Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1749-1766.doi: 10.3864/j.issn.0578-1752.2025.09.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton

GUO ChenLi1(), LIU Yang2, CHEN Yan2, HU Wei1, WANG YouHua1, ZHOU ZhiGuo1, ZHAO WenQing1()   

  1. 1 College of Agriculture, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production cosponsored by Province and Ministry (CIC-MCP), Nanjing 210000
    2 College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang
  • Received:2024-10-26 Accepted:2024-12-25 Online:2025-05-08 Published:2025-05-08
  • Contact: ZHAO WenQing

Abstract:

【Objective】 This study aimed to explore the regulation effect of phosphorus fertilizer postponement on the maintenance of high yield of drip-irrigated cotton under the condition of nitrogen reduction, and to define the consequence of phosphorus fertilizer postponement on the utilization efficiency of cotton phosphorus fertilizer under the condition of nitrogen reduction.【Method】 A 2-year field experiment (2022-2023) was performed in the experimental ground of Shihezi University, which used Zhongmian 109 as test material. A total of six experimental treatments were set up: conventional nitrogen application (Nck: 400 kg·hm-2), 50% phosphorus fertilizer management treatment at the squaring stage and 50% at the flowering and boll setting stage (total phosphorus fertilizer application rate 105 kg·hm-2, NckP3), and nitrogen reduction conditions (25% nitrogen reduction, Nr: No phosphorus fertilizer was applied at 300 kg·hm-2 (P0), 100% phosphorus was applied at the squaring stage (P1, the total application rate of phosphorus fertilizer was 105 kg·hm-2, the same below), 75% at the squaring stage + 25% at the flowering and boll setting stage (P2), 50% each at the squaring stage and the flowering and boll setting stage (P3), 25% at the squaring stage + 75% at the flowering and boll setting stage (P4) They are respectively denoted as NckP3, NrP0, NrP1, NrP2, NrP3 and NrP4.【Result】 (1) Compared with NckP3, only NrP3 treatment had no significant difference in seed cotton yield; under the nitrogen reduction condition, the seed cotton yield udner other treatments increased significantly compared with P0, and the increase under P3 treatment was the largest, reaching 31.0% (mainly due to the significant increase of seed cotton yield in the middle and upper branches). (2) Compared with NckP3, only the NrP3 treatment showed no significant differences in the biomass of each organ and the accumulation of phosphorus in cotton. Under reduced nitrogen, compared with P0, the postponed phosphate fertilizer increases the biomass of reproductive organs in the middle and upper fruit branches of cotton and the proportion of phosphate distribution, the increase was the greatest under the P3 treatment, which were 11.0%, 21.7% and 79.6%, 72.0% respectively, and significantly increased the biomass accumulation of cotton and promoted the phosphorus absorption and utilization. In addition, only NrP3 treatment had a higher phosphorus utilization rate than NckP3, with an increase of 15.8%. (3) The yield of seed cotton and the utilization rate of phosphorus fertilizer were positive correlated with the average accumulation rate VT of aboveground and reproductive organs biomass during the rapid accumulation period. The former was also significantly positive correlated with the maximum accumulation rate Vm of reproductive organs biomass, and the latter was positive correlated with the maximum accumulation rate Vm of reproductive organs phosphorus.【Conclusion】 Under nitrogen reduction conditions, NrP3 treatment (the proportion of the postponed phosphorus fertilizer was 50%) can enhance the transport and distribution of biomass to the reproductive organs of the middle and upper fruit branches of cotton, promote the accumulation and distribution of phosphorus from the middle and upper fruit branches to the reproductive organs, improve the utilization rate of phosphorus fertilizer, and ultimately achieved the goal of reducing nitrogen in cotton without reducing yield.

