Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4144-4157.doi: 10.3864/j.issn.0578-1752.2025.20.009

• SOIL MICROORGANISMS • Previous Articles     Next Articles

Characterization and Utilization of Rhizosphere Microbiota from Wild Plants in Lalu Wetland in Xizang for Alleviating Saline-Alkali Stress in Maize

YANG Fu1,2(), WEI ShanJun3(), ZHANG XiaoXia1,2(), ZHANG LinMin3, LIU HongXiu3, LI YiJun1,2,3, TONG YaPing3   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing 100081
    2 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
    3 College of Life and Environmental Science, Minzu University of China, Beijing 100081
  • Received:2025-07-15 Accepted:2025-09-29 Online:2025-10-16 Published:2025-10-14
  • Contact: WEI ShanJun, ZHANG XiaoXia

Abstract:

【Objective】Soil salinization poses a significant constraint on global agricultural development. However, microorganisms have shown the potential to mitigate salt stress in plants, and long-term intensive cultivation often leads to the unbalance of the beneficial microbial communities in agricultural soils. Isolating plant growth-promoting bacteria from the rhizosphere of wild plants in less disturbed habitats and introducing them into saline-alkali farmland offers a promising strategy to enhance crop tolerance to salt-alkali stress. 【Method】Isolation and culture of rhizospheric bacteria were performed using samples from five wetland plant species collected in the Lalu Wetland National Nature Reserve, Tibet. The isolates were preliminarily identified based on 16S rRNA gene sequencing. Functional characterization was further carried out using specific identification media. Finally, pot experiments were conducted to assess the effects of the selected promising microbial strains on the growth of maize seedlings. 【Result】A total of 260 strains were isolated from the rhizosphere soil of Erigeron canadensis, Galinsoga parviflora, Datura stramonium, Taraxacum mongolicum and Astragalus membranaceus, including 14 species and 21 potential novel species, and the dominant genus was Acinetobacter. 34 strains exhibiting inorganic phosphate-solubilizing capabilities and 47 strains demonstrating siderophore- producing functions were isolated through screening. Among them, strains 3-210 and 3-218 were identified as potential novel species of the genus Flavobacterium through genome analysis, and one key gene for plant hormone signal transduction GS2 was predicted. FeGenie predicted 50 and 71 iron related genes, respectively. No virulence factor genes related to the pathogenic process were detected. At the same time, the results of the pot experiment showed that inoculation of these two strains could improve the agronomic traits, such as plant height and stem diameter of maize seedlings. 3-210 treatment significantly increased the catalase activity and free proline content in leaves, and 3-218 group had significantly higher activities of the catalase and peroxide. 【Conclusion】The rhizospheric soils of plants in the Lalu Wetland National Nature Reserve, Tibet, harbored abundant functional bacterial resources, including multiple strains capable of siderophore production and phosphate solubilization. Notably, two potential novel species of the genus Flavobacterium demonstrated the ability to enhance saline-alkali stress tolerance in maize seedlings.

Key words: Lalu Wetland National Nature Reserve, saline-alkali land, plant growth promoting rhizobacteria, maize, Flavobacterium

Table 1

Treatment methods for various groups in maize seed germination and seedling growth"

处理组别
Group
种子萌发试验
Seed germination
幼苗生长试验
Seedling growth
CK+ R2A液体培养基浸种+无盐碱滤纸
R2A broth seed soaking and salt-alkali-free filter paper
R2A液体培养基浸种+60 mL无菌水
R2A broth seed soaking and 60 mL sterilized water
CK- R2A液体培养基浸种+盐碱浸润滤纸
R2A broth seed soaking and salt-alkal filter paper
R2A液体培养基浸种+60 mL盐碱溶液
R2A broth seed soaking and 60 mL salt-alkali solution
3-210 菌液3-210浸种+盐碱浸润滤纸
Suspension 3-210 seed soaking and salt-alkali filter paper
菌液3-210浸种+60 mL盐碱溶液
Suspension 3-210 seed soaking and 60 mL salt-alkali solution
3-218 菌液3-218浸种+盐碱浸润滤纸
Suspension 3-218 seed soaking and salt-alkali filter paper
菌液3-218浸种+60 mL盐碱溶液
Suspension 3-218 seed soaking and 60 mL salt-alkali solution

