Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4309-4317.doi: 10.3864/j.issn.0578-1752.2014.21.016

• HORTICULTURE • Previous Articles     Next Articles

Evolutionary Study of MAM Genes Which Function in the Process  of Glucosinolates Synthesis in Brassica rapa

LIU Jin, ZHANG Ji-fang, LIANG Jian-li, CHENG Feng, WU Jian, WANG Xiao-wu   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Biology and Germplasm Creation of The Ministry of Agriculture, Beijing 100081
  • Received:2014-03-20 Revised:2014-04-25 Online:2014-11-01 Published:2014-11-01

Abstract: 【Objective】The objective of this study is to explore the duplication and evolution of Brassica rapa MAM which are key genes in the process of glucosinolates synthesis. This study will provide a theoretical basis for future MAM research. 【Method】 The synthenic relationship of MAM genes among Arabidopsis thaliana, Schrenkiella parvula and Brassica rapa were analyzed, according to B. rapa datebase BARD, conserved motif of MAM genes were predicted by online software MEME, the expression of MAM homologous genes in 93 materials of Brassica rapa was analyzed by software R, and the phylogenetic tree was constructed by software MEGA 5.05. 【Result】 The results showed that the MAM homologous genes were located in three subgenomes of B. rapa. Amongst seven MAM genes, five geneswhich are synthenic orthologs to A. thaliana mainly originated from whole genome triplication. The remaining two genes may derive from translocation. Motif analysis result indicated that there were many differences in both ends of protein sequences in BrMAM homologous genes, compared with AtMAM genes. Expression data showed that the expression level of these homologous genes was variable, Bra021947 and Bra018524 expressed little in several materials of B. rapa, the expression of Bra029356 could be detected in all materials. In the phylogenetic tree, BrMAM homologous genes and AtMAM genes were located in different branches, in addition to Bra018524. 【Conclusion】 These results indicated that the B. rapa MAM genes had an independent evolution after the divergence of B. rapa and A. thaliana.

Key words: Brassica rapa, glucosinolates, BrMAM genes, synteny, phylogenetic tree