Key words: drip-irrigated cotton, phosphate fertilizer postponement, nitrogen reduction, utilization rate of phosphate fertilizer, yield

Table 1

The soil nutrient content of 0-20 cm soil layer before the experiment"

年份
Year
碱解氮含量
Alkali-hydrolyzable nitrogen (mg·kg-1)
速效磷含量
Available phosphorus content (mg·kg-1)
速效钾含量
Available potassium content (mg·kg-1)
有机质含量
Organic matter
content (g·kg-1)
pH
2022 155.63 42.10 74.80 23.6 8.00
2023 153.26 46.66 68.25 23.4 7.95

Fig. 1

Meteorological condition during cotton growth period"

Fig. 2

Effect of phosphorus fertilizer postpone on seed cotton yield in different branches of cotton under nitrogen reduction"

Table 2

Effects of phosphorus fertilizer postpone on seed cotton yield and yield composition of cotton under nitrogen reduction conditions"

年份 Year 处理 Treatment 铃重 Boll weight (g) 铃数 Boll number 籽棉产量 Seed cotton yield (kg·hm-2)
2022 NckP3 5.76a 9.76a 6245.38a
NrP0 5.25d 8.27d 4899.94d
NrP1 5.39b 8.43d 5299.18c
NrP2 5.40c 9.19c 5600.61b
NrP3 5.67ab 9.64ab 6090.36a
NrP4 5.47c 9.40bc 5717.98b
2023 NckP3 6.28a 12.14a 7180.77a
NrP0 5.72d 8.50e 5100.34e
NrP1 5.85c 9.42d 5696.43d
NrP2 5.95c 10.56c 6102.97c
NrP3 6.23a 11.96ab 7022.03a
NrP4 6.04b 11.46b 6518.58b
变异来源 Significance of factors
年份Year * ** **
处理 Treatment * ** **
年份×处理Year×Treatment * * *

Fig. 3

Effect of phosphorus fertilizer postpone on biomass accumulation at different growth stages of cotton under nitrogen reduction"

Table 3

Effect of phosphorus fertilizer postpone on biomass accumulation characteristics of cotton under nitrogen reduction"

年份
Year
处理
Treatment
R2 A
(kg·666.7 m-2)
t1
(d)
t2
(d)
T
(d)
VT
(kg·666.7 m-2·d-1)
Vm
(kg·666.7 m-2·d-1)
地上器官
Aboveground organ
2022 NckP3 0.987 2572.08 60.8 105.7 44.9 20.89 52.97
NrP0 0.994 1689.45 57.2 96.5 39.3 12.04 33.44
NrP1 0.998 2097.08 57.9 97.4 39.5 13.64 44.97
NrP2 0.999 2157.72 59.2 98.8 39.6 14.82 44.13
NrP3 0.996 2439.01 59.6 101.9 42.3 19.79 52.64
NrP4 0.998 2405.32 59.2 99.3 40.1 15.83 50.95
2023 NckP3 0.979 2671.46 68.1 116.3 48.2 23.41 67.63
NrP0 0.978 1765.25 62.1 102.7 40.6 12.30 32.93
NrP1 0.965 2103.82 63.0 105.8 42.8 16.25 40.17
NrP2 0.972 2272.26 63.0 108.5 45.5 18.53 44.97
NrP3 0.970 2614.19 65.3 113.0 47.7 20.89 58.20
NrP4 0.973 2508.07 64.5 111.1 46.6 20.89 51.46
生殖器官
Reproductive organ
2022 NckP3 0.992 1812.41 84.8 109.7 24.9 22.66 106.88
NrP0 0.998 1290.25 82.4 105.3 22.9 12.30 62.74
NrP1 0.997 1374.47 82.8 107.4 24.6 13.22 66.95
NrP2 0.996 1507.54 82.9 107.6 24.7 13.64 72.26
NrP3 0.994 1660.82 84.1 109.6 25.5 16.51 106.12
NrP4 0.996 1551.33 83.3 108.5 25.2 14.23 79.59
2023 NckP3 0.992 1660.82 93.8 119.1 25.3 18.11 172.82
NrP0 0.996 1069.59 90.1 113.8 23.7 10.19 81.69
NrP1 0.978 1271.72 90.5 114.5 24.0 12.46 112.94
NrP2 0.976 1345.84 90.6 115.2 24.6 13.90 128.77
NrP3 0.995 1579.97 91.8 118.8 27.0 16.00 150.67
NrP4 0.999 1465.43 91.3 117.1 25.8 16.09 134.25

