Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (3): 426-436.doi: 10.3864/j.issn.0578-1752.2017.03.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHENG XueWei1,2, Shah Syed Tariq2, FAN ShuLi2, WEI HengLing2, PANG ChaoYou2, LI HongBin1, YU ShuXun2
[1] Gunapati S, Naresh R, Ranjan S, RANJAN S, NIGAM D, HANS A, VERMA P C, GADRE R, PATHRE U V, SANE A P, SANE V A. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Scientific reports, 2016, 6: 24978.
[2] Wang J Y, Wang J P, Yang H F. Identification and functional characterization of the NAC gene promoter from Populus euphratica. Planta, 2016, 244(2): 417-427.
[3] Rahman H, Ramanathan V, Nallathambi J, DURAIALAGARAJA S, MUTHURAJAN R. Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC biotechnology, 2016, 16(1): 7.
[4] Shah S T, Pang C, Hussain A, FAN S, SONG M, ZAMIR R, YU S. Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Plant Cell, Tissue and Organ Culture, 2014, 117(2): 167-186.
[5] Kim H J, Nam H G, Lim P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016, 33: 48-56.
[6] Souer E, van Houwelingen A, Kloos D, MOL J, KOES R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
[7] Jin J, Zhang H, Kong L, GAO G, LUO J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic acids research42(Database issue): D1182., 2014,
[8] 康桂娟, 曾日中, 聂智毅, 黎瑜, 代龙军, 段翠芳. 植物NAC转录因子的研究进展. 生物技术通报, 2012, 28(11): 21-26.
Kang G J, Zeng R Z, Nie Z Y, LI Y, DAI L J, DUAN C F. Research progress of plant NAC transcription factors. Biotechnology Bulletin, 2012, 28(11): 21-26. (in Chinese)
[9] 陈娜, 蒋晶, 曹必好, 雷建军,陈长明. 植物NAC转录因子功能研究新进展. 分子植物育种, 2015, 13(6): 1407-1414.
Chen N, Jiang J, Cao B H, LEI J J, CHEN C M. The latest progresses on plant NAC transcription factors function. Molecular Plant Breeding, 2015, 13(6): 1407-1414. (in Chinese)
[10] Fan K, Bibi N, Gan S,LI F, YUAN S, NI M, WANG M, SHEN H, WANG X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. Journal of experimental botany, 2015, 66(15): 4669-4682.
[11] Evans O, Dou L, Guo Y, PANG C, WEI H, SONG M, FAN S, YU S. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. African Journal of Biotechnology, 2016, 15(24): 1233-1245.
[12] He X, Zhu L, Xu L, GUO W, ZHANG X. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Reports, 2016, 35(10): 2167-2179.
[13] Wang G, Zhang S, Ma X, WANG Y, KONG F, MENG Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia plantarum, 2016, 158(1): 45-64.
[14] Niu F, Wang C, Yan J, GUO X, WU F, YANG B, DEYHOLOS M K, JIANG Y. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Molecular Biology, 2016, 92(1): 89-104.
[15] Christiansen M W, Matthewman C, Podzimska-Sroka D, O’SHEA C, LINDEMOSE S, Møllegaard N E, HOLME L B, HEBELSTRUP K, SKRIVER K, GREGERSEN P L. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. Journal of Experimental Botany, 2016, 67(17): 5259-5273.
[16] Nakashima K, Tran L S P, Van Nguyen D, FUJITA M, MARUYAMA K, TODAKA D, LTO Y, HAYASHI N, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress‐responsive gene expression in rice. The Plant Journal, 2007, 51(4): 617-630.
[17] Hu H, You J, Fang Y, ZHU X, QI Z, XIONG L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant molecular biology, 2008, 67(1/2): 169-181.
[18] Oh S K, Lee S, Yu S H, CHOI D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta, 2005, 222(5): 876-887.
[19] Xie Q, Frugis G, Colgan D, CHUA N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & development, 2000, 14(23): 3024-3036.
[20] 宋国立, 崔荣霞, 王坤波, 郭立平, 黎绍惠, 王春英, 张香娣. 改良CTAB法快速提取棉花DNA. 棉花学报, 1998, 10(5): 273-275.
Song G L, Cui R X, Wang K B, GUO L P, LI S H, WANG C Y, ZHANG X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Cotton Science, 1998, 10(5): 273-275. (in Chinese)
[21] Wu A, Liu J. An improved method of chromosome walking for promoter sequences cloning. Chinese journal of biochemistry and molecular biology, 2005, 22(3): 243-246.
[22] Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Yi Chuan, 2007, 29(8): 1023-1026.
[23] Lichtenthaler H K. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 1987, 148: 350-382.
[24] 张文香, 范术丽, 宋美珍, 庞朝友, 魏恒玲, 喻树迅. 棉花GhMADS29启动子克隆及表达分析. 棉花学报, 2015, 25(4): 309-315.
