Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (4): 900-911.doi: 10.3864/j.issn.0578-1752.2026.04.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Estimation of Genetic Parameters and Breeding Values for Birth Weight and Weaning Weight in Chinese Holstein Cattle

ZHANG WenXuan1(), XIE ShuoQi1, WU Xin1, WANG YueQiang2, LI YangGuang3, ZHANG Zhen4, REN XiaoLi4, GAO TengYun1, LIANG Dong1, HUANG HeTian1()   

  1. 1 College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046
    2 College of Veterinary MedicineNorthwest A&F University, Yangling 712100, Shaanxi
    3 Henan Huahua Niu Livestock Technology Co., Ltd, Xinxiang 450052, Henan
    4 Henan Dairy Herd Improvement Center, Zhengzhou 450046
  • Received:2025-07-28 Online:2026-02-10 Published:2026-02-10
  • Contact: HUANG HeTian

Abstract:

【Background】The Chinese Holstein is the primary dairy cattle breed in China, and its production performance is directly linked to the economic sustainability of the industry. Birth weight and weaning weight are key early-life traits used to evaluate calf health and future milk production potential. A systematic understanding of their genetic characteristics is essential for effective genetic improvement. However, comprehensive studies evaluating the genetic parameters, breeding values, and genetic trends of birth weight and weaning weight in large Chinese Holstein populations remain limited.【Objective】This study aimed to investigate the non-genetic factors influencing these traits, estimate their genetic parameters and breeding values, and provide a theoretical basis for efficient genetic selection in Chinese Holstein cattle.【Method】Complete production records from a large-scale Holstein farm in Hebei Province between 2017 and 2023 were collected. Following rigorous data cleaning and tracing of complete three-generation pedigrees, valid birth weight and weaning weight data were obtained from 15 672 Holstein calves, derived from 5 798 dams and 100 sires. The GLM procedure in SPSS 26.0 was used to analyze the effects of fixed factors (including birth year, birth season, parity, sex, and calving type) on birth weight and weaning weight. Variance components for both traits were estimated using a two-trait animal model with the AI-REML and EM algorithms in DMU software. Heritabilities and the genetic correlation between the two traits were subsequently calculated. Breeding values for all individuals were estimated using the BLUP method under an animal model. The effectiveness of breeding practices was evaluated by ranking sires based on estimated breeding values, comparing progeny performance, and analyzing genetic trends.【Result】Descriptive statistics indicated mean values of (40.05±4.53) kg for birth weight and (100.31±8.60) kg for weaning weight. Fixed effects analysis revealed that birth year, season, parity, sex, and calving type had highly significant effects (P<0.01) on both traits. The direct heritability estimates were 0.57 (0.04) for birth weight and 0.39 (0.02) for weaning weight, indicating high heritability for both traits. A moderate-to-high positive genetic correlation (0.46±0.04) was observed between birth weight and weaning weight. Breeding value estimation demonstrated high accuracy, with progeny of the top ten sires showing significantly higher mean birth weight (40.26 kg) and weaning weight (104.41 kg) compared to those of the bottom ten sires (39.08 kg and 97.90 kg, respectively). Genetic trend analysis revealed considerable fluctuation in average breeding values for both traits over birth years, with an overall declining trend.【Conclusion】Birth weight and weaning weight in Chinese Holstein cattle are influenced by factors such as birth year and sex. The results confirm the high heritability of both traits and a moderate-to-high genetic correlation between them, supporting their simultaneous selection in breeding programs. Sires exhibiting superior performance in early growth traits were identified, and it is recommended to prioritize the use of bulls with high breeding values for weaning weight and moderate breeding values for birth weight in practical breeding. This study clarifies the genetic basis of early body weight traits in Chinese Holstein cattle, providing a theoretical foundation and data support for genetic improvement and the formulation of balanced breeding strategies for birth weight and weaning weight.

