Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (20): 4036-4045.doi: 10.3864/j.issn.0578-1752.2017.20.018

• RESEARCH NOTES • Previous Articles     Next Articles

Inhibitory Activity of Fludioxonil to Four Pathogenic Fungi of Peony Leaves

XU JianQiang, PING ZhongLiang, LIU Ying, MA ShiChuang, XU DaoChao, YANG Lan, ZHENG Wei, LIU ShengMing, XIA YanFei, LIN XiaoMin   

  1. College of Forestry, Henan University of Science and Technology, Luoyang 471003, Henan
  • Received:2017-04-21 Online:2017-10-16 Published:2017-10-16

Abstract: 【Objective】The objective of this study is to make clear the activity of fludioxonil on mycelial growth, conidia germination, germ tube elongation and sporulation of four peony foliar pathogenic fungi, including Alternaria suffruticosae, Phyllosticta commonsii, Hainesia lythri and Cladosporium paeoniae, and to analyze whether fludioxonil could be used in the chemical control of peony disease. 【Method】The inhibitory activity of fludioxonil against mycelial growth was measured through a mycelial linear growth test and the efficacy of fludioxonil on conidial germination, germ tube elongation and sporulation was determined on the PSA or KDA amended with fludioxonil at various concentrations. 【Result】Fludioxonil had a strongest inhibition on mycelial growth of H. lythri with the EC50 of 0.01 μg·mL-1, followed by 0.07 μg·mL-1 of A. suffruticosae and 0.35 μg·mL-1 of P. commonsii. Fludioxonil could strongly inhibit the conidia germination of four peony pathogenic fungi and the inhibitory activity on H. lythri was the strongest, with the EC50 of1.26 μg·mL-1. The EC50 to other three fungi ranged from 3.27 to 3.45 μg·mL-1. Fludioxonil could also strongly inhibit the germ tube elongation of four fungi, and the suppression ratio of 0.1 μg·mL-1 fludioxonil reached 40% to 70%. The germ tube of H. lythri was the most sensitive to fludioxonil, and the EC50 was 0.04 μg·mL-1. The EC50 of fludioxonil to other three fungi’s germ tube elongation varied from 0.08 to 0.22 μg·mL-1. Fludioxonil could cause the abnormality of conidia and the germ tube of A. suffruticosae and P. commonsii, including expanding of spore and germ tube and excessively branching of germ tube. However, the effect of fludioxonil on that of H. lythri and C. paeoniae was unconspicuous. Fludioxonil could delay sporulation of A. suffruticosae, P. commonsii and C. paeoniae. The EC50 of A. suffruticosae sporulation was 0.05 μg·mL-1, followed by the 0.38 μg·mL-1 of C. paeoniae, whereas fludioxonil could promote the sporulation of H. lythri.【Conclusion】Fludioxonil had a strong inhibitory activity on the mycelial growth, conidia germination and germ tube elongation of A. suffruticosae and H. lythri, but could promote the sporulation of H. lythri. Fludioxonil could also inhibit powerfully conidia germination and germ tube elongation of P. commonsii and C. paeoniae, mycelial growth of P. commonsii and sporulation of C. paeoniae.Fludioxonil should be used preferentially as a curative fungicide to avoid the pathogenic fungi infection, as it could not be absorbed by the plant tissue and inhibit the fungi that had penetrated and parasitized the plant.

Key words: fludioxonil, peony pathogenic fungi, mycelial growth, conidia germination, sporulation, germ tube elongation