Zhang W X, Fan S L, Song M Z, PANG C Y, WEI H L, YU S X. Cloning and expression analysis of the promoter of GhMADS29 from cotton. Cotton Science, 2015, 25(4): 309-315. (in Chinese)
[25] Meng C, Cai C, Zhang T, GUO W. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.. Plant Science, 2009, 176(3): 352-359.
[26] He X J, Mu R L, Cao W H, ZHANG Z G, ZHANG J S, CHEN S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 2005, 44(6): 903-916.
[27] Zhao F, Ma J, Li L, FAN S, GUO Y, SONG M, WEI H, PANG C. GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L.). Gene, 2016, 576(1): 268-274.
[28] Oda-Yamamizo C, Mitsuda N, Sakamoto S, OGAWA D, OHME-TAKAGI M, OHMIYA A. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific reports, 2016, 6: 23609.
[29] GAO S, Gao J, Zhu X, SONG Y, LI Z, REN G, ZHOU X, KUAI B. ABF2, ABF3 and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant, 2016, 9(9): 1272-1285.
[30] Shah S T, Pang C, Fan S, SONG M, ARAIN S, YU S. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene, 2013, 531(2): 220-234.
[31] Yang S D, Seo P J, Yoon H K, PARK C M. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[W]. The Plant Cell, 2011, 23(6): 2155-2168.
[32] Pimenta M R, Silva P A, Mendes G C, ALVES J R, CAETANO H D N, MACHADO J P B, BRUSTOLINI O J B, CARPINETTI P A, MELO B P, SILVA J C F, ROSADO G L, FERREIRA M F S, DAL-BIANCO M, PICOLI E A d T, ARAGAO F J L, RAMOS H J O, FONTES E P B. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant and Cell Physiology, 2016, 57(5): 1098-1114.
[33] Mahmood K, El-Kereamy A, Kim S H, nambara e, rothstein s j. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant and Cell Physiology, 2016: pcw120. |
[1] | WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16. |
[2] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[3] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[4] | QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598. |
[5] | WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260. |
[6] | WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549. |
[7] | QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501. |
[8] | YAN HengHui,WEN Ying,WANG Dong. Effects of Basal Fertilization in Strips at Different Soil Depths on Flag Leaf Senescence and Photosynthetic Characteristics, Grain Yield and Fertilizer Use Efficiency of Winter Wheat [J]. Scientia Agricultura Sinica, 2019, 52(5): 813-821. |
[9] | YAN Peng, SUN XiaoNuo, DU Xiong, GAO Zhen, BIAN DaHong. Effects of Artificial Warming from Late-Winter to Early-Spring on Photosynthesis and Flag Leaf Senescence of Winter Wheat [J]. Scientia Agricultura Sinica, 2019, 52(15): 2581-2592. |
[10] | ZHANG ZhongQi, WANG Jiao, JIN Wei, GE DongDong, LIU Kang, Lü FenNi, SUN Jing. Identification and Expression Analysis of CRK Gene Family in Upland Cotton [J]. Scientia Agricultura Sinica, 2018, 51(13): 2442-2461. |
[11] | LIU XiangYu, ZHAO Long, BAHARGUL·Xamxi, PENG Hua, ABDUREYIM·Ibrayim. Comprehensive Evaluation of Germplasm Resources of Upland Cotton in Xinjiang [J]. Scientia Agricultura Sinica, 2017, 50(24): 4679-4691. |
[12] | LIU QiBao, LI LiBei, ZHANG Chi, SU JunJi, WEI HengLing, WANG HanTao, YU ShuXun. Association Analysis of Leaf Chlorophyll Content with SSR Markers and Exploration of Superior Alleles in Upland Cotton [J]. Scientia Agricultura Sinica, 2017, 50(18): 3439-3449. |
[13] | WANG CongCong, ZHANG XiaoHong, WANG XiaoYan, ZHANG Pan, FAN ShuLi, PANG ChaoYou, MA QiFeng, WEI HengLing, WANG HanTao, SU JunJi, YU ShuXun . The Expression Patterns and Function Analysis of GhFLP5, a Gene Related to Flowering in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2017, 50(12): 2220-2231. |
[14] | CHI Ji-na, CAI Xiao, ZHANG Jian-hong, ZHEN Jun-bo, LIU Lin-lin, TIAN Hai-yan, TANG Li-yuan, LIU Cun-jing, CUI Rui-min, ZHANG Xiang-yun. Establishment and Identification of a Normalized Full-Length cDNA Library of Upland Cotton Ji228 [J]. Scientia Agricultura Sinica, 2016, 49(5): 813-824. |
[15] | DAI Pan-hong, SUN Jun-ling, HE Shou-pu, WANG Li-ru, JIA Yin-hua, PAN Zhao-e, PANG Bao-yin, DU Xiong-ming, WANG Mi. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton [J]. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708. |
|