 93(2): 214-222.
[28] ALMENAR E, AURAS R, WHARTON P S, RUBINO M, HARTE B.Release of acetaldehyde from β-cyclodextrins inhibits postharvest decay fungi in vitro. Journal of Agricultural and Food Chemistry, 2007, 55(17): 7205-7212.
[29] ARREBOLA E, SIVAKUMAR D, KORSTEN L.Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 2010, 53: 122-128.
doi: 10.1016/j.biocontrol.2009.11.010
[30] 孙江伟, 王军. 生姜挥发油研究进展. 中医研究, 2016, 29(2): 75-77.
doi: 10.3969/j.issn.1001-6910.2016.02.35
SUN J W, WANG J.Advances on volatile oil of ginger.Traditional Chinese Medicinal Research, 2016, 29(2): 75-77. (in Chinese)
doi: 10.3969/j.issn.1001-6910.2016.02.35
[31] 王慧, 刘再群, 王建辉, 洪哲, 林英杰, 罗旭阳, 孙允秀, 石磊, 王勇. 人参茎叶中挥发油中倍半萜烯化合物的分离与鉴定. 吉林大学自然科学学报, 2001(1): 88-90.
doi: 10.3321/j.issn:1671-5489.2001.01.015
WANG H, LIU Z Q, WANG J H, HONG Z, LIN Y J, LUO X Y, SUN Y X, SHI L, WANG Y.Isolation and identification of sesquiterpenes from the volatile oil in the stems and leaves ofPanax ginseng C. A. Mey. Acta Scientiarum Naturalium Universitatis Jilinensis, 2001(1): 88-90. (in Chinese)
doi: 10.3321/j.issn:1671-5489.2001.01.015
[32] HASHEMABADI D, KAVIANI B.Chemical constituents of essential oils extracted from the leaves and stems of Eryngium caucasicum Trautv. from Iran. Journal of Essential Oil Bearing Plants, 2011, 14(6): 693-698.
doi: 10.1080/0972060X.2011.10643991
[33] 柴玲, 刘布鸣, 林霄, 白懋嘉, 赖茂祥. 假鹰爪果实挥发油化学成分研究. 香料香精化妆品, 2016(2): 13-16.
CHAI L, LIU B M, LIN X, BAI M J, LAI M X.source>Study on the chemical constituents of volatile oil fromDesmoschinensis Lour. fruit.Flavour Fragrance Cosmetics, 2016(2): 13-16. (in Chinese)
[34] NEWMAN D J, CRAGG G M.Natural products as sources of new drugs over the 30 years from 1980 to 2010.Journal of Natural Products, 2012, 75: 311-335.
doi: 10.1021/np200906s pmid: 22316239
[35] STAHL E.The essential oil from Thymus praecox ssp. arcticus growing in Iceland. Planta Medica, 1984, 50(2): 157-160.
[36] MERCKE P, BENGTSSON M, BOUWMEESTER H J, POSTHUMUS M A, BRODELIUS P E.Molecular cloning, expression, and characterization of amorpha-4, 11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Archives of Biochemistry and Biophysics, 2000, 381(2): 173-180.
doi: 10.1006/abbi.2000.1962 pmid: 11032404
[37] VON RUDLOFF E, HUNT R S.Chemosystematic studies in the genus Abies. Ⅲ. Leaf and twig oil analysis of amabilis fir. Canadian Journal of Botany, 1977, 55: 3087-3092.
[38] TYAGI A K, PRASAD S, YUAN W, LI S Y, AGGARWAL B B.Identification of a novel compounds (β-sesquiphellandrene) from turmeric(Curcuma longa) with anticancer potential: comparison with curcumin. Investigational New Drugs, 2015, 33: 1175-1186.
doi: 10.1007/s10637-015-0296-5 pmid: 26521943
[39] FRANCIS F, MARTIN T, LOGNAY G, HAUBRUGE E.Role of (E)-β-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Europe Journal of Entomology, 2005, 102: 431-436.
[40] QIAO H L, TUCCORI E, HE X L, GAZZANO A, FIELD L, ZHOU J J, PELOSI P.Discrimination of alarm pheromone (E)-β-famesene by aphid odorant-binding proteins. Insect Biochemistry and Molecular Biology, 2009, 39: 414-419.
doi: 10.1016/j.ibmb.2009.03.004 pmid: 19328854
[41] BOU D D, LAGO J H G, FIGUEIREDO C R, MATSUO A L, GUADAGNIN R C, SOARES M G, SARTORELLI P. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules, 2013, 18(8): 9477-9487.
[42] 周帅, 马楠, 林副平, 张汝民, 高岩. 樟树花挥发性有机化合物日动态变化分析. 浙江农林大学学报, 2011, 28(6): 986-991.
doi: 10.3969/j.issn.2095-0756.2011.06.025
ZHOU S, MA N, LIN F P, ZHANG R M, GAO Y.Diurnal variation of volatile organic compounds emitted from Cinnamomum camphora flowers. Journal of Zhejiang A & F University, 2011, 28(6): 986-991. (in Chinese)
doi: 10.3969/j.issn.2095-0756.2011.06.025
[43] 李其利, 郭堂勋, 黄穗萍, 黄俊斌, 莫贱友. 细菌产生的挥发性物质及其生物学功能. 微生物学杂志, 2012, 32(5): 74-82.
LI Q L, GUO T X, HUANG S P, HUANG J B, MO J Y.Volatile substances produced by bacteria and their biological functions.Journal of Microbiology, 2012, 32(5): 74-82. (in Chinese)
[1] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[2] CHEN JingShi,HUANG YuYang,XIANG Jie,GUO QingHua,LI ShiGui,GU JinGang. Carbon Source Metabolism of Trichoderma afroharzianum with High-Yield of Antifungal Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2020, 53(22): 4601-4612.
[3] WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin. Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 1986-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!