Key words: Chinese Holstein cattle, birth weight, weaning weight, heritability, estimated breeding value

Table 1

Descriptive statistics of birth weight and weaning weight"

性状
Trait
样本量
N
均值
Mean
标准差
SD
变异系数
CV (%)
最大值
Max
最小值
Min
中位数
Median
初生重Birth weight(kg) 15672 40.05 4.53 11.31 54.00 27.00 40.00
断奶重Weaning weight(kg) 15672 100.31 8.60 8.57 127.38 72.71 100.62

Table 2

Significance tests of influencing factors, sample sizes, and mean values across levels"

效应 Effect 水平 Level 数据量 N 初生重 Birth weight(kg) 断奶重 Weaning weight(kg)
胎次
Parity
** **
1 5670 38.31±0.05c 98.51±0.12e
2 3672 41.09±0.07a 101.22±0.14bc
3 2802 41.11±0.09a 101.93±0.15ab
4 1852 40.97±0.11a 100.63±0.19cd
5 985 40.86±0.15a 102.40±0.25a
6 541 41.05±0.21a 100.34±0.37d
7+ 150 40.41±0.36b 98.43±0.70e
出生年份
Birth year
** **
2017 463 38.59±0.16e 83.26±0.39f
2018 663 39.97±0.17c 95.91±0.35e
2019 2651 38.66±0.08e 97.94±0.13d
2020 3062 39.51±0.08d 101.77±0.14b
2021 3054 40.36±0.08b 104.51±0.14a
2022 4403 40.89±0.07a 100.37±0.12c
2023 1376 41.13±0.13a 99.96±0.19c
出生季节
Birth season
** **
春季Spring 3452 40.35±0.07a 102.47±0.13a
夏季Summer 3708 39.35±0.07c 97.80±0.16d
秋季Autumn 4222 39.99±0.07b 99.77±0.12c
冬季Winter 4290 40.47±0.07a 101.28±0.13b
性别
Sex
** **
雌性Female 14354 39.71±0.04b 100.53±0.07a
雄性Male 1318 43.77±0.13a 97.64±0.29b
产犊类型
Calving type
** **
单胎Singleton pregnancy 14802 40.32±0.04a 100.51±0.07a
多胎Multiple pregnancy 870 35.43±0.12b 96.54±0.27b

Table 3

Estimates of variance components (standard errors, SE) and heritability for birth weight and weaning weight"

参数 Parameter 初生重 Birth weight 断奶重 Weaning weight
加性遗传方差σ2a 9.68 16.87
母体遗传方差σ2m 1.81 0.35
母体永久环境方差σ2pm 0.59 0.11
残差方差σ2e 5.04 26.35
表型方差σ2p 17.11 43.68
直接遗传力及标准误h2d±SE 0.57±0.04 0.39±0.02
母体遗传力及标准误h2m±SE 0.11±0.03 0.01±0.004
遗传相关及标准误rA±SE 0.46±0.04

Fig. 1

Distribution of estimated breeding values for birth weight (a) and weaning weight (b)"

Table 4

Top 10 and bottom 10 breeding values for birth weight and weaning weight in Holstein bulls"

排名
Rank
初生重Birth weight 断奶重Weaning weight
ID 育种值
EBV
可靠性
Rel(%)
后代数
N
均值
Mean (kg)
ID 育种值
EBV
可靠性
Rel(%)
后代数
N
均值
Mean (kg)
前十Top10 40.26 104.41
1 S54 5.40 96 201 38.98 S66 13.34 93 147 107.44
2 S35 4.24 95 175 38.70 S96 12.89 91 122 99.15
3 S19 3.85 91 64 40.67 S16 12.38 96 444 106.53
4 S5 3.59 97 296 43.22 S17 10.92 96 359 104.01
5 S62 3.38 97 308 40.15 S36 10.88 92 115 104.71
6 S80 3.03 93 92 39.45 S67 10.74 89 79 105.83
7 S40 2.97 90 58 39.97 S18 10.64 96 308 102.13
8 S60 2.86 96 338 41.38 S37 10.03 85 53 103.79
9 S37 2.62 90 53 41.06 S19 8.89 87 64 105.34
10 S96 2.38 94 122 39.01 S15 8.49 96 342 103.94
后十Bottom 10 39.08 97.90
1 S4 -4.93 96 239 38.63 S81 -16.23 92 125 97.88
2 S23 -3.81 98 487 38.65 S6 -13.77 94 294 95.63
3 S1 -3.80 97 660 40.46 S30 -10.11 97 673 99.27
4 S78 -3.39 94 119 37.56 S4 -9.57 94 239 98.16
5 S81 -3.12 95 125 37.83 S7 -9.47 96 618 97.98
6 S30 -3.08 98 673 37.83 S57 -9.45 91 115 101.34
7 S3 -3.04 95 225 41.21 S33 -9.06 89 108 98.75
8 S8 -3.03 97 358 38.84 S29 -8.24 93 189 99.16
9 S10 -2.95 91 73 40.60 S97 -8.02 89 102 88.40
10 S15 -2.56 97 342 39.16 S26 -7.10 97 892 102.44

