Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (2): 284-291.doi: 10.3864/j.issn.0578-1752.2014.02.008

• PLANT PROTECTION • Previous Articles     Next Articles

Nested-PCR Rapidly Detecte Acidovorax avenae subsp. citrulli from Watermelon Seeds

 WANG  Jing, BI  Yang, ZHU  Yan, HAN  Shun-Yu, ZHU  Xia, SHENG  Wen-Jun, LI  Min   

  1. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
  • Received:2013-06-09 Online:2014-01-15 Published:2013-09-07

Abstract: 【Objective】The objective of this study is to develop a nested-PCR method to rapidly and accurately detect Aac (Acidovorax avenae subsp. citrulli) in watermelon seeds, and to provide technique support for prevention and control bacterial fruit blotch of watermelon (WFB).【Method】Two pairs of specific primer sets (BX-L1/BX-R5 and BX-L1/BX-S-R2) derived from BOX short repeated sequence of Aac were selected to establish the nested-PCR. 5 µL of suspension were added in the tubes, boiled at 99℃ for 10 min, and then chilled on ice for 5 min, the released pathogen DNA was used as template for PCR reaction. PCR reaction system was performed with 5 μL of 10× reaction buffer (25 mmol?L-1 MgCl2), 0.4 μL of Taq DNA polymerase (DR001B, 5 U?μL-1), 3 μL of each primer (5 μmol?L-1), 4 μL of dNTP(D4030RA, 2.5 mmol?L-1), ddH2O was added to the final reaction volume of 50 μL. DNA amplification was performed with 2 min at 95℃, followed by 35 cycles consisting of denaturation (30 s at 95℃), annealing (45 s at 65℃) extension (1 min at 72℃), and a final extension at 72℃ for 7 min. The nested-PCR was performed using (BX-L1/BX-R5 primers for the first run and the BX-L1/BX-S-R2 sets for the second run by using 1 μL of the first PCR product as the template applying the same thermal profile and number of cycles and annealing (45 s at 66℃). Analytical sensitivity, specificity and reproducibility were assessed, respectively. The nested-PCR method was used to detect a series of dilution of Aac suspension and different bacteria-carrying rates of seeds. 【Result】Aac in different strains was amplified by the specific primer sets BX-L1/ BX-R5 and BX-L1/BX-S-R2, respectively. A target band was amplified from Aac strains but not from A. avenae subsp. cattleyae, A. avenae subsp. konjaci and other bacteria. The nested-PCR assay had a lowest detection limit of 4.7×101 cfu/mL, the sensitivity was 1 000 times higher than the conventional direct-PCR. When the carrier rate of infected seed was 0.1%-0.5% , the positive detection rate was 66.7%. When the carrier rate of infected seed was 1%-10% , the positive detection rate was 83%-100%.【Conclusion】The present study demonstrated that the procedure of nested-PCR is a sensitive, specific, rapid, reproducible method to detect Aac in watermelon seeds.

Key words: bacterial fruit blotch of watermelon , watermelon seed , PCR , detection

[1]Rane K, Latin R. Bacterial fruit blotch of watermelon: Association of the pathogen with seed. Plant Disease, 1992, 76(5): 509-512.

[2]Willems A, Goor M, Thielemans S, Gillis M, Kersters K, De Ley J. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. International Journal of Systematic Bacteriology, 1992, 42(1): 107-119.

[3]Lessl J, Fessehaie A, Walcott R. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. Journal of Phytopathology, 2007, 155(2): 114-121.

[4]Minsavage G V, Hoover R J, Kucharek T A, Stall R E. Detection of the watermelon fruit blotch pathogen on seeds with the polymerase chain reaction. Phytopathology, 1995, 85(1): 1162.

[5]Dutta B, Vernai M A C, Castro-Sparks A C, Scherm H, Walcott R R. Location of Acidovorax citrulli in watermelon seeds affects efficiency of pathogen detection by seed health testing. Seed Science and Technology, 2012, 40(3): 309-319.

[6]熊亮斌, 刘箐, 王天昌, 高丽萍, 王婧, 刘姝彤, 宋蕤, 施颖波, 王军平, 文朝慧. 改良DAS-Dot-ELISA检测西瓜细菌性果斑病菌. 微生物学通报, 2010, 37(10): 1551-1556.

Xiong L B, Liu Q, Wang T C, Gao L P, Wang J, Liu S T, Song R, Shi Y B, Wang J P, Wen Z H. An improved DAS Dot ELISA method for detection of Acidovorax avenae subsp. citrulli. Microbiology China, 2010, 37(10): 1551-1556. (in Chinese)

[7]Walcott R R, Langston D B, Sanders Jr F H, Gitaitis R D. Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. Phytopathology, 2000, 90(2): 191-196.

[8]任毓忠, 李晖, 李国英, 王晓东, 万刚, 方蕾. 哈密瓜细菌性果斑病种子带菌的PCR检测. 新疆农业科学, 2004, 41(5): 329-332.

Ren Y Z, Li H, Li G Y, Wang X D, Wan G, Fang L. Detection of Acidovorax avenae subsp. citrulli in melon seed using the polymerase chain reaction. Xinjiang Agricultural Sciences, 2004, 41(5): 329-332. (in Chinese)

[9]张祥林, 伍永明, 王翀, 李碧佳. 西瓜细菌性果斑病菌的16S rDNA序列分析及特异性引物的设计. 植物病理学报, 2007, 37(3): 225-231.