[1]    黄兴琳, 陆俊杏, 廖冰楠, 白辉扬, 管丽, 张涛. 油用牡丹脂肪酸脱氢酶基因FAD3的克隆与表达分析. 中国农业科学, 2017, 50(10): 1914-1921.
Huang X L, Lu J X, Liao B N, Bai H Y, Guan L, Zhang T. Cloning and expression analysis of fatty acid desaturase gene FAD3 from oil peony. Scientia Agricultura Sinica, 2017, 50(10): 1914-1921. (in Chinese)
[2]    蓝保卿, 李嘉钰, 段全绪. 中国牡丹全书(上). 北京: 中国科学技术出版社, 2002: 269-277.
Lan B Q, Li J Y, Duan Q X. Encyclopedia of Chinese Tree Peony (volume one). Beijing: China Science and Technology Press, 2002: 269-277. (in Chinese)
[3]    赵新兰, 李宁, 刘爱新, 刘会香. 牡丹腔孢叶斑病及其病原物的共无性型. 菌物学报, 2010, 29(4): 475-480.
Zhao X L, Li N, Liu A X, Liu H X. The causal agent of coelomycete leaf spot of Paeonia suffruticosa and its synanamorphs. Mycosystema, 2010, 29(4): 475-480. (in Chinese)
[4]    王守正. 河南省经济植物病害志. 郑州: 河南科学技术出版社, 1994: 323-328.
Wang S Z. Economic plant diseases of Henan Province. Zhengzhou: Henan Science and Technology Press, 1994: 323-328. (in Chinese)
[5]    张运兴, 李卫国. 我国牡丹研究核心期刊载文分析. 北方园艺, 2014(19): 213-215.
Zhang Y X, Li W G. Bibliometric analysis on Paeonia suffruticosa Andr. research literatures published in core journals in China. Northern Horticulture, 2014(19): 213-215. (in Chinese)
[6]    吴玉柱, 季延平, 刘慇, 赵桂华, 牛迎福, 王海明, 赵海军. 牡丹红斑病的研究. 林业科学研究, 2005, 18(6): 711-716.
Wu Y Z, Ji Y P, Liu Y, Zhao G H, Niu Y F, Wang H M, Zhao H J. Study on red disease of peony tree. Forest Research, 2005, 18(6): 711-716. (in Chinese)
[7]    徐建强, 杨改凤, 田娟, 车志平, 康业斌. 三种杀菌剂对牡丹红斑病病菌分生孢子形成和萌发的影响. 植物保护学报, 2016, 43(5): 850-857.
Xu J Q, Yang G F, Tian J, Che Z P, Kang Y B. Effects of carbendazim, tebuconazole and azoxystrobin on sporulation and conidial germination of Cladosporium paeoniae causing tree peony red spot. Journal of Plant Protection, 2016, 43(5): 850-857. (in Chinese)
[8]    侯颖, 徐建强, 宋宇州, 胡建功, 都胜芳, 康业斌. 三种杀菌剂对牡丹黑斑病菌菌丝生长及分生孢子萌发的影响. 植物保护学报, 2014, 41(3): 367-372.
HOU Y, XU J Q, SONG Y Z, HU J G, DU S F, KANG Y B. Effects of carbendazim, difenoconazole and azoxystrobin on mycelial growth and conidial germination of Alternaria suffruticosae. Journal of Plant Protection, 2014, 41(3): 367-372. (in Chinese)
[9]    徐建强, 杨改凤, 田娟, 胡建功, 李慧凯, 林晓民. 7种杀菌剂对牡丹黄斑病菌生长和发育的影响. 河南农业大学学报, 2016, 50(2): 229-234.
Xu J Q, Yang G F, Tian J, Hu J G, Li H K, Lin X M. Effects of seven fungicides on growth and development of Phyllosticta commonsii causing yellow leaf spot of Paeonia suffruticosa. Journal of Henan Agricultural University, 2016, 50(2): 229-234. (in Chinese)
[10]   贺春玲, 侯小改, 何童童, 王祯, 关云霄, 刘改秀. 12种杀菌剂对牡丹黄斑病的室内毒力测定. 中国农学通报, 2015, 31(19): 122-125.
He C L, Hou X G, He T T, Wang Z, Guan Y X, Liu G X. Toxicity measurement of 12 fungicides on Phyllosticta commonsiy from peony. Chinese Agricultural Science Bulletin, 2015, 31(19): 122-125. (in Chinese)
[11]   徐建强, 杨改凤, 田娟, 康业斌. 牡丹柱枝孢叶斑病化学防治药剂筛选的研究. 北方园艺, 2015(15): 114-117.
Xu J Q, Yang G F, Tian J, Kang Y B. Effect of eight fungicides on mycelial of Cylindrocladium canadense causing peony leaf spot. Northern Horticulture, 2015(15): 114-117. (in Chinese) 
[12]   徐建强, 杨改凤, 田娟, 刁兴旺. 三类杀菌剂对牡丹腔孢叶斑病菌生长和发育的影响. 植物保护, 2016, 42(5): 86-91.