Fig. 4

Effect of phosphorus fertilizer postpone under nitrogen reduction on biomass accumulation during late peak boll in various parts of cotton"

Table 4

Effect of phosphorus fertilizer postpone under nitrogen reduction on biomass distribution ratio during late peak boll in various parts of cotton"

年份
Year
处理
Treatment
各器官生物量分配比例 Biomass distribution ratio in various parts of cotton (%)
茎秆
Stem and
branch
叶片
Leaf
生殖器官
Reproductive
organ
下部果枝
Lower fruiting
branch
中部果枝
Middle fruiting
branch
上部果枝
Upper fruiting
branch
2022 NckP3 13.88d 22.45b 64.0a 24.4a 21.0a 18.6a
NrP0 18.95a 24.07a 56.9d 23.0c 18.6c 15.3d
NrP1 17.83ab 22.30b 59.9bc 23.6b 18.8c 17.5c
NrP2 17.08bc 21.71b 61.2abc 24.2a 19.2bc 17.9bc
NrP3 15.89c 20.08c 63.7ab 24.3a 20.9a 18.5a
NrP4 16.78bc 20.90c 62.3ab 24.2a 20.0b 18.1ab
2023 NckP3 14.41d 23.56b 64.2a 19.9a 21.0a 23.3a
NrP0 18.08a 26.10a 55.8d 15.2c 18.6c 22.0c
NrP1 16.08ab 26.30b 57.6bc 16.0c 19.5b 22.2c
NrP2 15.59bc 24.94b 59.5abc 17.8b 19.1bc 22.6bc
NrP3 13.37c 22.43c 62.0ab 18.6ab 20.4ab 23.0ab
NrP4 15.13bc 24.72c 60.1ab 17.8b 19.4b 22.9ab

Fig. 5

Effect of phosphorus fertilizer postpone on phosphorus accumulation at different growth stages of cotton under nitrogen reduction"

Table 5

Effect of phosphorus fertilizer postpone on phosphorus accumulation characteristics of cotton under nitrogen reduction"

年份
Year
处理
Treatment
R2 A
(g·m-2)
t1
(d)
t2
(d)
T
(d)
VT
(g·m-2·d-1)
Vm
(g·m-2·d-1)
地上器官
Aboveground organ
2022 NckP3 0.957 7.31 63.80 111.80 48.00 0.02 0.10
NrP0 0.975 5.02 58.21 101.42 43.21 0.02 0.05
NrP1 0.958 5.18 58.28 103.62 45.34 0.02 0.05
NrP2 0.960 5.80 60.04 105.07 45.03 0.02 0.07
NrP3 0.973 6.84 62.66 108.54 45.88 0.02 0.09
NrP4 0.97 6.26 62.45 108.06 45.61 0.02 0.08
2023 NckP3 0.957 7.26 75.94 126.06 50.12 0.01 0.05
NrP0 0.975 4.98 69.24 113.57 44.33 0.01 0.02
NrP1 0.958 6.17 69.61 117.04 47.43 0.01 0.04
NrP2 0.960 6.44 70.52 118.80 48.28 0.01 0.04
NrP3 0.973 7.00 73.78 123.58 49.80 0.02 0.04
NrP4 0.970 6.69 72.59 122.02 49.43 0.01 0.04
生殖器官
Reproductive organ
2022 NckP3 0.998 6.05 83.35 111.04 27.69 0.01 0.16
NrP0 0.999 4.36 79.53 103.71 24.18 0.01 0.05
NrP1 0.995 4.79 80.14 107.03 26.89 0.01 0.08
NrP2 0.997 5.15 80.54 107.63 27.09 0.01 0.09
NrP3 0.999 5.81 81.98 109.55 27.57 0.01 0.15
NrP4 0.999 5.33 81.48 108.08 26.60 0.01 0.15
2023 NckP3 0.998 5.68 93.12 123.51 30.39 0.02 0.07
NrP0 0.999 4.13 88.23 112.32 24.09 0.01 0.04
NrP1 0.995 5.20 89.00 115.68 26.68 0.01 0.06
NrP2 0.997 5.29 89.47 117.14 27.67 0.02 0.06
NrP3 0.999 5.55 92.38 120.96 28.58 0.02 0.07
NrP4 0.999 5.26 90.1 118.21 28.11 0.02 0.06