[1]    Schonhof I, Krumbein A, Brückner B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung-Food, 2004, 48(1): 25-33.
[2]    Padilla G, Cartea M E, Velasco P, de Haro A, Ordás A. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 2007, 68: 536-545.
[3]    Kliebenstein D J, Kroymann J, Mitchell-Olds T. The glucosinolate- myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 2005, 8: 264-271.
[4]    Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen, R. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 2009, 53: S219-S265.
[5]    Mewis I, Tokuhisa J G, Schultz J C, Appel H M, Ulrichs C, Gershenzon J. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67: 2450-2462.
[6]    Fenwick G R, Heaney R K, Mullin W J, VanEtten C H. Glucosinolates and their breakdown products in food and food plants. Critical Reviews in Food Science & Nutrition, 1982, 18(2): 123-201.
[7]    Mithen R F, Dekker M, Verkerk R, Rabot S, Johnson I T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture, 2000, 80(7): 967-984.
[8]    Talalay P, Fahey J W. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. The Journal of Nutrition, 2001, 131: 3027S-3033S.
[9]    Traka M, Mithen R. Glucosinolates, isothiocyanates and human health. Phytochemistry, 2009, 8: 269-282.
[10]   Kroymann J, Textor S, Tokuhisa J G, Falk K L, Bartram S, Gershenzon J, Mitchell-Olds T. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiology, 2001, 127: 1077-1088.
[11]   Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 14587-14592.
[12]   Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Plant Biology, 2006, 57: 303-333.
[13]   Kliebenstein D J. A quantitative genetics and ecological model  system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochemistry Reviews, 2009, 8(1): 243-254.
[14]   Sønderby I E, Geu-Flores F, Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science, 2011, 15(5): 283-290.
[15]   Heidel A J, Clauss M J, Kroymann J, Savolainen O, Mitchell-Olds T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics, 2006, 173: 1629-1636.
[16]   Benderoth M, Textor S, Windsor A J, Mitchell-Olds T, Gershenzon J, Kroymann J. Positive selection driving diversification in plant secondary metabolism. Proceedings of the National Academy of Sciences of the USA, 2006, 103(24): 9118-9123.
[17]   Textor S, de Ker J-W, Hause B, Gershenzon J, Tokuhisa J G. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiology, 2007, 144: 60-71.
[18]   Knoke B, Textor S, Gershenzon J. Mathematical modelling of aliphatic glucosinolate chain length distribution in Arabidopsis thaliana leaves. Phytochemistry Reviews, 2009, 8(1): 39-51.
[19]   Liu Z, Hammerlindl J, Keller W, McVetty P B, Daayf F, Quiros C F, Li G. MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus. Molecular Breeding, 2011, 27: 467-478.
[20]   Textor S, Bartram, Kroymann J, Falk K L, Hick A, Pickett J,Gershenzon J. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta, 2004, 218: 1026-1035.
[21]   Benderoth M, Pfalz M, Kroymann J. Methylthioalkylmalate synthases: Genetics, ecology and evolution. Phytochemistry Reviews, 2009, 8: 255-268.
[22]   Moore R C, Purugganan M D. The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 2005, 8: 122-128.
[23]   Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics, 2011, 43(10): 1035-1039.
[24]   Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa. Gene, 2011, 487: 135-142.
[25]   Cheng F, Mandáková T, Wu J, Xie Q, Lysak M A, Wang X. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. The Plant Cell Online, 2013, 25: 1541-1554.
[26]   Dassanayake M, Oh D H, Haas J S, Hernandez A, Hong H, Ali S, Yun D J, Bressan R A, Zhu J K, Bohenert H J, Cheeseman J M. The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 2011, 43(9): 913-918.
[27]   Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between Brassica rapa and other Brassica ceae species. Frontiers in Plant Science, 2012, 3.
[1] LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506.
[2] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[3] GAO BaoZhen, LIU Bo, LI ShiKai, LIANG JianLi, CHENG Feng, WANG XiaoWu, WU Jian. Genome-Wide Association Studies for Flowering Time in Brassica rapa [J]. Scientia Agricultura Sinica, 2017, 50(17): 3375-3385.
[4] ZHANG Fan-fan, SONG De-ping, ZHOU Xin-rong, HUANG Dong-yan, LI An-qi, PENG Qi, CHEN Yan-jun, WU Qiong, HE Hou-jun, TANG Yu-xin. Establishment and Application of a RT-PCR Assay for Detection of Newly Emerged Porcine Deltacoronavirus [J]. Scientia Agricultura Sinica, 2016, 49(7): 1408-1416.
[5] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[6] SUN Qian-qian, WU Jian, CHENG Feng, WANG Xiao-wu, LIANG Jian-li, SHEN Shu-xing. QTL Mapping of Self-Compatibility, Silique and Seeds-Associated Traits in Brassica rapa [J]. Scientia Agricultura Sinica, 2016, 49(13): 2449-2458.
[7] JIA Hui-ru, WU Yan-yan, WANG Qiang, DAI Ping-li, ZHOU Ting. Epidemiological Survey and Molecular Phylogenetic Analysis of Chronic bee paralysis virus in China from 2014 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(10): 2017-2026.
[8] WANG Xiao-bo, MA Yuan, CHENG Feng, WU Jian, LIANG Jian-li, WANG Xiao-wu. The Influence of Whole-Genome Triplication (WGT) on the Candidate Genes of Pollen Specific Expression in Brassica rapa [J]. Scientia Agricultura Sinica, 2015, 48(18): 3727-3732.
[9] LI Peng-peng, LIANG Shan, CHEN Bing, YU Sha, ZHANG Chun-yu, SI Long-ting, PIAO Zhong-yun. QTL Mapping and Epistatic QTL for Clubroot Resistance Using a Chinese Cabbage×Turnip F2 Population [J]. Scientia Agricultura Sinica, 2014, 47(20): 4036-4044.
[10] DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393.
[11] TU Xing-Hao, ZHENG Hua, ZHANG Hong, GAN Jin, ZHANG Wen-Wen, LI Kun, XU Juan. Effects of High Temperature-Short Time Steam Blanching (HTSTSB) on Myrosinase Activity and Nutrients of Maca [J]. Scientia Agricultura Sinica, 2012, 45(21): 4447-4456.
[12] WANG Xiao-Yu, LUO Chu-Ping, CHEN Zhi-Yi, LIU Yong-Feng, LIU You-Zhou, NIE Ya-Feng, YU Jun-Jie, YIN Xiao-Le. The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus subtils Bs-916 [J]. Scientia Agricultura Sinica, 2011, 44(23): 4807-4814.
[13] ZHOU Jia,LI Feng-xia,CHEN Shuai,LUO Cheng-gang,LIU Guan-shan,JIANG Cai-hong,YANG Ai-guo,SU Zhen-gang,WANG Yuan-ying
. Cloning and Expression Analysis of the PVY Resistance-Related Gene NtPsaN in Tobacoo (Nicotiana tabacum)
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3323-3330 .
[14] TAI Shuai-shuai,LIU Guan-shan,SUN Yu-he,CHEN Jia
. Cloning and Expression of Calcium-Dependent Protein Kinase (CDPK) Gene Family in Nicotiana tabacum
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3600-3608 .
[15] . Molecular Cloning, Analysis and Prokaryotic Expression of the Translationally Controlled Tumor Protein Gene in Bombyx mori [J]. Scientia Agricultura Sinica, 2007, 40(8): 1809-1816 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!