Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4557-4569.doi: 10.3864/j.issn.0578-1752.2025.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Foliar Spraying TaSBEIIbs-dsRNA to Increase Amylose Content in Wheat

LI LinYan(), ZHANG GaoYang(), FENG XianYang, GU ShiLong, HUANG YeNan, SUN ZhongKe, LI ChengWei()   

  1. School of Biological Engineering, Henan University of Technology, Zhengzhou 450001
  • Received:2025-04-24 Accepted:2025-06-19 Online:2025-11-16 Published:2025-11-21
  • Contact: ZHANG GaoYang, LI ChengWei

Abstract:

【Objective】Wheat starch mainly consists of amylose and amylopectin. Long-term consumption of refined flour products increases the risk of chronic diseases such as diabetes, whereas consuming flour with a high content of resistant starch has a positive effect on regulating blood glucose levels. Given the generally positive correlation between resistant starch and amylose, increasing the amylose content in wheat germplasm has become a goal for quality improvement breeding research. 【Method】Four gene fragments of starch branching enzyme (TaSBEIIb) were selected to successfully construct a high-efficiency dsRNA expression vector. A gradient optimization based on culture medium components significantly enhanced dsRNA yield. Based on this, the effects of naked dsRNA and dsRNA encapsulated with the nanocarrier hydroxypropyltrimethyl ammonium chitosan chloride (HACC) on wheat starch metabolism were explored through foliar spraying. Utilizing a wheat seedling culture system, the impact of dsRNA spraying on the amylose content in wheat seedlings and the expression of starch-related genes was observed. Furthermore, a field trial analyzed the effects of dsRNA spraying on the amylose content in mature wheat grains. The protective effect of chitosan quaternary ammonium salt-coated dsRNA and its influence on amylose content in mature wheat grains were also investigated. 【Result】Four recombinant plasmids (pRNAI-TaSBE1-pRNAI-TaSBE4), expressing dsRNA were successfully constructed. The optimized fermentation medium increased the dsRNA yield from 26.54 mg·L-1 to 50.65 mg·L-1, representing a 91% increase compared to the initial medium. Spraying dsRNA interfered with the expression of the target genes, with the highest interference efficiency observed on day 7 for the TaSBEIIb1 fragment. After interference with the four fragments, the expression of TaSBEIIb was reduced by an average of 47.73%. Additionally, the interference of TaSBEIIb affected the expression of other genes in the starch synthesis pathway, including TaSSII, TaSSIV, and TaSBEIIa1 with peak interference efficiencies occurring on days 3, 7, and 3, respectively. Their expression levels decreased by an average of 54.53%, 59.94%, and 47.64%. The 2023 field trial indicated that spraying naked dsRNA increased the amylose content in wheat grains by 17.2%-36.5% after 7 days of treatment, although the effect diminished to 0.2%-8.3% by the maturity stage. In the 2024 field trial, multiple applications of both naked dsRNA and chitosan quaternary ammonium salt-coated raised the amylose content in mature wheat grains from 27.72% to 30.37%, about 10% increase compared to the control. 【Conclusion】Exogenous spraying of TaSBEIIbs-dsRNA effectively increases the amylose content in starch.

Key words: wheat, dsRNA, starch branching enzyme, amylose, crop quality improvement

Table 1

Primers used in the experiment"

引物名称 Names of primers 引物序列 Primer of sequence (5′-3′) 片段大小 Fragment size (bp) 用途 Use
TaSBE1-F ctagtctagaGACCTCCATGATGTATACCCACCA 435 基因扩增
Gene amplification
TaSBE1-R acgcgtcgacAGAGCCATGAAATCATACATATCCTT
TaSBE2-F ctagtctagaATAATGGCAATCCAAGAG 427
TaSBE2-R acgcgtcgacCATGGTAGCTCCCTGTAA
TaSBE3-F ctagtctagaGCGGTTACGAGAAGTTTG 459
TaSBE3-R acgcgtcgacGCACCTCATCCCGAAAGT
TaSBE4-F ctagtctagaTCGGAGGTTCTGGATGGC 422
TaSBE4-R acgcgtcgaCATCCATGCCTCCTTTGTG
qSBEIIb1-F CCAAGAGGCCCACAAGTA 104 qPCR
qSBEIIb1-R AGAAATTCTGCATCACCC
qSSII-F TTTATGGTGGAGACCGAACAG 114 qPCR
qSSII-R CAAGATTTCCATCACCGTAGC
qSSIV-F GGAAGCCCGAGGTCTGGAAA 81 qPCR
qSSIV-R CGTACTGCGAAGCCGAGGTG
qSBEIIa1-F ACTGCTGCCGCGATCCGG 134 qPCR
qSBEIIa1-R CACCGTCAGGCACCAGGACC
GAPDH-F CTGTTAGACTTGCGAAGCCA 103 qPCR
GAPDH-R TCCTCATCAACGTAACCCAA