Fig. 6

Effect of phosphorus fertilizer postpone under nitrogen reduction on phosphorus accumulation during late peak boll in various parts of cotton"

Table 6

Effect of phosphorus fertilizer postpone under nitrogen reduction on phosphorus distribution ratio during late peak boll in various parts of cotton"

年份
Year
处理
Treatment
磷素分配指数Phosphorus distributive index (%)
茎秆
Stem and
branch
叶片
Leaf
生殖器官
Reproductive
organ
下部果枝
Lower fruiting
branch
中部果枝
Middle fruiting
branch
上部果枝
Upper fruiting
branch
2022 NckP3z 8.2c 18.4c 73.4b 33.7a 21.6b 19.1a
NrP0 14.5a 25.9a 59.6d 29.8b 16.3c 12.3c
NrP1 13.2ab 24.1a 62.7cd 31.0ab 17.7bc 13.2c
NrP2 10.7bc 21.2b 68.1c 31.7ab 19.6b 15.1bc
NrP3 9.4c 13.4d 77.1a 34.2a 24.6a 21.5a
NrP4 10.1c 20.7bc 69.2c 33.3a 19.2b 16.3b
2023 NckP3 4.5bc 12.4bc 83.1a 28.0a 28.1ab 27.0ab
NrP0 6.4a 14.6a 79.1d 27.1b 26.8cd 25.2c
NrP1 5.7ab 13.0b 81.3c 27.9a 27.1c 26.3b
NrP2 5.0bc 12.5bc 82.5ab 27.9a 27.8b 26.8b
NrP3 4.0c 12.0c 84.1a 28.2a 28.6a 27.5a
NrP4 4.8bc 12.5bc 82.7bc 27.8a 28.0b 26.9b

Table 7

Effect of phosphorus fertilizer postpone on the utilization rate of phosphorus fertilizer in cotton under nitrogen reduction condition"

年份
Year
处理
Treatment
偏生产力
Productivity
(kg·kg-1)
磷肥利用率
Utilization rate of phosphorus fertilizer (%)
农学利用率
Agronomic utilization rate(kg·kg-1)
累积利用率
Cumulative utilization rate(%)
2022 NckP3 67.52a 15.65ab 14.94a 60.35ab
NrP0
NrP1 57.16d 9.79c 4.58d 54.49c
NrP2 60.51c 12.04bc 7.92c 56.74bc
NrP3 65.89ab 18.07a 13.31a 63.08a
NrP4 63.31b 14.02abc 10.73b 58.72abc
2023 NckP3 66.49a 20.76ab 19.56a 59.12ab
NrP0
NrP1 52.84c 12.38c 5.90c 38.36d
NrP2 54.43c 17.04bc 7.49c 50.74c
NrP3 65.02a 24.09a 18.09a 62.85a
NrP4 60.31b 19.12b 13.38b 55.40bc

Fig. 7

Correlation of seed cotton yield and phosphorus utilization with the characteristics of cotton biomass (a,c) and phosphorus accumulation (b,d)"

Fig. 8

Path analysis model of seed cotton yield and phosphorus accumulation and distribution in various organs of cotton"