Fig. 1

Phylogenetic tree of 260 strains constructed by maximum-likelihood method based on 16s rRNA gene sequences"

Table 2

Impact of 3-210 and 3-218 applications on maize seed germination in saline-alkali environments"

处理组别
Group
发芽势
Germination potential (%)
发芽率
Germination rate (%)
CK+ 64.28±20.24a 78.57±12.60a
CK- 51.78±24.20b 57.41±18.84c
3-210 59.26±18.84a 64.28±20.25b
3-218 55.54±20.41a 61.90±18.54b

Fig.2

Growth condition of maize seedlings at 30 days after thinning"

Table 3

Assessment of salt injury severity in maize seedlings subjected to different treatments in saline-alkali environments"

处理组别
Group
盐害程度 Salt damage degree (%) 伤害指数
Injury index (%)
1级 Grade 1 2级 Grade 2 3级 Grade 3 4级 Grade 4 5级 Grade 5
CK- 50.00 0 27.78 11.11 11.11 46.67
3-210 55.56 11.11 16.67 11.11 5.56 40.00
3-218 55.56 5.56 16.67 11.11 11.11 29.12

Fig.3

Agronomic trait assessment of maize seedlings at 30 days after thinning​"

Fig. 4

Assay of stress-responsive enzyme activities in maize seedling leaves subjected to various treatments in saline-alkali environments"

[1]
赵耕毛, 杨梦圆, 陈硕, 苏纪康, 吕慧琳, 贾慧昕, 刘兆普. 我国盐碱地治理: 现状、问题与展望. 南京农业大学学报, 2025, 48(1): 14-26.
ZHAO G M, YANG M Y, CHEN S, SU J K, H L, JIA H X, LIU Z P. Saline-alkali land management in China: Current situation, problems and prospects. Journal of Nanjing Agricultural University, 2025, 48(1): 14-26. (in Chinese)
[2]
BERG G, ZACHOW C, MÜLLER H, PHILIPPS J, TILCHER R. Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy, 2013, 3(4): 648-656.
[3]
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37(5): 634-663.

doi: 10.1111/1574-6976.12028 pmid: 23790204
[4]
GOUDA S, KERRY R G, DAS G, PARAMITHIOTIS S, SHIN H S, PATRA J K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 2018, 206: 131-140.

doi: S0944-5013(17)30341-5 pmid: 29146250
[5]
宋立群, 敖静, 刘晓辉, 胡琴琴, 李杨. 根际促生菌在植物根部的定殖研究进展. 应用与环境生物学报, 2025: 1-15. https://link.cnki.net/doi/10.19675/j.cnki.1006-687x.2024.09010.
SONG L Q, AO J, LIU X H, HU Q Q, LI Y. Research progress on the colonization of plant growth promoting rhizobacteria in plant roots. Chinese Journal of Applied and Environmental Biology, 2025: 1-15. https://link.cnki.net/doi/10.19675/j.cnki.1006-687x.2024.09010. (in Chinese)
[6]