Table 5

Information on special breeding bulls"

ID 真实牛号
True cattle number
出生年份
Birth year
体重综合指数
Body weight composite index
难产率
Dystocia rate(%)
死产率
Stillbirth rate(%)
乳房综合指数
Udder composite index
S19 ***HO11981 2016 0.45 1.5 2.9 -0.10
S37 ***HO11531 2013 0.98 1.6 3.6 -0.71
S96 ***HO14258 2007 1.06 1.4 3.7 -1.36
S15 ***HO12240 2017 -0.28 1.1 3.4 0.73
S4 ***HO03869 2018 -2.10 1.2 3.9 0.00
S81 ***HO15055 2018 -0.33 1.1 2.8 0.50
S30 ***HO12346 2017 -0.55 1.3 3.0 -0.23

Fig. 2

Genetic trend of birth weight and weaning weight"

[1]
张胜利, 孙东晓. 奶牛种业的昨天、今天和明天. 中国畜牧业, 2021(15): 22-26.
ZHANG S L, SUN D X. Past, now and future of dairy breeding industry. China Animal Industry, 2021(15): 22-26. (in Chinese)
[2]
MCFARLAND E D, ELSOHABY I, BAES C F, STRYHN H, KEEFE G, MCCLURE J T. Impacts of preweaning colostrum feeding practices and health measures on dairy cow production, while accounting for genetic potential. Journal of Animal Science, 2024, 10210.1093: jas.
[3]
JOSHI P, GOWANE G R, ALEX R, GUPTA I D, WORKU D, GEORGE L, RANJAN A, VERMA A. Estimation of genetic parameters of growth traits for direct and maternal effects in Murrah buffalo. Tropical Animal Health and Production, 2022, 54(6): 352.

doi: 10.1007/s11250-022-03343-z pmid: 36261674
[4]
HURST T S, LOPEZ-VILLALOBOS N, BOERMAN J P. Predictive equations for early-life indicators of future body weight in Holstein dairy heifers. Journal of Dairy Science, 2021, 104(1): 736-749.

doi: 10.3168/jds.2020-18560 pmid: 33189278
[5]
WANG J, FAN T T, DU Z W, XU L Y, CHEN Y, ZHANG L P, GAO H J, LI J Y, MA Y, GAO X. Genome-wide association analysis identifies the PMEL gene affecting coat color and birth weight in Simmental × Holstein. Animals, 2023, 13(24): 3821.

doi: 10.3390/ani13243821
[6]
JOHANSON J M, BERGER P J. Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. Journal of Dairy Science, 2003, 86(11): 3745-3755.

pmid: 14672206
[7]
王月强, 张敏, 金磊, 华金玲. 荷斯坦奶牛初生重和哺乳期日增重对未来产奶量的影响. 动物营养学报, 2024, 36(4): 2425-2433.

doi: 10.12418/CJAN2024.209
WANG Y Q, ZHANG M, JIN L, HUA J L. Effects of birth weight and daily weight gain during lactation on future milk production of Holstein dairy cows. Chinese Journal of Animal Nutrition, 2024, 36(4): 2425-2433. (in Chinese)

doi: 10.12418/CJAN2024.209
[8]
GHORAISHY S, ROKOUEI M. Impact of birth weight of Iranian Holstein calves on their future milk production and reproductive traits. Journal of Livestock Science and Technologies, 2013, 1(2): 39-44.
[9]
ATASHI H, ASAADI A. Association between gestation length and lactation performance, lactation curve, calf birth weight and dystocia in Holstein dairy cows in Iran. Animal Reproduction, 2019, 16(4): 846-852.

doi: 10.21451/1984-3143-AR2019-0005 pmid: 32368262
[10]
CONDON T, MURPHY C P, SLEATOR R D, RING S C, BERRY D P. The association between calf birth weight and the postcalving performance of its dairy dam in the absence of dystocia. Journal of Dairy Science, 2024, 107(6): 3688-3699.

doi: 10.3168/jds.2023-24164
[11]
SHIVLEY C B, LOMBARD J E, URIE N J, KOPRAL C A, SANTIN M, EARLEYWINE T J, OLSON J D, GARRY F B. Preweaned heifer management on US dairy operations: Part VI. Factors associated with average daily gain in preweaned dairy heifer calves. Journal of Dairy Science, 2018, 101(10): 9245-9258.