Fig. 1

Cloning of four gene fragments of TaSBEIIb and construction of recombinant plasmid A: Amplification of target gene; B: Verification of recombinant plasmid by double enzyme digestion; C: DSRNA extraction and double enzyme (DNase I and RNase A) digestion verification; D: Map of pRNAi-TaSBE1-pRNAi-TaSBE4 dsRNA expression vector. M: DNA marker; 1: SBE1; 2: SBE2; 3: SBE3; 4: SBE4; 5: pRNAi-SBE1 double enzyme digestion; 6: pRNAi-SBE2 double enzyme digestion; 7: pRNAi-SBE3 double enzyme digestion; 8: pRNAi-SBE4 double enzyme digestion; 9: Obtaining dsTaSBE1 by thermal cracking; 10: Obtaining dsTaSBE2 by thermal cracking; 11: Obtaining dsTaSBE3 by thermal cracking; 12: Obtaining dsTaSBE4 by thermal cracking; 13: dsTaSBE1 after double enzyme digestion; 14: dsTaSBE2 after double enzyme digestion; 15: dsTaSBE3 after double enzyme digestion; 16: dsTaSBE4 after double enzyme digestion"

Fig. 2

Optimization result diagram of fermentation medium A: The yield of dsRNA in different media; B: The growth curve of 48 h fermentation with different concentrations of yeast powder; C: The yield of dry cell weight and dsRNA after 48 h fermentation with different concentrations of yeast powder; D: The growth curve of peptone fermentation with different concentrations for 48 h; E: The yield of dry cell weight and dsRNA after peptone fermentation with different concentrations for 48 h; F: Growth curve of phosphate fermentation with different concentrations for 48 h; G: The output of dry cell weight and dsRNA after 48 h of phosphate fermentation with different concentrations. The number before "/"indicates the concentration of K2HPO4, and the number after “/” indicates the concentration of KH2PO4; H: The growth curve of glycerol fermentation with different concentrations for 48 h; I: The yield of dry cell weight and dsRNA after 48 h fermentation with different concentrations of glycerol; J: Results before and after optimization of culture medium. Different lowercase letters indicate significant differences at P<0.05 level. The same as below"

Fig. 3

Amylose content and expression level of starch synthesis related genes in wheat leaves A: Establishing amylose standard curve by perchloric acid method; B: Amylose content in wheat leaves; C: TaSBEIIb1; D: TaSSII; E: TaSSIV; F: TaSBEIIa1"

Fig. 4

Amylose content in wheat grain A: Amylose standard curve established by iodine binding method; B: Amylose content in wheat grain; C: The content of amylose in wheat grain after spraying naked dsRNA; D: The content of amylose in wheat grain after spraying HACC-dsRNA nanocomposite"