[1]
张学昕, 刘淑英, 王平, 周丽萍. 不同氮磷钾配施对棉花干物质积累、养分吸收及产量的影响. 西北农业学报. 2012, 21(8): 107-113.
ZHANG X X, LIU S Y, WANG P, ZHOU L P. Effects of different fertilizations on cotton dry matter sccumulation. Acta Agriculturae Boreali-occidentalis Sinica. 2012, 21(8): 107-113. (in Chinese)
[2]
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese)
[3]
张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010.
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S. Development, contribution and selection of nitrogen fertilizer in China. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010. (in Chinese)
[4]
FOLBERTH C, WOOD S A, WIRONEN M, JUNG M, BOUCHER T M, BOSSIO D, OBERSTEINER M. Exploring the potential for nitrogen fertilizer use mitigation with bundles of management interventions. Environmental Research Letters, 2024, 19(4): 044027.
[5]
LIANG K M, ZHONG X H, PAN J F, HUANG N R, LIU Y Z, PENG B L, FU Y Q, HU X Y. Reducing nitrogen surplus and environmental losses by optimized nitrogen and water management in double rice cropping system of South China. Agriculture, Ecosystems & Environment, 2019, 286: 106680.
[6]
刘彦伶, 李渝, 白怡婧, 黄兴成, 张雅蓉, 张萌, 张文安, 蒋太明. 长期不同施肥对水稻干物质和磷素积累与转运的影响. 植物营养与肥料学报, 2019, 25(7): 1146-1156.
LIU Y L, LI Y, BAI Y J, HUANG X C, ZHANG Y R, ZHANG M, ZHANG W, JIANG T M. Effect of long-term fertilization patterns on dry matter and phosphorus accumulation and translocation in rice. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1146-1156. (in Chinese)
[7]
都江雪, 韩天富, 曲潇林, 马常宝, 柳开楼, 黄晶, 申哲, 张璐, 刘立生, 谢建华, 张会民. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素. 植物营养与肥料学报, 2022, 28(2): 191-204.
DOU J X, HAN T F, QU X L, MA C B, LIU K L, HUANG J, SHEN Z, ZHANG L, LIU L S, XIE J H, ZHANG H M. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191-204. (in Chinese)
[8]
李青军, 张炎, 哈丽哈什·依巴提, 冯固. 棉花高产和磷高效的磷肥基施追施配合技术研究. 植物营养与肥料学报, 2018, 24(1): 146-153.
LI Q J, ZHANG Y, HATLHAX Y, FENG G. Basal and topdressing application technology of phosphate fertilizer for high cotton yield and high phosphorous efficiency in Xinjiang. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 146-153. (in Chinese)
[9]
杨雄, 马群, 张洪程, 魏海燕, 李国业, 李敏, 戴其根, 霍中洋, 许轲, 张庆, 郭保卫, 葛梦婕. 不同氮肥水平下早熟晚粳氮和磷的吸收利用特性及相互关系. 作物学报, 2012, 38(1): 174-180.
YANG X, MA Q, ZHANG H C, WEI H Y, LI G Y, LI M, DAI Q G, HUO Z Y, XU K, ZHANG Q, GUO B W, GE M J. Characteristics and correlation analysis of N and P uptake and utilization of early maturing late Japonica under different N fertilizer levels. Acta Agronomica Sinica, 2012, 38(1): 174-180. (in Chinese)
[10]
王苏影, 潘晓华, 吴建富, 石庆华. 磷肥运筹对双季早、晚稻产量与品质的影响. 作物杂志, 2011(4): 63-66.
WANG S Y, PAN X H, WU J F, SHI Q H. Effects of phosphate application on yield and quality of double-cropping rice. Crops, 2011(4): 63-66. (in Chinese)
[11]
DAI J L, LI W J, TANG W, ZHANG D M, LI Z H, LU H Q, ENEJI A E, DONG H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research, 2015, 180: 207-215.
[12]
文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响. 中国农业科学, 2021, 54(16): 3473-3487. doi: 10.3864/j.issn.0578-1752.2021.16.010.
WEN M, LI M H, JIANG J L, MA X H, LI R W, ZHAO W Q, CUI J, LIU Y, MA F Y. Effects of nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield in Northern Xinjiang. Scientia Agricultura Sinica, 2021,. 54(16): 3473-3487. doi: 10.3864/j.issn.0578-1752.2021.16.010. (in Chinese)
[13]
陈传信, 张永强, 聂石辉, 赛力汗·赛, 徐其江, 张宏芝, 雷钧杰. 磷肥施用方式对滴灌小麦生长和磷肥利用效率的影响. 新疆农业科学, 2023, 60(11): 2712-2718.

