Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4309-4317.doi: 10.3864/j.issn.0578-1752.2014.21.016
• HORTICULTURE • Previous Articles Next Articles
LIU Jin, ZHANG Ji-fang, LIANG Jian-li, CHENG Feng, WU Jian, WANG Xiao-wu
[1] Schonhof I, Krumbein A, Brückner B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung-Food, 2004, 48(1): 25-33.
[2] Padilla G, Cartea M E, Velasco P, de Haro A, Ordás A. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 2007, 68: 536-545.
[3] Kliebenstein D J, Kroymann J, Mitchell-Olds T. The glucosinolate- myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 2005, 8: 264-271.
[4] Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen, R. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 2009, 53: S219-S265.
[5] Mewis I, Tokuhisa J G, Schultz J C, Appel H M, Ulrichs C, Gershenzon J. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67: 2450-2462.
[6] Fenwick G R, Heaney R K, Mullin W J, VanEtten C H. Glucosinolates and their breakdown products in food and food plants. Critical Reviews in Food Science & Nutrition, 1982, 18(2): 123-201.
[7] Mithen R F, Dekker M, Verkerk R, Rabot S, Johnson I T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture, 2000, 80(7): 967-984.
[8] Talalay P, Fahey J W. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. The Journal of Nutrition, 2001, 131: 3027S-3033S.
[9] Traka M, Mithen R. Glucosinolates, isothiocyanates and human health. Phytochemistry, 2009, 8: 269-282.
[10] Kroymann J, Textor S, Tokuhisa J G, Falk K L, Bartram S, Gershenzon J, Mitchell-Olds T. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiology, 2001, 127: 1077-1088.
[11] Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 14587-14592.
[12] Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Plant Biology, 2006, 57: 303-333.
[13] Kliebenstein D J. A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochemistry Reviews, 2009, 8(1): 243-254.
[14] Sønderby I E, Geu-Flores F, Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science, 2011, 15(5): 283-290.
[15] Heidel A J, Clauss M J, Kroymann J, Savolainen O, Mitchell-Olds T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics, 2006, 173: 1629-1636.
[16] Benderoth M, Textor S, Windsor A J, Mitchell-Olds T, Gershenzon J, Kroymann J. Positive selection driving diversification in plant secondary metabolism. Proceedings of the National Academy of Sciences of the USA, 2006, 103(24): 9118-9123.
[17] Textor S, de Ker J-W, Hause B, Gershenzon J, Tokuhisa J G. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiology, 2007, 144: 60-71.
[18] Knoke B, Textor S, Gershenzon J. Mathematical modelling of aliphatic glucosinolate chain length distribution in Arabidopsis thaliana leaves. Phytochemistry Reviews, 2009, 8(1): 39-51.
[19] Liu Z, Hammerlindl J, Keller W, McVetty P B, Daayf F, Quiros C F, Li G. MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus. Molecular Breeding, 2011, 27: 467-478.
[20] Textor S, Bartram, Kroymann J, Falk K L, Hick A, Pickett J,Gershenzon J. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta, 2004, 218: 1026-1035.
[21] Benderoth M, Pfalz M, Kroymann J. Methylthioalkylmalate synthases: Genetics, ecology and evolution. Phytochemistry Reviews, 2009, 8: 255-268.
[22] Moore R C, Purugganan M D. The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 2005, 8: 122-128.
[23] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics, 2011, 43(10): 1035-1039.
[24] Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa. Gene, 2011, 487: 135-142.
[25] Cheng F, Mandáková T, Wu J, Xie Q, Lysak M A, Wang X. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. The Plant Cell Online, 2013, 25: 1541-1554.
[26] Dassanayake M, Oh D H, Haas J S, Hernandez A, Hong H, Ali S, Yun D J, Bressan R A, Zhu J K, Bohenert H J, Cheeseman J M. The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 2011, 43(9): 913-918.