[1]
孙月, 杨慧玉, 朱文根, 王小燕, 唐益苗. 小麦Whirly基因家族的鉴定及表达分析. 农业生物技术学报, 2023, 31(2): 223-231.
SUN Y, YANG H Y, ZHU W G, WANG X Y, TANG Y M. Identification and expression analysis of wheat (Triticum aestivum) whirly gene family. Journal of Agricultural Biotechnology, 2023, 31(2): 223-231. (in Chinese)
[2]
李雪, 吕新业. 现阶段中国粮食安全形势的判断: 数量和质量并重. 农业经济问题, 2021, 42(11): 31-44.
LI X, X Y. Judgment of China’s food security situation at the present stage: Pay equal attention to quantity and quality. Issues in Agricultural Economy, 2021, 42(11): 31-44. (in Chinese)
[3]
秦宇, 马硕晗, 徐恩波, 周建伟, 陈健初, 刘东红, 叶兴乾. 绿色加工对全谷物结构及膳食纤维、酚类物质影响的研究进展. 食品与生物技术学报, 2022, 41(11): 10-21.
QIN Y, MA S H, XU E B, ZHOU J W, CHEN J C, LIU D H, YE X Q. Structural reorganization of whole grains with dietary fiber and phenols change during green processes. Journal of Food Science and Biotechnology, 2022, 41(11): 10-21. (in Chinese)
[4]
ZHANG D P, KISHIMOTO N. Quantum chemical investigation into the structural analysis and calculated Raman spectra of amylose modeled with linked glucose molecules. Molecules, 2024, 29(12): 2842.
[5]
LI M, DHITAL S, WEI Y M. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(5): 1042-1055.
[6]
SUN Z Z, SUN X X, GE X Z, LU Y F, ZHANG X Y, SHEN H S, YU X Z, ZENG J, GAO H Y, LI W H. Structural, rheological, pasting, and digestive properties of wheat A-starch: Effect of outshell removal combined with annealing. International Journal of Biological Macromolecules, 2023, 244: 125401.
[7]
CORRADO M, ZAFEIRIOU P, AHN-JARVIS J H, SAVVA G M, EDWARDS C H, HAZARD B A. Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocolloids, 2023, 135: 108139.
[8]
董喆, 赵阳, 孙姗姗, 曹进, 罗娇依, 李梦怡. 肠道微生物组对抗性淀粉的降解作用研究进展. 食品安全质量检测学报, 2024, 15(24): 96-102.
DONG Z, ZHAO Y, SUN S S, CAO J, LUO J Y, LI M Y. Advancements in research on the degradation of resistant starch by gut microbiome. Journal of Food Safety & Quality, 2024, 15(24): 96-102. (in Chinese)
[9]
FENG T T, WANG L L, LI L Y, LIU Y, CHONG K, THEIßEN G, MENG Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. New Phytologist, 2022, 234(1): 77-92.
[10]
LAI Y C, WANG S Y, GAO H Y, NGUYEN K M, NGUYEN C H, SHIH M C, LIN K H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chemistry, 2016, 199: 556-564.
[11]
SORNDECH W, SAGNELLI D, MEIER S, JANSSON A M, LEE B H, HAMAKER B R, ROLLAND-SABATÉ A, HEBELSTRUP K H, TONGTA S, BLENNOW A. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydrate Polymers, 2016, 152: 51-61.
[12]
JIANG L L, YU X M, QI X, YU Q, DENG S, BAI B, LI N, ZHANG A, ZHU C F, LIU B, PANG J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Research, 2013, 22(6): 1133-1142.
[13]
GURUNATHAN S, RAMADOSS B R, MUDILI V, SIDDAIAH C, KALAGATUR N K, BAPU J R K, MOHAN C D, ALQARAWI A A, HASHEM A, ABD ALLAH E F. Single nucleotide polymorphisms in starch biosynthetic genes associated with increased resistant starch concentration in rice mutant. Frontiers in Genetics, 2019, 10: 946.
[14]
LI H T, YU W W, DHITAL S, GIDLEY M J, GILBERT R G. Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers, 2019, 224: 115185.
[15]
GAO M, FISHER D K, KIM K N, SHANNON J C, GUILTINAN M J. Independent genetic control of maize starch-branching enzymes IIa and IIb. Isolation and characterization of a Sbe2a cDNA. Plant Physiology, 1997, 114(1): 69-78.
[16]
LI J Y, JIAO G A, SUN Y W, CHEN J, ZHONG Y X, YAN L, JIANG D, MA Y Z, XIA L Q. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19(5): 937-951.
[17]
TOUZDJIAN P, KOHLRAUSCH TÁVORA F, DE ASSIS DOS SANTOS DINIZ F, DE MORAES RÊGO-MACHADO C, CHAGAS FREITAS N, BARBOSA MONTEIRO ARRAES F, CHUMBINHO DE ANDRADE E, FURTADO L L, OSIRO K O, LIMA DE SOUSA N, et al. CRISPR/cas- and topical RNAi-based technologies for crop management and improvement: Reviewing the risk assessment and challenges towards a more sustainable agriculture. Frontiers in Bioengineering and Biotechnology, 2022, 10: 913728.
[18]