doi: 10.6048/j.issn.1001-4330.2023.11.014
CHEN C X, ZHANG Y Q, NIE S H, SAI L H S, XU Q J, ZHANG H Z, LEI J J. Effects of phosphorus fertilizer application methods on growthand phosphorus fertilizer utilization efficiency of drip irrigation wheat. Xinjiang Agricultural Sciences, 2023, 60(11): 2712-2718. (in Chinese)
[14]
侯云鹏, 孔丽丽, 刘志全, 李前, 尹彩侠, 秦裕波, 王蒙, 于雷. 覆膜滴灌条件下磷肥后移对玉米物质生产与磷素吸收利用的调控效应. 玉米科学, 2019, 27(6): 138-144.
HOU Y P, KONG L L, LIU Z Q, LI Q, YIN C X, QIN Y B, WANG M, YU L. Regulating effects of phosphorus fertilizer postpone on matter production, phosphorus absorption and utilization of maize under mulched drip irrigation. Journal of Maize Sciences, 2019, 27(6): 138-144. (in Chinese)
[15]
杨钊, 马忠明, 陈玉梁. 氮磷运筹对膜下滴灌玉米养分利用及产量的影响. 节水灌溉, 2019(4): 1-6, 11.
YANG Z, MA Z M, CHEN Y L. Effects of nitrogen and phosphorus transport on nutrient utilization and yield of maize under film drip irrigation. Water Saving Irrigation, 2019(4): 1-6, 11. (in Chinese)
[16]
邹芳刚, 郭文琦, 王友华, 赵文青, 周治国. 施氮量对长江流域滨海盐土棉花氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21(5): 1150-1158.
ZOU F G, GUO W Q, WANG Y H, ZHAO W Q, ZHOU Z G. Effects of nitrogen application rate on the nitrogen uptake and utilization of cotton grown in coastal saline fields of Yangtze River Valley. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1150-1158. (in Chinese)
[17]
郭立平, 邢朝柱, 吴建勇, 戚廷香, 王海林, 唐会妮, 乔秀琴, 张学贤. 优质、早熟转基因抗虫棉杂交种——中棉所109. 中国棉花, 2019, 46(4): 31-40.

doi: 10.11963/1000-632X.glpglp.20190328
GUO L P, XING C Z, WU J Y, QI T X, WANG H L, TANG H N, QIAO X Q, ZHANG X X. A fine quality, early-maturing and transgenic insect-resistant cotton hybrid, CCRI 109. China Cotton, 2019, 46(4): 31-40. (in Chinese)

