Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (20): 3999-4006.doi: 10.3864/j.issn.0578-1752.2014.20.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Fertilization on Aggregate Characteristics and Organic Carbon Distribution in a Paddy Soil in Dongting Lake Plain of China

WU Sheng-yong1, WANG Peng-xin2, ZHANG Zhi-ke1,3, XU Xue-nong1, LEI Zhong-ren1   

  1. 1Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    2College of Plant Protection, Southwest University, Chongqing 400716
    3Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
  • Received:2014-03-27 Revised:2014-05-15 Online:2014-10-16 Published:2014-10-16

Abstract: 【Objective】 The objective of this study is to assess the capability of predatory mite carrying conidia and test the vitality of conidia, which will provide a theoretical basis for combining application of Beauveria bassiana with predatory mite against Frankliniella occidentalis. 【Method】 Neoseiulus barkerimL B. bassiana suspensions, the potential of conidia carried by predator was observed under scanning electron microscope. The number of conidia carried by predator at different times (2, 12, 24 and 48 h) was counted under hemocytometer, and the vitality of conidia was tested by colonies counting. Moreover, the infection rates of conidia dispersed by predator at different times above were tested by bioassay. 【Result】The treated predatory mites could carry conidia. After 2 h, one female adult predator carried 4.12×104 conidia. The number of conidia carried was decreased gradually with time increasing, after 48 h, one predator carried 7.95×103 conidia. The conidia dispersed by predators had vitality. After 2 h, the conidia dispersed by 10 predators formed 24 colonies on medium. The number of colonies was decreased gradually with time increasing, after 48 h, only 3 colonies could be formed. The conidia dispersed by predators were virulent to F. occidentalis. After 2 h, the conidia dispersed by 10 predators caused 75% mortality of adult F. occidentalis on the 10th day. The mortality of F. occidentalis was decreased gradually with time increasing, after 48 h, 25% mortality of adult F. occidentalis was caused. After 2, 12, 24 and 48 h, the mortalities of adult F. occidentalis over the 10 days displayed linear correlation. The lethal time (LT50) after 2 h was 6.44 d, which was significantly lower than that after 48 h (9.83 d). 【Conclusion】Predator mites can carry a large number of conidia within a short time, the conidia have vitality and can be dispersed and infected F. occidentalis, therefore, combined application of B. bassiana and predatory mite have a potential for control of F. occidentalis. adults were sprayed by 1.0×108 conidia/

Key words: Neoseiulus barkeri, Beauveria bassiana, conidia, Frankliniella occidentalis