doi: S0022-0302(18)30514-9 pmid: 29803425
[12]
JOHANSON J M, BERGER P J, TSURUTA S, MISZTAL I. A Bayesian threshold-linear model evaluation of perinatal mortality, dystocia, birth weight, and gestation length in a Holstein herd. Journal of Dairy Science, 2011, 94(1): 450-460.

doi: 10.3168/jds.2009-2992 pmid: 21183056
[13]
CHESTER-JONES H, HEINS B J, ZIEGLER D, SCHIMEK D, SCHULING S, ZIEGLER B, DE ONDARZA M B, SNIFFEN C J, BROADWATER N. Relationships between early-life growth, intake, and birth season with first-lactation performance of Holstein dairy cows. Journal of Dairy Science, 2017, 100(5): 3697-3704.

doi: 10.3168/jds.2016-12229
[14]
VAN DE STROET D L, CALDERÓN DÍAZ J A, STALDER K J, HEINRICHS A J, DECHOW C D. Association of calf growth traits with production characteristics in dairy cattle. Journal of Dairy Science, 2016, 99(10): 8347-8355.

doi: S0022-0302(16)30457-X pmid: 27448860
[15]
常瑶, 苏国生, 李艳华, 李想, 麻柱, 王雅春. 基于系谱和基因组信息估计荷斯坦青年母牛体重性状遗传参数. 畜牧兽医学报, 2022, 53(11): 3759-3768.

doi: 10.11843/j.issn.0366-6964.2022.11.005
CHANG Y, SU G S, LI Y H, LI X, MA Z, WANG Y C. Estimating genetic parameters for body weights using pedigree and genotype- pedigree based approaches in Holstein heifers. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3759-3768. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2022.11.005
[16]
任小丽, 张旭, 王雅春, 吴宏军, 刘爱荣, 张毅, 王东升, 崔久辉, 窦同喜, 袁鹏, 等. 三河牛初生体尺和初生重遗传参数的估计. 中国农业科学, 2013, 46(23): 5020-5025. doi: 10.3864/j.issn.0578-1752.2013.23.019.
REN X L, ZHANG X, WANG Y C, WU H J, LIU A R, ZHANG Y, WANG D S, CUI J H, DOU T X, YUAN P, et al. Genetic parameter estimation for body measurements and weight at birth in Sanhe cattle. Scientia Agricultura Sinica, 2013, 46(23): 5020-5025. doi: 10.3864/j.issn.0578-1752.2013.23.019. (in Chinese)
[17]
ZHANG H L, WANG K, AN T, ZHU L, CHANG Y, LOU W Q, LIU L, GUO G, LIU A X, SU G S, et al. Genetic parameters for dairy calf and replacement heifer wellness traits and their association with cow longevity and health indicators in Holstein cattle. Journal of Dairy Science, 2022, 105(8): 6749-6759.

doi: 10.3168/jds.2021-21450 pmid: 35840408
[18]
董明明, 赵番番, 葛建军, 赵俊亮, 王丹, 胥磊, 张梦华, 种丽伟, 黄锡霞, 王雅春. 新疆地区荷斯坦牛长寿性与产奶量的遗传力估计及相关性分析. 中国农业科学, 2022, 55(21): 4294-4303.

doi: 10.3864/j.issn.0578-1752.2022.21.015
DONG M M, ZHAO F F, GE J J, ZHAO J L, WANG D, XU L, ZHANG M H, ZHONG L W, HUANG X X, WANG Y C. Heritability estimation and correlation analysis of longevity and milk yield of Holstein cattle in Xinjiang Region. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.21.015
[19]
HU H H, MU T, ZHANG Z B, ZHANG J X, FENG X, HAN L Y, HAO F, MA Y F, JIANG Y, MA Y. Genetic analysis of health traits and their associations with longevity, fertility, production, and conformation traits in Holstein cattle. Animal, 2024, 18(6): 101177.