ZHAO J, LIU N, MA J, HUANG L N, LIU X N. Effect of silencing CYP6B6 of Helicoverpa armigera (Lepidoptera: Noctuidae) on its growth, development, and insecticide tolerance. Journal of Economic Entomology, 2016, 109(6): 2506-2516.
[19]
GREGORIOU M E, MATHIOPOULOS K D. Knocking down the sex peptide receptor by dsRNA feeding results in reduced oviposition rate in olive fruit flies. Archives of Insect Biochemistry and Physiology, 2020, 104(2): e21665.
[20]
TAKAHASHI T, UI-TEI K. Mutual regulation of RNA silencing and the IFN response as an antiviral defense system in mammalian cells. International Journal of Molecular Sciences, 2020, 21(4): 1348.
[21]
WANG C Y, GUO K. Application of dsRNA in the pine wood nematode, Bursaphelenchus xylophilus. Methods in Molecular Biology, 2024, 2771: 133-139.
[22]
WERNER B T, GAFFAR F Y, SCHUEMANN J, BIEDENKOPF D, KOCH A M. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Frontiers in Plant Science, 2020, 11: 476.
[23]
PALLIS S, ALYOKHIN A, MANLEY B, RODRIGUES T, BARNES E, NARVA K. Effects of low doses of a novel dsRNA-based biopesticide (calantha) on the Colorado potato BeetleFree. Journal of Economic Entomology, 2023, 116(2): 456-461.
[24]
XU X, JIAO Y B, SHEN L L, LI Y, MEI Y P, YANG W G, LI C Q, CAO Y, CHEN F L, LI B, YANG J G. Nanoparticle-dsRNA treatment of pollen and root systems of diseased plants effectively reduces the rate of tobacco mosaic virus in contemporary seeds. Applied Materials & Interfaces, 2023, 15(24): 29052-29063.
[25]
张浩然, 刘晓莹, 周峰龙, 许明晨, 郭争争, 程佳雨, 张坤普, 王道文, 师翠兰. TaGW2-A1过表达小麦种质的创制及表型分析. 河南农业科学, 2025, 54(1): 1-8.
ZHANG H R, LIU X Y, ZHOU F L, XU M C, GUO Z Z, CHENG J Y, ZHANG K P, WANG D W, SHI C L. Creation and phenotypic analysis of TaGW2-A1-overexpression transgenic wheat germplasm. Journal of Henan Agricultural Sciences, 2025, 54(1): 1-8. (in Chinese)
[26]
FENG X Y, SHI Y N, SUN Z K, LI L Y, IMRAN M, ZHANG G Y, ZHANG G Y, LI C W. Control of Fusarium graminearum infection in wheat by dsRNA-based spray-induced gene silencing. Journal of Agricultural and Food Chemistry, 2025, 73(20): 12146-12155.
[27]
FAJARDO D, JAYANTY S S, JANSKY S H. Rapid high throughput amylose determination in freeze dried potato Tuber samples. Journal of Visualized Experiments, 2013(80): 50407.
[28]
PARK S H, BEAN S R, WILSON J D, SCHOBER T J. Rapid isolation of sorghum and other cereal starches using sonication. Cereal Chemistry, 2006, 83(6): 611-616.
[29]
KAUFMAN R C, WILSON J D, BEAN S R, HERALD T J, SHI Y C. Development of a 96-well plate iodine binding assay for amylose content determination. Carbohydrate Polymers, 2015, 115: 444-447.
[30]
JIANG X, ATTIOGBE K B, GUO Y T, WU X Y. Production of double-stranded RNA using the prokaryotic promoter-mediated bidirectional transcription. Methods in Molecular Biology, 2024, 2771: 47-55.
[31]
崔锦程, 崔洁, 卞小莹. 生产双链RNA工程菌的研究进展. 生物工程学报, 2025, 41(2): 546-558.
CUI J C, CUI J, BIAN X Y. Research progress in the engineering strains for producing double-stranded RNA. Chinese Journal of Biotechnology, 2025, 41(2): 546-558. (in Chinese)
[32]
余金兰, 何倩, 李欣茹, 谭红晓, 路来风. 原核表达dsRNA-StPPO发酵工艺优化及应用. 食品与发酵工业, 2025, 51(2): 59-67.
YU J L, HE Q, LI X R, TAN H X, LU L F. Optimization and application of prokaryotic expression of dsRNA-StPPO fermentation process. Food and Fermentation Industries, 2025, 51(2): 59-67. (in Chinese)
[33]
常瑞, 王俊, 付开赟, 廖兰兰, 丁新华, 何江, 郭文超, 吐尔逊·阿合买提, 任羽. 4种原核表达双链RNA的dsRNA提取方法效果评价. 新疆农业科学, 2021, 58(4): 700-711.
CHANG R, WANG J, FU K Y, LIAO L L, DING X H, HE J, GUO W C, TOULXUN A, REN Y. Comparative study on the effect of 4 kind of dsRNA extraction methods form prokaryotic expression double-stranded RNA. Xinjiang Agricultural Sciences, 2021, 58(4): 700-711. (in Chinese)
[34]
DA ROSA J, VIANA A J C, FERREIRA F R A, KOLTUN A, MERTZ-HENNING L M, MARIN S R R, RECH E L, NEPOMUCENO A L. Optimizing dsRNA engineering strategies and production in E. coli HT115 (DE3). Journal of Industrial Microbiology & Biotechnology, 2024, 51: kuae028.