SUN X L, XU Z H, XIE J Y, HESSELBERG-THOMSEN V, TAN T M, ZHENG D Y, STRUBE M L, DRAGOŠ A, SHEN Q R, ZHANG R F, KOVÁCS Á T. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 2022, 16(3): 774-787.
[7]
YADAV U, ANAND V, KUMAR S, VERMA I, ANSHU A, PANDEY I A, KUMAR M, BEHERA S K, SRIVASTAVA S, SINGH P C. Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. Journal of Applied Microbiology, 2024, 135(3): lxae013.
[8]
SINGH A, PATANI A, PATEL M, VYAS S, VERMA R K, AMARI A, OSMAN H, RATHOD L, ELBOUGHDIRI N, YADAV V K, et al. Tomato seed bio-priming with Pseudomonas aeruginosa strain PAR: A study on plant growth parameters under sodium fluoride stress. Frontiers in Microbiology, 2023, 14: 1330071.
[9]
CONDORI T, ALARCÓN S, HUASASQUICHE L, GARCÍA- BLÁSQUEZ C, PADILLA-CASTRO C, VELÁSQUEZ J, SOLÓRZANO R. Inoculation with Azospirillum brasilense as a strategy to reduce nitrogen fertilization in cultivating purple maize (Zea mays L.) in the inter-Andean valleys of Peru. Microorganisms, 2024, 12(10): 2107.
[10]
QUILBÉ J, LAMY L, BROTTIER L, LELEUX P, FARDOUX J, RIVALLAN R, BENICHOU T, GUYONNET R, BECANA M, VILLAR I, et al. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the Rhizobium-legume symbiosis. Nature communications, 2021, 12: 829.
[11]
ZHENG W, WANG N N, QIAN G L, QIAN X, LIU W, HUANG L L. Cross-niche protection of kiwi plant against above-ground canker disease by beneficial rhizosphere Flavobacterium. Communications Biology, 2024, 7: 1458.
[12]
丁方丽, 李嫚, 刘东平, 张忠良, 孙治强, 朴凤植, 申顺善. 植物根际促生菌普城沙雷菌A21-4 对黄瓜生长及土壤微生态的影响. 中国蔬菜, 2018(5): 36-41.
DING F L, LI M, LIU D P, ZHANG Z L, SUN Z Q, PIAO F Z, SHEN S S. Effects of plant growth promoting rhizobacteria Serratia plymuthica A21-4 on cucumber growth and soil rhizosphere microecology. China Vegetables, 2018(5): 36-41. (in Chinese)
[13]
MUIGANO M N, MAUTI G O, ANAMI S E, ONGUSO J M. Advances and challenges in polyhydroxyalkanoates (PHA) production using Halomonas species: A review. International Journal of Biological Macromolecules, 2025, 309(Pt 1): 142850.
[14]
YANG X X, YUAN R W, YANG S Y, DAI Z A, DI N, YANG H J, HE Z L, WEI M. A salt-tolerant growth-promoting phyllosphere microbial combination from mangrove plants and its mechanism for promoting salt tolerance in rice. Microbiome, 2024, 12(1): 270.