doi: 10.1016/j.animal.2024.101177
[20]
国家市场监督管理总局, 国家标准化管理委员会. 中国荷斯坦牛:GB/T3157—2023[S]. 北京: 中国标准出版社, 2023.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. ChineseHolstein:GB/T3157—2023[S]. Beijing: Standards Press of China, 2023. (in Chinese)
[21]
常瑶. 荷斯坦牛生长性状遗传评估及全基因组关联分析[D]. 北京: 中国农业大学, 2021.
CHANG Y. Genetic Evaluation and genome-wide association study for growth traits in Holstein cattle[D]. Beijing: China Agricultural University, 2021. (in Chinese)
[22]
夏淑雯, 陈坤琳, 沈阳阳, 安振江, 赵芳, 丁强, 仲跻峰, 林志平, 王慧利. 江苏地区荷斯坦成母牛长寿性状遗传参数估计. 畜牧兽医学报, 2024, 55(3): 1030-1039.

doi: 10.11843/j.issn.0366-6964.2024.03.016
XIA S W, CHEN K L, SHEN Y Y, AN Z J, ZHAO F, DING Q, ZHONG J F, LIN Z P, WANG H L. The estimation of genetic parameters for longevity traits of Holstein cows in Jiangsu Region. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2024.03.016
[23]
呙明鹏, 孟源, 王宏浩, 王元, 车雷杰, 申莉, 王曦. 晋南牛不同生长阶段体重和体尺性状遗传参数估计. 畜牧兽医学报, 2023, 54(4): 1452-1464.

doi: 10.11843/j.issn.0366-6964.2023.04.010
GUO M P, MENG Y, WANG H H, WANG Y, CHE L J, SHEN L, WANG X. Estimation of genetic parameters of body weight and body size traits in Jinnan cattle at different growth stages. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1452-1464. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2023.04.010
[24]
王梦琦, 朱小瑞, 邢世宇, 张成龙, 刘洵, 杨章平, 毛永江. 影响荷斯坦牛犊牛初生重的因素分析. 家畜生态学报, 2016, 37(10): 22-25.
WANG M Q, ZHU X R, XING S Y, ZHANG C L, LIU X, YANG Z P, MAO Y J. Factors affecting the birth weight of Holstein calf. Journal of Domestic Animal Ecology, 2016, 37(10): 22-25. (in Chinese)
[25]
CARTWRIGHT S L, SCHMIED J, KARROW N, MALLARD B A. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Frontiers in Veterinary Science, 2023, 10: 1198697.

doi: 10.3389/fvets.2023.1198697
[26]
KAPPES R, KNOB D A, SCHEID A L, BARRETA B E, PERAZZOLI L, MENDES B B, ALESSIO D R M, NETO A T. Rumination time, activity index, and productive performance of Holstein and crossbred Holstein  ×  jersey cows exposed to different temperature-humidity indexes. International Journal of Biometeorology, 2022, 66(4): 791-801.

doi: 10.1007/s00484-021-02237-3
[27]
FENG Y, ZHAO W J, LU X B, GAO X, ZHANG Q, ZHANG B, WANG B, ZHONG F G, HAN M L, CHEN Z. Estimation of genetic parameters for body weight and its stability in Huaxi cows from Xinjiang Region. Animals, 2025, 15(15): 2248.

doi: 10.3390/ani15152248
[28]
AKSAKAL V, BAYRAM B. Estimates of genetic and phenotypic parameters for the birth weight of calves of Holstein friesian cattle reared organically. Journal of Animal & Veterinary Advances, 2009, 8(3): 568-572.
[29]
MWANGI S I, BUCKLEY F, ILATSIA E D, BERRY D P. Gestation length and its associations with calf birth weight, calf perinatal mortality, and dystocia in dairy cattle. Journal of Dairy Science, 2025, 108(8): 8685-8696.

doi: 10.3168/jds.2024-26044 pmid: 40451584
[30]
COLEMAN L, BACK P, BLAIR H, LÓPEZ-VILLALOBOS N, HICKSON R. Sire effects on birth weight, gestation length, and pre-weaning growth of beef-cross-dairy calves: A case study in New Zealand. Dairy, 2021, 2(3): 385-395.

doi: 10.3390/dairy2030030
[31]
CABRERA V E, FRICKE P M. Economics of twin pregnancies in dairy cattle. Animals, 2021, 11(2): 552.

doi: 10.3390/ani11020552
[32]
MUR-NOVALES R, LOPEZ-GATIUS F, FRICKE P M, CABRERA V E. An economic evaluation of management strategies to mitigate the negative effect of twinning in dairy herds. Journal of Dairy Science, 2018, 101(9): 8335-8349.