[27] Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between Brassica rapa and other Brassica ceae species. Frontiers in Plant Science, 2012, 3. |
[1] | LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506. |
[2] | TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651. |
[3] | GAO BaoZhen, LIU Bo, LI ShiKai, LIANG JianLi, CHENG Feng, WANG XiaoWu, WU Jian. Genome-Wide Association Studies for Flowering Time in Brassica rapa [J]. Scientia Agricultura Sinica, 2017, 50(17): 3375-3385. |
[4] | ZHANG Fan-fan, SONG De-ping, ZHOU Xin-rong, HUANG Dong-yan, LI An-qi, PENG Qi, CHEN Yan-jun, WU Qiong, HE Hou-jun, TANG Yu-xin. Establishment and Application of a RT-PCR Assay for Detection of Newly Emerged Porcine Deltacoronavirus [J]. Scientia Agricultura Sinica, 2016, 49(7): 1408-1416. |
[5] | DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897. |
[6] | SUN Qian-qian, WU Jian, CHENG Feng, WANG Xiao-wu, LIANG Jian-li, SHEN Shu-xing. QTL Mapping of Self-Compatibility, Silique and Seeds-Associated Traits in Brassica rapa [J]. Scientia Agricultura Sinica, 2016, 49(13): 2449-2458. |
[7] | JIA Hui-ru, WU Yan-yan, WANG Qiang, DAI Ping-li, ZHOU Ting. Epidemiological Survey and Molecular Phylogenetic Analysis of Chronic bee paralysis virus in China from 2014 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(10): 2017-2026. |
[8] | WANG Xiao-bo, MA Yuan, CHENG Feng, WU Jian, LIANG Jian-li, WANG Xiao-wu. The Influence of Whole-Genome Triplication (WGT) on the Candidate Genes of Pollen Specific Expression in Brassica rapa [J]. Scientia Agricultura Sinica, 2015, 48(18): 3727-3732. |
[9] | LI Peng-peng, LIANG Shan, CHEN Bing, YU Sha, ZHANG Chun-yu, SI Long-ting, PIAO Zhong-yun. QTL Mapping and Epistatic QTL for Clubroot Resistance Using a Chinese Cabbage×Turnip F2 Population [J]. Scientia Agricultura Sinica, 2014, 47(20): 4036-4044. |
[10] | DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393. |
[11] | TU Xing-Hao, ZHENG Hua, ZHANG Hong, GAN Jin, ZHANG Wen-Wen, LI Kun, XU Juan. Effects of High Temperature-Short Time Steam Blanching (HTSTSB) on Myrosinase Activity and Nutrients of Maca [J]. Scientia Agricultura Sinica, 2012, 45(21): 4447-4456. |
[12] | WANG Xiao-Yu, LUO Chu-Ping, CHEN Zhi-Yi, LIU Yong-Feng, LIU You-Zhou, NIE Ya-Feng, YU Jun-Jie, YIN Xiao-Le. The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus subtils Bs-916 [J]. Scientia Agricultura Sinica, 2011, 44(23): 4807-4814. |
[13] |
ZHOU Jia,LI Feng-xia,CHEN Shuai,LUO Cheng-gang,LIU Guan-shan,JIANG Cai-hong,YANG Ai-guo,SU Zhen-gang,WANG Yuan-ying . Cloning and Expression Analysis of the PVY Resistance-Related Gene NtPsaN in Tobacoo (Nicotiana tabacum) [J]. Scientia Agricultura Sinica, 2010, 43(16): 3323-3330 . |
[14] |
TAI Shuai-shuai,LIU Guan-shan,SUN Yu-he,CHEN Jia . Cloning and Expression of Calcium-Dependent Protein Kinase (CDPK) Gene Family in Nicotiana tabacum [J]. Scientia Agricultura Sinica, 2009, 42(10): 3600-3608 . |
[15] | . Molecular Cloning, Analysis and Prokaryotic Expression of the Translationally Controlled Tumor Protein Gene in Bombyx mori [J]. Scientia Agricultura Sinica, 2007, 40(8): 1809-1816 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|