Zhang X L, Wu Y M, Wang C, Li B J. Sequence analysis of 16S rDNA and specified primers design o f Acidovorax avenae subsp. citrulli. Acta Phytopathologica Sinica, 2007, 37(3): 225-231. (in Chinese)

[10]回文广. 哈密瓜果斑病菌快速检测方法的建立[D]. 北京: 中国农业科学院, 2004.

Hui W G. The establishment of rapid detection method for the pathogen of Hami melon fruit blotch[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)

[11]刘佳妍, 金莉莉, 王秋雨. 细菌基因组重复序列PCR技术及其应用. 微生物学杂志, 2006, 26(3): 90-93.

Liu J Y, Jin L L, Wang Q Y. Repetitive-element PCR of bacteria and its application. Journal of Microbiology, 2006, 26(3): 90-93. (in Chinese)

[12]Kim W, Hong Y P, Yoo J H, Lee W B, Choi C S, Chung S I. Genetic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. FEMS Microbiology Letters, 2001, 207(2): 21-27.

[13]陈晓琴, 陈强, 张世熔, 赵芯, 赵珂, 吴翔. 流沙河流域土壤自生固氮菌数值分类及BOX-PCR研究. 农业环境科学学报, 2006, 25 (增刊): 528-532.

Chen X Q, Chen Q, Zhang S R, Zhao X, Zhao K, Wu X. Taxonomy and BOX-PCR analysis of free-living dizotrophs isolated from soils in Liusha River valley. Journal of Agro-Environment Science, 2006, 25(Suppl.): 528-532. (in Chinese)

[14]Bahar O, Efrat M, Hadar E, Dutta B, Walcott R R, Burdman S. New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathology, 2008, 57(1): 754-763.

[15]吴琼, 陈枝楠, 范怀忠, 金显忠. 16S nested-PCR技术检测玉米细菌性枯萎病菌. 植物病理学报, 2005, 35(5): 420-427.

Wu Q, Chen Z N, Fan H Z, Jin X Z. Identification of corn bacterial wilt pathogen by nested-PCR based on 16S rDNA. Acta Phytopathologica Sinica, 2005, 35(5): 420-427. (in Chinese)

[16]安凤秋, 吴云锋, 顾沛雯. 巢式PCR (nested-PCR) 在植原体检测中的应用. 陕西农业科学, 2008(3): 50-52.

An F Q, Wu Y F, Gu P W. Nested-PCR for detection phytoplasma. Shaanxi Journal of Agricultural Sciences, 2008(3): 50-52. (in Chinese)  

[17]Ha Y, Fessehaie A, Ling K S, Wechter W P, Keinath A P, Walcott R R. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology, 2009, 99: 666-678.

[18]闵现华. 番茄溃疡病菌的富集和快速分子生物学检测方法研究[D]. 兰州: 兰州大学, 2010.

Min X H. Pathogen enrichment and rapid molecular biology detection methods for tomato bacterial canker pathogens, Clavibacter michiganensis subsp. michiganensis[D]. Lanzhou: Lanzhou University, 2010. (in Chinese)

[19]Kucharek T, Perez Y, Hodge C. Transmission of watermelon fruit blotch bacterium from infested seed to seedlings. Phytopathology, 1993, 83(1): 467.

[20]Feng J J, Li J Q, Walcott R , Zhang G M, Luo L X, Kang L, Schaad N W. Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Science and Technology, 2013, 41(1): 1-15.

[21]Kajiwara H, Sato M, Suzuki A. Detection of Acidovorax avenae subsp. citrulli using PCR and MALDI-TOF MS. Journal of Electrophoresis, 2012, 56(1): 13-17.

[22]罗志萍, 洪霓. 柑橘溃疡病菌免疫荧光检测技术研究. 西北农林科技大学学报: 自然科学版, 2006, 34(8): 143-145.

Luo Z P, Hong N. Study on detecting Xanthomonas axonopodis pv. citri by immunofluorescence. Journal of Northwest Sci-Tech University of Agriculture and Forestry: Natural Science Edition, 2006, 34(8): 143-145. (in Chinese)

[23]廖太林, 李百胜, 叶建仁, 纪睿, 吴翠萍, 安榆林, 陈建东. 松树脂溃疡病菌的分子检测. 林业科学, 2007, 43(1): 111-115.

Liao T L, Li B S, Ye J R, Ji R, Wu C P, An Y L, Chen J D. Molecular detection of Fusarium circinatum, the causal agent of pine pitch canker. Scientia Silvae Sinicae, 2007, 43(1): 111-115. (in Chinese)

[24]邢红梅, 丁平, 周晓云, 王克荣. 红掌胶胞炭疽菌的分子检测. 植物病理学报, 2008, 38(2): 113-119.

Xing H M, Ding P, Zhou X Y, Wang K R. Molecular detection of Colletotrichum gloeosporioides in Anthurium andraeanum. Acta Phytopathologica Sinica, 2008, 38(2): 113-119. (in Chinese)

[25]王茂华, 胡白石, 卢玲, 刘凤权, 许志刚, 陈建东. 利用巢式PCR检测玉米细菌性枯萎病菌. 南京农业大学学报, 2005, 28(2): 37-40.

Wang M H, Hu B S, Lu L, Liu F Q, Xu Z G, Chen J D. Detection of Pantoea stewartii subsp. stewartii by nested-PCR. Journal of Nanjing Agricultural University, 2005, 28(2): 37-40. (in Chinese)

[26]Giloteaux L, Goñi-Urriza M, Duran R. Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Applied and Environmental Microbiology, 2010, 76(9): 2856-2865.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[4] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[5] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[6] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[7] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[8] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[9] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[10] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[11] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[12] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[13] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[14] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[15] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!