[1]    Jacobson R J, Chandler D, Fenlon J, Russell K M. Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Science and Technology, 2011, 11: 391-400.
[2]    Sabelis M W, Hanna R, Onzo A, Palini A, Cakmak I, Janssen A. Multiple predators, intraguild interactions and biological control of a single spider mite species//IOBC Proceedings, Florence, Italy, 2009.
[3]    雷仲仁, 问锦曾, 王音. 危险性外来入侵害虫——西花蓟马的鉴别、危害及防治. 植物保护, 2004, 30(3): 63-66.
Lei Z R, Wen J Z, Wang Y. The identification, damage and control of an invasive western flower thrips (Frankliniella occidentalis). Plant Protection, 2004, 30(3): 63-66. (in Chinese)
[4]    Riley D G, Joseph S V, Srinivasan R, Diffie S. Thrips vectors of tospoviruses. Journal of Integrated Pest Management, 2011, 2(1): 1-10.
[5]    张友军, 吴青君, 徐宝云, 朱国仁. 危险性外来入侵生物——西花蓟马在北京发生危害. 植物保护, 2003, 29(4): 58-59.
Zhang Y J, Wu Q J, Xu B Y, Zhu G R. The occurrence of an invasive western flower thrips (Frankliniella occidentalis) in Beijing. Plant Protection, 2003, 29(4): 58-59. (in Chinese)
[6]    Jensen S E. Insecticides resistance in the western flower thrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 2000, 5(2): 131-146.
[7]    方小端, 吴伟南, 刘慧, 潘志萍, 郭明防. 西方花蓟马的生物防治研究进展. 中国生物防治, 2008, 24(4): 363-368.
Fang X D, Wu W N, Liu H, Pan Z P, Guo M F. Research advances on biological control of Frankliniella occidentalis (Pergande). Chinese Journal of Biological Control, 2008, 24(4): 363-368. (in Chinese)
[8]    徐学农, 王恩东. 基于生物防治的西花蓟马治理及思考. 环境昆虫学报, 2010, 32(1): 96-105.
Xu X N, Wang N D. Ponderation on and management of western flower thrips based on biological control. Journal of Environmental Entomology, 2010, 32(1): 96-105. (in Chinese)
[9]    王静, 雷仲仁, 高玉林. 虫生真菌和捕食螨对西花蓟马的联合控制作用初步研究//公共植保与绿色防控. 北京: 中国农业科技出版社, 2010.
Wang J, Lei Z R, Gao Y L. A preliminary study of application of Beauveria bassiana in combination with Neoseiulus barkeri for the control of Frankliniella occidentalis//Prevention and Control of Public Plant Protection and Green. Beijing: China Agricultural Science and Technology Publishing House, 2010. (in Chinese)
[10] Wekesa V W, Moraes G J, Knapp M, Delalibera I. Interactions of two natural enemies of Tetranychus evansi, the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) and the predatory mite, Phytoseiulue longipes (Acari: Phytoseiidae). Biological Control, 2007, 41: 408-414.
[11]   Agboton B V, Hanna R, Onzo A, Vidal S, von Tiedemann A. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa. Experimental and Applied Acarology, 2013, 60: 205-217.
[12]   王静, 雷仲仁, 徐洪富, 高玉林, 王海鸿. 白僵菌对西花蓟马若虫的致病力和对巴氏钝绥螨的影响. 中国生物防治学报, 2011, 27(4): 479-484.
Wang J, Lei Z R, Xu H F, Gao Y L, Wang H H. Virulence of Beauveria bassiana isolates against the first instar nymphs of Frankliniella occidentalis and effects on natural enemy Amblyseius barkeri. Chinese Journal of Biological Control, 2011, 27(4): 479-484. (in Chinese)
[13]   Wu S Y, Gao Y L, Zhang Y P, Wang E D, Xu X N, Lei Z R. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation. Plos One, 2014, 9(1): e84732.
[14]   张艳璇, 孙莉, 林坚贞, 陈霞, 季洁. 白僵菌CQBb111菌株对柑橘木虱和胡瓜新小绥螨的毒力差异. 中国生物防治学报, 2013, 29(1): 56-60.
Zhang Y X, Sun L, Lin J Z, Chen X, Ji J. Virulence of Beauveria bassiana CQBb111 strain to Diaphorina citri and Neoseiulus cucumeirs. Chinese Journal of Biological Control, 2013, 29(1): 56-60. (in Chinese)
[15]   张艳璇, 孙莉, 林坚贞, 陈霞, 季洁. 利用捕食螨搭载白僵菌控制柑橘木虱的研究. 福建农业科技, 2011(6): 72-74.
Zhang Y X, Sun L, Lin J Z, Chen X, Ji J. Study on the predatory mites equipped with Beauveria sp. for control of Diaphorina ditri. Fujian Agricultural Science and Technology, 2011(6): 72-74. (in Chinese)
[16]   问锦曾, 雷仲仁, 谭正华, 王音, 符伟, 黄虹. 5株绿僵菌对东亚飞蝗的毒力测定. 植物保护, 2003, 29(3): 50-52.
Wen J Z, Lei Z R, Tan Z H, Wang Y, Fu W, Huang H. Pathogenicity of five Beauveria bassiana strains against Locusta migratoria. Plant Protection, 2003, 29(3): 50-52. (in Chinese)
[17]   Torrado-Leon E, Montoya-Lerma J, Valencia-Pizo E. Sublethal effects of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) on the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) under laboratory conditions. Mycopathologia, 2006, 162: 411-419.
[18]   Robertson J L, Russell R M, Savin N E. Polo-PC. A Users’ Guide to Probit or Logit Analysis. Berkeley, CA: LeOra Software, 1987.
[19]   Gillespie D R, Ramey C A. Life history and cold storage of Amblyseius cucumeris (Acarina: Phytoseiidae). Journal of the Entomological Society of British Columbia, 1988, 85: 71-76.
[20]   van der Hoeven W A D, van Rijn P C J. Factors affecting the attack success of predatory mites on thrips larvae. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, 1990, 1: 25-30.
[21]   Holder D J, Keyhani N O. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology, 2005, 71: 5260-5266.
[22]   Gross H R, Hamm J J, Carpenter J E. Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Environmental Entomology, 1994, 23(2): 492-501.
[23]   彭辉银, 陈新文, 姜芸, 沈瑞菊, 周显明, 胡志红. 松毛虫赤眼蜂携带质型多角体病毒防治马尾松毛虫. 中国生物防治, 1998, 14(3): 111-114.
Peng H Y, Chen X W, Jiang Y, Shen R J, Zhou X M, Hu Z H. Controlling Dendrolimus punctatus with Trichogramma dendrolimi carrying Cytoplasmic polyhedrosis virus. Chinese Journal of Biological Control, 1998, 14(3): 111-114. (in Chinese)
[24]   陈日曌, 李秀岩, 石钟锋, 范莉莉, 郑红兵, 孙光芝. 载菌赤眼蜂生物学特性及其对亚洲玉米螟防治效果的初步研究. 吉林农业大学学报, 2007, 29(3): 259-261.
Chen R Z, Li X Y, Shi Z F, Fan L L, Zheng H B, Sun G Z. Preliminary study on biology characteristic and control effect on Ostrinia furnalis Guence of Trichogramma dendrolimi carrying Bt. Journal of Jilin Agricultural University, 2007, 29(3): 259-261. (in Chinese)
[25]   Jyoti J L, Brewer G J. Honeybees (Hymenoptera: Apidae) as vector of Bacillus thuringiensis for control of branded sunflower moth (Lepidoptera: Tortricidae). Environmental Entomology, 1999, 28(6): 1172-1176.
[26]   Dedej S, Delaplane K S, Scherm H. Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biological Control, 2004, 31: 422-427.
[27]   Al-mazraawi M S, Shipp J L, Broadbent A B, Kevan P G. Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control tarnished plant bug (Hemiptera: Miridae) on canola. Environmental Entomology, 2006, 35(6): 1569-1577.
[28]   Al-mazraawi M S, Shipp L, Broadbent B, Kevan P. Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biological Control, 2006, 37: 89-97.
[29]   Kapongo J P, Shipp L, Kevan P, Sutton J C. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumblebees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, 2008, 46: 508-514.
 