Xu J Q, Yang G F, Tian J, Diao X W. Effects of fungicide on growth and development of Hainesia lythri causing coelomycete leaf spot of Paeonia suffruticosa. Plant Protection, 2016, 42(5): 86-91. (in Chinese)
[13]   Avenot H F, Michailides T J. Detection of isolates of Alternaria alternata with multiple-resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Protection, 2015, 78: 214-221.
[14]   Han X, Zhao H, Ren W C, Lv C Y, Chen C J. Resistance risk assessment for fludioxonil in Bipolaris maydis. Pesticide Biochemistry and Physiology, 2017, 139: 32-39.
[15]   Zhao H, Kim Y K, Huang L, Xiao C L. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharvest Biology and Technology, 2010, 56: 12-18.
[16] Kuang J, Hou Y P, Wang J X, Zhou M G. Sensitivity of Sclerotinia sclerotiorum to fludioxonil: in vitro determination of baseline sensitivity and resistance risk. Crop Protection, 2011, 30: 876-882.
[17]   Hamada M S, Yin Y N, Ma Z H. Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Protection, 2011, 30: 1028-1033.
[18]   Duan Y B, Ge C Y, Liu S M, Chen C J, Zhou M G. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 2013, 106: 61-67.
[19]   Errampalli D. Effect of fludioxonil on germination and growth of Penicillium expansum and decay in apple cvs. Empire and Gala. Crop Protection, 2004, 23: 811-817.
[20]   Furukawa K, Randhawa A, Kaur H, Mondal A K, Hohmann S. Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Letters, 2012, 586: 2417-2422.
[21]   Duan Y B, Ge C Y, Liu S M, Wang J X, Zhou M G. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Molecular Plant Pathology, 2013, 14(7): 708-718.
[22]   吴学宏, 李飞武, 张文华, 刘鹏飞, 郑乐, 刘西莉. 咯菌睛对西瓜幼苗生长及抗病性相关酶活性的影响. 植物病理学报, 2004, 34(6): 531-535.
Wu X H, Li F W, Zhang W H, Liu P F, Zheng L, Liu X L. Effects of fludioxonil on growth of watermelon seedlings and activity of disease resistance-related enzyme. Acta Phytopathologica Sinica, 2004, 34(6): 531-535. (in Chinese)
[23]   慕立义. 植物化学保护研究方法. 北京: 中国农业出版社, 1994: 76-82.
Mu L Y. Research methods of plant chemical protection. Beijing: China Agriculture Press, 1994: 76-82. (in Chinese)
[24]   陈雨, 张文芝, 周明国. 氰烯菌酯对禾谷镰孢菌分生孢子萌发及菌丝生长的影响. 农药学学报, 2007, 9(3): 235-239.
Chen Y, Zhang W Z, Zhou M G. Effects of JS399-19 on conidial germination and mycelial growth of Fusarium graminearum. Chinese Journal of Pesticide Science, 2007, 9(3): 235-239. (in Chinese)
[25]   康业斌, 商鸿生, 成玉梅. 丹皮酚对植物病原真菌的体外抑制作 用. 植物保护学报, 2007, 34(6): 580-584.
Kang Y B, Shang H S, Cheng Y M. Inhibition activities of paeonol to plant pathogenic fungi in vitro. Journal of Plant Protection, 2007, 34(6): 580-584. (in Chinese)
[26]   吴玉柱, 季延平, 刘慇, 牛迎福, 王海明, 赵海军. 牡丹红斑病发病规律的观察. 中国森林病虫, 2004, 23(5): 6-10.
Wu Y Z, Ji Y P, Liu Y, Niu Y F, Wang H M, Zhao H J. Occurrence regularity of tree peony red spot. Forest Pest and Disease, 2004, 23(5): 6-10. (in Chinese)
[27]   杨德翠, 刘超, 盖树鹏, 郑国生, 郭平毅. 牡丹柱枝孢叶斑病 (Cylindrocladium canadense对叶片光合系统功能的影响. 园艺学报, 2013, 40(3): 515-522.)
Yang D C, Liu C, Gai S P, Zheng G S, Guo P Y. Effect of infection by Cylindrocladium canadense on behaviors of photosystems in tree peony leaves. Acta Horticulturae Sinica, 2013, 40(3): 515-522. (in Chinese)