doi: 10.1186/s40168-024-01969-9 pmid: 39707568
[15]
周宇鹏, 蔡奕, 周念清, 杜喜玲, 李娜, 邢婧文. 河流潜流带控氮微生物特性及影响因素研究进展. 地球科学前沿(汉斯), 2025(3): 281-292.
ZHOU Y P, CAI Y, ZHOU N Q, DU X L, LI N, XING J W. Progress in characteristics and influencing factors of microorganisms controlling nitrogen cycle in the hyporheic zone of a river. Advances in Geosciences, 2025(3): 281-292. (in Chinese)
[16]
宋雅荣, 常单娜, 周国朋, 高嵩涓, 段廷玉, 曹卫东. 解磷细菌活化水稻土中低品位磷矿粉的效果与机制. 中国农业科学, 2024, 57(6): 1102-1116. doi:10.3864/j.issn.0578-1752.2024.06.007.
SONG Y R, CHANG D N, ZHOU G P, GAO S J, DUAN T Y, CAO W D. Effect and mechanism of phosphate-solubilizing bacterial on activating of low-grade phosphate rock powder in red paddy soil. Scientia Agricultura Sinica, 2024, 57(6): 1102-1116. doi:10.3864/ j.issn.0578-1752.2024.06.007. (in Chinese)
[17]
张淑静, 张淑凤, 杨萍, 肖琳, 曲田丽, 张保华, 牛赡光, 杜丰玉. 山东湿地生防菌筛选及解淀粉芽孢杆菌JQ-3的防病促生作用. 中国植保导刊, 2024, 44(5): 16-21.
ZHANG S J, ZHANG S F, YANG P, XIAO L, QU T L, ZHANG B H, NIU S G, DU F Y. Screening of biocontrol bacteria from wetland of Shandong and the disease control and growth promotion effect of Bacillus amyloliquefaciens JQ-3. China Plant Protection, 2024, 44(5): 16-21. (in Chinese)
[18]
曹莹. 湿地根际微生物对磷的转化释放及植物吸收的影响[D]. 南京: 东南大学, 2018.
CAO Y. Effects of wetland rhizosphere microorganisms on phosphorus transformation and release and plant uptake[D]. Nanjing: Southeast University, 2018. (in Chinese)
[19]
金小茜. 天津永定河故道国家湿地公园景观植物内生细菌功能发掘研究[D]. 北京: 中国林业科学研究院, 2022.
JIN X Q. Functional exploration of endophytic bacteria in landscape plants of Yongding river national wetland park in Tianjin[D]. Beijing: Chinese Academy of Forestry, 2022. (in Chinese)
[20]
李青青, 张芮, 高彦婷, 张红娟, 刘柯含. 耐盐碱解磷菌的溶磷效果及其对黄豆萌发的影响. 微生物学通报, 2024, 51(11): 4574-4589.
LI Q Q, ZHANG R, GAO Y T, ZHANG H J, LIU K H. Phosphorus solubilization effect of saline-tolerant phosphorus-solubilizing bacteria and its effect on soybean germination. Microbiology China, 2024, 51(11): 4574-4589. (in Chinese)
[21]
CUI K P, XU T, CHEN J W, YANG H Y, LIU X M, ZHUO R, PENG Y H, TANG W, WANG R, CHEN L S, et al. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. Journal of Cleaner Production, 2022, 367: 133110.
[22]
何建清, 张格杰, 岳海梅. 拉鲁湿地自然保护区放线菌组成分析及生物活性测定. 微生物学杂志, 2009, 29(4): 6-10.
HE J Q, ZHANG G J, YUE H M. Diversity and bioactivity analysis of actinomycetes isolated from lhalu wetland nature reserve. Journal of Microbiology, 2009, 29(4): 6-10. (in Chinese)
[23]
德吉, 苏延山, 龙琦炜. 西藏拉鲁湿地水体产胞外酶酵母菌筛选及其与理化因子相关性分析. 高原科学研究, 2018, 2(1): 20-30, 37.
DE J, SU Y S, LONG Q W. Screening of extracellular enzymes producing yeasts and analysis on its relationship to water environmental factors in Lhalu Wetland. Plateau Science Research, 2018, 2(1): 20-30, 37. (in Chinese)
[24]
郭小芳, 德吉, 龙琦炜, 白斌锦, 王豪杰, 曹亚璞. 西藏拉鲁湿地水体酵母菌多样性及其与理化因子相关性. 微生物学报, 2018, 58(7): 1167-1181.
GUO X F, DE J, LONG Q W, BAI B J, WANG H J, CAO Y P. Spatial dynamics of yeast community and its relationship with environmental factors in Lhalu Wetland, Tibet. Acta Microbiologica Sinica, 2018, 58(7): 1167-1181. (in Chinese)
[25]
荣良燕, 姚拓, 赵桂琴, 柴强, 席琳乔, 王小利. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用. 植物保护, 2011, 37(1): 59-64.
RONG L Y, YAO T, ZHAO G Q, CHAI Q, XI L Q, WANG X L. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 37(1): 59-64. (in Chinese)
[26]
韩嘉诚, 朱宏图, 杨芾, 郭捷, 马晓彤, 张晓霞. 中国农业微生物菌种保藏管理中心大豆根瘤菌精准评价. 微生物学报, 2025, 65(4): 1667-1683.
HAN J C, ZHU H T, YANG F, GUO J, MA X T, ZHANG X X. Accurate evaluation of soybean rhizobia preserved in the Agricultural Culture Collection of China. Acta Microbiologica Sinica, 2025, 65(4): 1667-1683. (in Chinese)
[27]
杨芾, 王辉, 王琴, 姜春前, 周妍旭, 李潞滨. 浙江地区毛竹林根际土壤促生细菌筛选及促生效应研究. 南京林业大学学报(自然科学版), 2025, 49(2): 83-90.