doi: 10.3168/jds.2018-14400
[33]
KASSAHUN D, TAYE M, KEBEDE D, TILAHUN M, TESFA A, BITEW A, KEBEDE A, MESERET M, LAKEW E, BIMROW T, HAILE A. Phenotypic and genetic parameter estimates for early growth, growth rate and growth efficiency-related traits of Fogera cattle in Ethiopia. Veterinary Medicine and Science, 2022, 8(1): 387-397.

doi: 10.1002/vms3.v8.1
[34]
KIBAR M. Estimates of genetic parameters and genetic trend for growth traits and Kleiber ratio of Holstein-Friesian calves. Tropical Animal Health and Production, 2023, 55(3): 201.

doi: 10.1007/s11250-023-03621-4 pmid: 37191884
[35]
BERRY D P, BUCKLEY F, DILLON P, EVANS R D, RATH M, VEERKAMP R F. Genetic relationships among body condition score, body weight, milk yield, and fertility in dairy cows. Journal of Dairy Science, 2003, 86(6): 2193-2204.

pmid: 12836956
[36]
BROTHERSTONE S, COFFEY M P, BANOS G. Genetic parameters of growth in dairy cattle and associations between growth and health traits. Journal of Dairy Science, 2007, 90(1): 444-450.

pmid: 17183113
[37]
COFFEY M P, HICKEY J, BROTHERSTONE S. Genetic aspects of growth of Holstein-Friesian dairy cows from birth to maturity. Journal of Dairy Science, 2006, 89(1): 322-329.

pmid: 16357296
[38]
YIN T, KÖNIG S. Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits. Journal of Dairy Science, 2018, 101(3): 2158-2170.

doi: S0022-0302(17)31194-3 pmid: 29274962
[39]
GROEN A F, VOS H. Genetic parameters for body weight and growth in Dutch Black and White replacement stock. Livestock Production Science, 1995, 41(3): 201-206.

doi: 10.1016/0301-6226(94)00062-C
[40]
MA Z, CHANG Y, BRITO L F, LI Y, YANG T, WANG Y, YANG N. Multitrait meta-analyses identify potential candidate genes for growth- related traits in Holstein heifers. Journal of Dairy Science, 2023, 106(12): 9055-9070.

doi: 10.3168/jds.2023-23462
[41]
再娜古丽·君居列克, 黄锡霞, 马晓燕, 热西提·阿不都热依木, 叶东东, 张文龙, 荷斯坦牛初生重与头胎305d产奶量的遗传参数估计. 中国畜牧杂志, 2014, 50(11): 13-16.
ZAINAGULI·JUNJULIEKE , HUANG X X, MA X Y, REXITI·ABUDOUREYIMU , YE D D, ZHANG W L. Estimation of genetic parameters for birth weight and first parity 305 days milk yield in Holstein dairy cows. Chinese Journal of Animal Science, 2014, 50(11): 13-16. (in Chinese)
[42]
ATIL H, KHATTAB A S, BADAWY L. Genetic parameter of birth and weaning weights for Friesian calves by using an animal model. Archives Animal Breeding, 2005, 48(3): 261-269.

doi: 10.5194/aab-48-261-2005
[43]
YIN T, KÖNIG S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genetics Selection Evolution, 2019, 51(1): 4.

doi: 10.1186/s12711-018-0444-4 pmid: 30727969
[44]
孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展. 畜牧兽医学报, 2023, 54(10): 4028-4039.

doi: 10.11843/j.issn.0366-6964.2023.10.003
SUN D X, ZHANG S L, ZHANG Q, LI J, ZHANG G X, LIU C S, ZHENG W J. Application progress on genomic selection technology for dairy cattle in China. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2023.10.003
[45]
KIM E H, KIM H K, SUN D W, KANG H C, LEE D H, LEE S H, LEE J B, LIM H T. The study on estimated breeding value and accuracy for economic traits in Gyoungnam Hanwoo cow (Korean cattle). Journal of Animal Science and Technology, 2020, 62(4): 429-437.

doi: 10.5187/jast.2020.62.4.429 pmid: 32803175
[46]
LUND M S, DE ROOS A P, DE VRIES A G, DRUET T, DUCROCQ V, FRITZ S, GUILLAUME F, GULDBRANDTSEN B, LIU Z T, REENTS R, et al. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genetics Selection Evolution, 2011, 43(1): 43.