[28]   范子耀, 孟润杰, 韩秀英, 马志强, 王文桥, 刘颖超. 马铃薯早疫病菌对咯菌腈的敏感基线及其对不同药剂的交互抗性. 植物保护学报, 2012, 39(2): 153-158.
Fan Z Y, Meng R J, Han X Y, Ma Z Q, Wang W Q, Liu Y C. Sensitivity baseline of Alternaria alternata, causal agent of potato early blight, to fludioxonil and cross-resistance to different fungicides. Journal of Plant Protection, 2012, 39(2): 153-158. (in Chinese)
[29]   范子耀, 孟润杰, 马志强, 韩秀英, 张小风, 王文桥, 刘颖超. 咯菌腈与苯醚甲环唑等三种药剂复配对马铃薯早疫病菌 (Alternaria solani)的联合毒力. 植物保护, 2012, 38(5): 184-188.
Fan Z Y, Meng R J, Ma Z Q, Han X Y, Zhang X F, Wang W Q, Liu Y C. Joint-toxicity of the mixtures of fludioxonil with coumoxystrobin, pyraclostrobin or difenoconazole against Alternaria solani. Plant Protection, 2012, 38(5): 184-188. (in Chinese)
[30]   周曙光, 孔祥生, 张妙霞, 王丽亚, 王福云, 周桂勤. 遮光对牡丹光合及其他生理生化特性的影响. 林业科学, 2010, 46(2): 56-60.
Zhou S G, Kong X S, Zhang M X, Wang L Y, Wang F Y, Zhou G Q. Effects of shading on photosynthesis, and other physiological and biochemical characteristics in tree peony. Scientia Silvae Sinicae, 2010, 46(2): 56-60. (in Chinese)
[1] DUAN YingCe,HU ZiYi,YANG Fan,LI JinTao,WU XiangLi,ZHANG RuiYing. Effects of pH and Buffering on the Growth of Lentinula edodes Mycelium [J]. Scientia Agricultura Sinica, 2020, 53(22): 4683-4690.
[2] HE LiFei, CHEN LeLe, XIAO Bin, ZHAO ShiFeng, LI XiuHuan, MU Wei, LIU Feng. Establishment of Sensitivity Baseline and Evaluation of Field Control Efficacy of Fludioxonil Against Fulvia fulva [J]. Scientia Agricultura Sinica, 2018, 51(8): 1475-1483.
[3] GONG ChangWei,QIN YiMan,QU JinSong,WANG XueGui. Resistance Detection and Mechanism of Strawberry Botrytis cinerea to Fludioxonil in Sichuan Province [J]. Scientia Agricultura Sinica, 2018, 51(22): 4277-4287.
[4] FENG ShengZe, LIU XingChen, WANG HaiXiang, ZHAO Jie, ZHAO LiQing, ZHENG YaNan, GONG XiaoDong, HAN JianMin, GU ShouQin, DONG JinGao. Influencing Factors of Conidiospore and Expression Analysis of GATA Transcription Factor Gene Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(7): 1234-1241.
[5] SU Qian-fu, JIA Jiao, MENG Ling-min, LI Hong, ZHANG Wei, JIN Qi-ming, CONG Bin. Antifungal Activities of Penicillium minioluteum ZF1 and Its Metabolites to Fusarium graminearum [J]. Scientia Agricultura Sinica, 2015, 48(20): 4056-4063.
[6] SUN Ling, CHU Xiao-Jing, HAO Yu, ZHANG Hong-Bin, LIANG Yuan-Cun. FoPLC4, Encoding Phospholipase C4, Is Involved in Sporulation and Pathogenicity in Fusarium oxysporum [J]. Scientia Agricultura Sinica, 2014, 47(12): 2357-2364.
[7] LI YAN , YU Jun-Jie, LIU Yong-Feng, YIN Xiao-Le, ZHANG Rong-Sheng, YU Mi-Na, CHEN Zhi-Yi. Determination of Sporulation and Pathogenicity of Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2012, 45(20): 4166-4177.
[8] GAO Yue-e, LI Bao-hua, DONG Xiang-li, WANG Cai-xia, LI Gui-fang, LI Bao-du. Effects of Temperature and Moisture on Sporulation of Diplocarpon mali on Overwintered Apple Leaves [J]. Scientia Agricultura Sinica, 2011, 44(7): 1367-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!