[1] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[2] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[3] XU JianQiang, PING ZhongLiang, LIU Ying, MA ShiChuang, XU DaoChao, YANG Lan, ZHENG Wei, LIU ShengMing, XIA YanFei, LIN XiaoMin. Inhibitory Activity of Fludioxonil to Four Pathogenic Fungi of Peony Leaves [J]. Scientia Agricultura Sinica, 2017, 50(20): 4036-4045.
[4] ZHANG Zhi-ke, WU Sheng-yong, LEI Zhong-ren. Cloning, Sequence Analysis and Expression Profile of an Odorant Binding Protein Gene in Western Flower Thrips (Frankliniella occidentalis) [J]. Scientia Agricultura Sinica, 2016, 49(6): 1106-1116.
[5] ZHANG Hui, WU Sheng-yong, LI Juan, ZHANG Lu-lu, ZHANG Lin-ya, LEI Zhong-ren. Influence of Subculture on Virulence to Frankliniella occidentalis and Conidial Production of the Entomopathogenic Fungus Beauveria bassiana [J]. Scientia Agricultura Sinica, 2016, 49(15): 2977-2987.
[6] JIANG Shan, LI Shuai, ZHANG Bin, LI Hong-gang, WAN Fang-hao, ZHENG Chang-ying. Effects of Extreme High Temperature on Survival Rate, Reproduction, Trehalose and Sorbitol of Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2016, 49(12): 2310-2321.
[7] WANG Miao-miao, NONG Xiang-qun, LIU Shao-fang, FAN Rong-rong, CAO Guang-chun, WANG Guang-jun, ZHANG Ze-hua. Blu-Rays Promote Conidiation of Metarhizium anisopliae and Expression of Related RegulatingGene fluG [J]. Scientia Agricultura Sinica, 2014, 47(22): 4426-4435.
[8] YU Jun-Jie, NIE Ya-Feng, YU Mi-Na, YIN Xiao-Le, HU Jian-Kun, HUANG Lei, CHEN Zhi-Yi, LIU Yong-Feng. Characterization of T-DNA Insertion Flanking Genes of Enhanced-Conidiation Ustilaginoidea virens Mutant A2588 [J]. Scientia Agricultura Sinica, 2013, 46(24): 5132-5141.
[9] SHEN Shen, WANG Jing-Jing, HAO Zhi-Min, LI Po, LI Zhi-Yong, SUN Zhi-Ying, HAO Jie, TONG Ya-Meng, DONG Jin-Gao. Effects of 2A Type Protein Phosphatase on the Development of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2013, 46(2): 243-249.
[10] CHEN Yue-ying,GUO Jun,DAI Xi-wei,DUAN Ying-hui,WEI Guo-rong,HUANG Li-li,KANG Zhen-sheng
. Cloning and Expression Analysis of a Conidiation-Related Gene PsCon1 from Puccinia striiformis f.sp. tritici#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1156-1163 .
[11] ,,,,,,. Evaluation of Biocontrol Trichoderma on Biology Security [J]. Scientia Agricultura Sinica, 2006, 39(04): 715-720 .
[12] ,,,. Effects of the MEK-Specific Inhibitor U0126 on the Conidial Germination, Appressorium Production and Pathogenicity of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2006, 39(01): 66-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!