doi: 10.1186/1297-9686-43-43
[47]
虎雪姣, 脱征军, 张建勇. 育种技术进展对中国荷斯坦牛育种工作的启示. 中国奶牛, 2025(1): 17-22.
HU X J, TUO Z J, ZHANG J Y. A brief discussion on the enlightenment of breeding technology to the breeding of Holstein cows in China. China Dairy Cattle, 2025(1): 17-22. (in Chinese)
[48]
RAHBAR R, AMINAFSHAR M, ABDULLAHPOUR R, CHAMANI M. Genetic and phenotypic trends of fertility traits for Holstein dairy population in warm and temperate climate. Journal of Animal Behaviour and Biometeorology, 2016, 4(2): 43-49.

doi: 10.14269/2318-1265/jabb.v4n2p43-49
[49]
赵晓铎, 张华林, 许诗凡, 刘光磊. 奶牛繁殖性状占育种值评估体系权重分析. 中国奶牛, 2019(1): 8-11.
ZHAO X D, ZHANG H L, XU S F, LIU G L. Weight analysis of the reproductive traits in dairy breeding value evaluation system. China Dairy Cattle, 2019(1): 8-11. (in Chinese)
[1] GUO Jun, SHAO Dan, DOU TaoCun, MA Meng, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing, QU Liang. Random Regression Analysis on Residual Feed Intake in Laying Hens with and Identification of the Genetic Markers [J]. Scientia Agricultura Sinica, 2024, 57(22): 4568-4577.
[2] GUO Jun, QU Liang, SHAO Dan, MA Meng, DOU TaoCun, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing. Dissecting the Genetic Architecture of Yolk Ratio with Single-Step Genome-Wide Association Study [J]. Scientia Agricultura Sinica, 2024, 57(21): 4356-4366.
[3] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[4] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[5] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[6] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[7] DANG LiPing,ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng. Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628.
[8] GUO Jun,QU Liang,DOU TaoCun,WANG XingGuo,SHEN ManMan,HU YuPing,WANG KeHua. Using Random Regression Models to Estimate Genetic Parameters on Body Weights in Layers [J]. Scientia Agricultura Sinica, 2020, 53(11): 2297-2304.
[9] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[10] PAN Chen-1, HU Yan-2, BAO Man-Zhu-1, AI Ye-1, HE Yan-Hong-1. Analysis of Genetic Effects of the Cross Combinations of Tagetes patula [J]. Scientia Agricultura Sinica, 2014, 47(12): 2395-2404.
[11] REN Xiao-Li-1, ZHANG Xu-1, WANG Ya-Chun-1, WU Hong-Jun-2, LIU Ai-Rong-3, ZHANG Yi-1, WANG Dong-Sheng-2, CUI Jiu-Hui-3, DOU Tong-Xi-2, YUAN Peng-2, JIANG Li-Xin-2, ZHOU Lei-2, ZHAO Jian-2. Genetic Parameter Estimation for Body Measurements and Weight at Birth in Sanhe Cattle [J]. Scientia Agricultura Sinica, 2013, 46(23): 5020-5025.
[12] GUAN Jiu-qiang,WANG Hong-mei,WANG Chang-fa,LI Qiu-ling,Li Jian-bin,SHUAI Su-rong,HOU Ming-hai,ZHONG Ji-feng
. Genetic Polymorphisms Within the Coding Regions of IL8R Gene and Its Association with Mastitis Trait in Chinese Holstein Cattle
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1057-1065 .
[13] GAN Zhi-cai,SHANG Lun-xue,LIU Yong,YU Yong-xiong
. Correlation Analysis of Agronomic Characters and Heritability of Saponins Content in Medicago sativa L.
[J]. Scientia Agricultura Sinica, 2010, 43(2): 259-265 .
[14] CHEN Ren-jin,YANG Zhang-ping,MAO Yong-jiang,CHEN-Ying,CHANG Ling-ling,WU Hai-tao,SHI Xue-kui,ZHOU Li-gen,WANG Jian-yong,YIN Zhao-hua,LIANG Xiang-huan
. Genetic Polymorphism of CXCR1 Gene and Its Associations with Somatic Cell Score in Chinese Holstein
[J]. Scientia Agricultura Sinica, 2010, 43(18): 3848-3856 .
[15] . Polymorphism of Bovine STAT5A Gene and its Associations with Milk Performance Traits in Chinese Holstein Cattle [J]. Scientia Agricultura Sinica, 2008, 41(6): 1872-1878 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!