doi: 10.11963/1000-632X.glpglp.20190328
[18]
周望. 水氮互作对南疆膜下滴灌棉花生长及水氮利用效率的影响. 现代农业研究, 2024, 30(6): 30-37.
ZHOU W. Effects of water-nitrogen interactions on the growth and water and nitrogen use efficiency of drip-irrigated cotton under membrane in southern Xinjiang. Modern Agriculture Research, 2024, 30(6): 30-37. (in Chinese)
[19]
饶东云, 周锋, 周世永, 刘康, 字雪靖, 杨友琼, 吴伯志. 施氮量和磷肥运筹对青贮玉米产量及养分利用的影响. 南方农业学报, 2023, 54(1): 90-101.
RAO D Y, ZHOU F, ZHOU S Y, LIU K, ZI X J, YANG Y Q, WU B Z. Effects of nitrogen application rate and phosphorus fertilizer management on silage maize yield and nutrient utilization. Journal of Southern Agriculture, 2023, 54(1): 90-101. (in Chinese)
[20]
WEN M, ZHAO W Q, GUO W X, WANG X J, LI P B, CUI J, LIU Y, MA F Y. Coupling effects of reduced nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield formation in Northern Xinjiang. Archives of Agronomy and Soil Science, 2022, 68(9): 1239-1250.
[21]
LIU Y, WEN M, LI M, ZHAO W Q, LI P B, CUI J, MA F Y. Effects of reduced nitrogen application rate on drip-irrigated cotton dry matter accumulation and yield under different phosphorus and potassium managements. Agronomy Journal, 2021, 113(3): 2524-2533.
[22]
殷元峰. 种植模式对不同果枝类型棉花生长发育及产量构成因素的影响[D]. 阿拉尔: 塔里木大学, 2023.
YIN Y F. Effects of planting patterns on growth and yield components of different fruiting branch types of cotton[D]. Ala’er: Tarim University, 2023. (in Chinese)
[23]
孟俊婷, 海江波, 唐淑荣, 牛敏. 棉花不同节位棉铃纤维品质差异性研究初报. 棉花学报, 2007, 19(4): 318-320.
MENG J T, HAI J B, TANG S R, NIU M. Study on fiber quality of bolls at different fruit nodes of cotton. Cotton Science, 2007, 19(4): 318-320. (in Chinese)
[24]
LUO H H, WANG Q, ZHANG J K, WANG L S, LI Y B, YANG G Z. One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton. Journal of Integrative Agriculture, 2020, 19(2): 509-517.
[25]
牛玉萍, 陈宗奎, 杨林川, 罗宏海, 张旺锋. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响. 作物学报, 2016, 42(10): 1506-1515.

doi: 10.3724/SP.J.1006.2016.01506
NIU Y P, CHEN Z K, YANG L C, LUO H H, ZHANG W F. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area. Acta Agronomica Sinica, 2016, 42(10): 1506-1515. (in Chinese)
[26]
王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46(3): 395-407.

doi: 10.3724/SP.J.1006.2020.94074
WANG S H, YANG Z X, SHI J L, LI H T, SONG X L, SUN X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agronomica Sinica, 2020, 46(3): 395-407. (in Chinese)
[27]
TIAN Y, TIAN L W, WANG F Y, SHI X J, SHI F, HAO X Z, LI N N, CHENU K, LUO H H, YANG G Z. Optimizing nitrogen application improves its efficiency by higher allocation in bolls of cotton under drip fertigation. Field Crops Research, 2023, 298: 108968.
[28]
IQBAL B, KONG F X, ULLAH I, ALI S, LI H J, WANG J W, ALI KHATTAK W, ZHOU Z G. Phosphorus application improves the cotton yield by enhancing reproductive organ biomass and nutrient accumulation in two cotton cultivars with different phosphorus sensitivity. Agronomy, 2020, 10(2): 153.
[29]
LUO Z, LIU H, LI W P, ZHAO Q, DAI J L, TIAN L W, DONG H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018, 218: 150-157.
[30]
田雨, 王旭文, 韩焕勇, 罗宏海, 王方永. 施氮量对等行距密植棉花气体交换和叶绿素荧光特性的影响. 新疆农业科学, 2020, 57(11): 1987-1997.