[35]
姜晨, 吴昕曈, 陈慧玲, 刘乐, 张谦, 李宪臻, 郭小宇. 重组蔗糖异构酶在枯草芽孢杆菌中的表达及发酵优化. 生物学杂志, 2024, 41(6): 39-46.
JIANG C, WU X T, CHEN H L, LIU L, ZHANG Q, LI X Z, GUO X Y. Expression and fermentation optimization of recombinant sucrose isomerase in Bacillus subtilis. Journal of Biology, 2024, 41(6): 39-46. (in Chinese)
[36]
曹倩荣, 刘春卯, 郑翔, 贾振华, 吴芳彤. 蛋白酶枯草芽孢杆菌工程菌株WB800N/pHT43-npr-PrsA的发酵工艺优化. 饲料研究, 2024, 47(14): 100-106.
CAO Q R, LIU C M, ZHENG X, JIA Z H, WU F T. Optimization of fermentation process for Bacillus subtilis WB800N/pHT43-npr-PrsA recombinant strain with protease activity. Feed Research, 2024, 47(14): 100-106. (in Chinese)
[37]
符长春, 杨瑞金, 仝艳军. Bifidobacterium bifidum ATCC 29521 β-半乳糖苷酶的生物信息学分析、异源表达及其酶学性质. 食品科学, 2025, 46(6): 98-107.
FU C C, YANG R J, TONG Y J. Bioinformatics analysis, heterologous expression and enzymatic properties of β-galactosidase from Bifidobacterium bifidum ATCC 29521. Food Science, 2025, 46(6): 98-107. (in Chinese)
[38]
SUN Y W, JIAO G A, LIU Z P, ZHANG X, LI J Y, GUO X P, DU W M, DU J L, FRANCIS F, ZHAO Y D, XIA L Q. Generation of high- amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science, 2017, 8: 298.
[39]
徐婉莹, 戚晓雪, 徐莹, 汪东风. 基于培养基优化提高过表达MET14基因的重组库德毕赤酵母M48脱镉能力的研究. 食品工业科技, 2022, 43(19): 288-297.
XU W Y, QI X X, XU Y, WANG D F. Study on improving the cadmium removal ability of recombinant Pichia kudriavzevii M48 overexpressed MET14 gene based on medium optimization. Science and Technology of Food Industry, 2022, 43(19): 288-297. (in Chinese)
[40]
SIMON I, PERSKY Z, AVITAL A, HARAT H, SCHROEDER A, SHOSEYOV O. Foliar application of dsRNA targeting endogenous potato (Solanum tuberosum) isoamylase genes ISA1 ISA2 and ISA3 confers transgenic phenotype. International Journal of Molecular Sciences, 2023, 24(1): 190.
[41]
REGINA A, BIRD A, TOPPING D, BOWDEN S, FREEMAN J, BARSBY T, KOSAR-HASHEMI B, LI Z Y, RAHMAN S, MORELL M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3546-3551.
[42]
FERREIRA S J, SENNING M, FISCHER-STETTLER M, STREB S, AST M, NEUHAUS H E, ZEEMAN S C, SONNEWALD S, SONNEWALD U. Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS ONE, 2017, 12(7): e0181444.
[43]
QIAO H, ZHAO J, WANG X F, XIAO L B, ZHU-SALZMAN K, LEI J X, XU D J, XU G C, TAN Y A, HAO D J. An oral dsRNA delivery system based on chitosan induces G protein-coupled receptor kinase 2 gene silencing for Apolygus lucorum control. Pesticide Biochemistry and Physiology, 2023, 194: 105481.
[44]
XU X, YU T T, ZHANG D S, SONG H P, HUANG K, WANG Y, SHEN L L, LI Y, WANG F L, ZHANG S B, JIAO Y B, YANG J G. Evaluation of the anti-viral efficacy of three different dsRNA nanoparticles against potato virus Y using various delivery methods. Ecotoxicology and Environmental Safety, 2023, 255: 114775.
[45]
李林燕, 张高阳, 刘星雨, 孙千惠, 孙忠科, 李成伟, 罗德平. 外源dsRNA在植物抗病虫害中的应用研究进展. 农药, 2025, 64(07): 469-479.
LI L Y, ZHANG G Y, LIU X Y, SUN Q H, SUN Z K, LI C W, LUO D P. Research progress on the application of exogenous dsRNA in plant disease and pest resistance. Agrochemicals, 2025: 64(07): 469-479. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[3] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[4] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[5] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[6] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[7] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[8] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[9] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[10] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[11] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[12] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[13] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[14] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[15] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!