doi: 10.6048/j.issn.1001-4330.2020.11.004
TIAN Y, WANG X W, HAN H Y, LUO H H, WANG F Y. Effects of Nitrogen Application Rates on Gas Exchange and Chlorophyll Fluorescence Parameters of Cotton under Wide-row Spacing with High Density. Xinjiang Agricultural Sciences, 2020, 57(11): 1987-1997. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2020.11.004
[31]
彭金剑. 不同生育期棉花品系碳氮变化特征、差异及与干物质积累的关系[D]. 南昌: 江西农业大学, 2020.
PENG J J. Carbon and nitrogen dynamics and difference and the relationship to dry matter accumulation in cotton lines with different growth period[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese)
[32]
黄伟, 王西和, 贾宏涛, 杨金钰, 屈小慧, 刘盈锐, 刘晓菊. 不同磷水平对棉花养分吸收和磷肥利用效率的影响. 农业资源与环境学报, 2024, 41(3): 558-566.
HUANG W, WANG X H, JIA H T, YANG J Y, QU X H, LIU Y R, LIU X J. Effects of different phosphorus application rates on nutrient absorption and phosphorus fertilizerutilization efficiency of cotton. Journal of Agricultural Resources and Environment, 2024, 41(3): 558-566. (in Chinese)
[33]
刘少华, 刘凯, 廖欢, 甘浩天, 侯振安. 磷肥施用方式对滴灌小麦生长和磷肥利用效率的影响. 植物营养与肥料学报, 2023, 29(7): 1323-1332.
LIU S H, LIU K, LIAO H, GAN H T, HOU Z. Effects of phosphorus fertilizers on spatial-temporal distributionof soil available phosphorus, cotton yield and phosphorus use efficiency. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1323-1332. (in Chinese)
[34]
SCHLEUSS P M, WIDDIG M, HEINTZ-BUSCHART A, KIRKMAN K, SPOHN M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology, 2020, 101(5): e03003.
[35]
刘诗璇, 陈松岭, 蒋一飞, 巴闯, 邹洪涛, 张玉龙. 控释氮肥与普通氮肥配施对东北春玉米氮素利用及土壤养分有效性的影响. 生态环境学报, 2019, 28(5): 939-947.

doi: 10.16258/j.cnki.1674-5906.2019.05.010
LIU S X, CHEN S L, JIANG Y F, BA C, ZOU H T, ZHANG Y L. Effect of controlled-release combined application with common nitrogen fertilizers for spring-maize on nitrogen fertilizer use efficiency and soil available nutrient in Northeast China. Ecology and Environmental Sciences, 2019, 28(5): 939-947. (in Chinese)
[36]
ZHANG Z, CHATTHA M S, AHMED S, LIU J H, LIU A D, YANG L R, LV N, MA X F, LI X E, HAO F R, YANG G Z. Nitrogen reduction in high plant density cotton is feasible due to quicker biomass accumulation. Industrial Crops and Products, 2021, 172: 114070.
[37]
ROS M B H, KOOPMANS G F, VAN GROENIGEN K J, ABALOS D, OENEMA O, VOS H M J, VAN GROENIGEN J W. Towards optimal use of phosphorus fertiliser. Scientific Reports, 2020, 10: 17804.

doi: 10.1038/s41598-020-74736-z pmid: 33082411
[38]
WANG S L, RUAN Y H, DU M X, SUN W, ZHANG Y L, WANG Y C, GUO J M, SHAO R X, YANG Q H, WANG H. Optimization of phosphate fertilizer application strategies to improve phosphorus availability and utilization in maize. Agronomy Journal, 2024, 116(2): 453-464.
[39]
陈传永, 赵久然, 王元东, 王荣焕, 徐田军, 吕天放, 张春原, 毛振武, 杨海涛, 成广雷. 氮肥减施对京科968与郑单958氮效率及产量的影响. 玉米科学, 2018, 26(3): 121-127.
CHEN C Y, ZHAO J R, WANG Y D, WANG R H, XU T J, T F, ZHANG C Y, MAO Z W, YANG H T, CHENG G L. Effects of nitrogen reduction on nitrogen efficiency and yield of Jingke968 and Zhendan958. Journal of Maize Science, 2018, 26(3): 121-127. (in Chinese)
[40]
KHAN A, WANG L S, ALI S, TUNG S A, HAFEEZ A, YANG G Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 2017, 214: 164-174.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[3] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[4] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[5] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[6] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[7] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[8] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[9] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[10] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[11] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[12] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[13] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[14] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[15] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!