doi: 10.12302/j.issn.1000-2006.202307015
YANG F, WANG H, WANG Q, JIANG C Q, ZHOU Y X, LI L B. Screening of growth-promoting bacteria in the rhizosphere soil of Phyllostachys edulis and their growth-promoting effects in Zhejiang Province. Journal of Nanjing Forestry University (Natural Sciences Edition), 2025, 49(2): 83-90. (in Chinese)
[28]
WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain: The primary Kingdoms. PNAS, 1977, 74(11): 5088-5090.

pmid: 270744
[29]
CHALITA M, KIM Y O, PARK S, OH H S, CHO J H, MOON J, BAEK N, MOON C, LEE K, YANG J, et al. EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 2024, 74(6): 006421.
[30]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[31]
EDGAR R C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nature Communications, 2022, 13: 6968.

doi: 10.1038/s41467-022-34630-w pmid: 36379955
[32]
KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111-120.

doi: 10.1007/BF01731581 pmid: 7463489
[33]
东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001.
DONG X Z, CAI M Y. Handbook of Identification of Common Bacterial Systems. Beijing: Science Press, 2001. (in Chinese)
[34]
LIU H L, XIN B Y, ZHENG J S, ZHONG H, YU Y, PENG D H, SUN M. Build a bioinformatics analysis platform and apply it to routine analysis of microbial genomics and comparative genomics. Protocol Exchange, 2021.
[35]
BANKEVICH A, NURK S, ANTIPOV D, GUREVICH A A, DVORKIN M, KULIKOV A S, LESIN V M, NIKOLENKO S I, PHAM S, PRJIBELSKI A D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19(5): 455-477.

doi: 10.1089/cmb.2012.0021 pmid: 22506599
[36]
PARKS D H, IMELFORT M, SKENNERTON C T, HUGENHOLTZ P, TYSON G W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25(7): 1043-1055.

doi: 10.1101/gr.186072.114 pmid: 25977477
[37]
PRITCHARD L, GLOVER R H, HUMPHRIS S, ELPHINSTONE J G, TOTH I K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 2016, 8(1): 12-24.
[38]
MEIER-KOLTHOFF J P, CARBASSE J S, PEINADO-OLARTE R L, GÖKER M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 2022, 50(D1): D801-D807.
[39]
KANEHISA M, FURUMICHI M, SATO Y, MATSUURA Y, ISHIGURO-WATANABE M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Research, 2025, 53(D1): D672-D677.
[40]
HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, HERNÁNDEZ- PLAZA A, FORSLUND S K, COOK H, MENDE D R, LETUNIC I, RATTEI T, JENSEN L J, VON MERING C, BORK P. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 2019, 47(D1): D309-D314.
[41]
GARBER A I, NEALSON K H, OKAMOTO A, MCALLISTER S M, CHAN C S, BARCO R A, MERINO N. FeGenie: A comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Frontiers in Microbiology, 2020, 11: 37.

doi: 10.3389/fmicb.2020.00037 pmid: 32082281
[42]
张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49(6): 1551-1561.

doi: 10.3724/SP.J.1006.2023.21032
ZHANG J, GAO W B, YAN L, ZHANG Z W, ZHOU H T, WU B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agronomica Sinica, 2023, 49(6): 1551-1561. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21032
[43]
刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46(1): 1-8.
LIU X X, CHANG R Z, GUAN R X, QIU L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agronomica Sinica, 2020, 46(1): 1-8. (in Chinese)
[44]
KIM M, OH H S, PARK S C, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.

doi: 10.1099/ijs.0.059774-0 pmid: 24505072
[45]
刘晓丽, 姚宏武, 李密, 李珊, 刘运喜. 泛耐药鲍曼不动杆菌研究进展. 中华医院感染学杂志, 2025, 35(13): 2050-2056.
LIU X L, YAO H W, LI M, LI S, LIU Y X. Progress of research on extensively drug-resistant Acinetobacter baumannii. Chinese Journal of Nosocomiology, 2025, 35(13): 2050-2056. (in Chinese)
[46]
张新飞, 佘木子, 李晗玉, 敬松, 姜惠娜, 高浩, 朱延晓, 付娟娟. 琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用. 草地学报, 2021, 29(8): 1704-1711.

doi: 10.11733/j.issn.1007-0435.2021.08.013
ZHANG X F, SHE M Z, LI H Y, JING S, JIANG H N, GAO H, ZHU Y X, FU J J. Growth promotion mechanisms of Flavobacterium succinicans and their physiological regulation on the growth and stress tolerance in Lolium perenne. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. (in Chinese)
[47]
贾南豫, 朱水英, 蒋栋, 杨盛蝶, 牛国庆, 韩鑫, 文涛, 袁军, 沈其荣. 施用液体有机肥对干旱胁迫下玉米和小麦生长及根际微生物的影响. 南京农业大学学报, 2025, 48(5): 1060-1069.
JIA N Y, ZHU S Y, JIANG D, YANG S D, NIU G Q, HAN X, WEN T, YUAN J, SHEN Q R. The effect of liquid organic fertilizer on the growth and rhizosphere microorganisms of corn and wheat under drought stress. Journal of Nanjing Agricultural University, 2025, 48(5): 1060-1069. (in Chinese)
[48]
李新鹏. 小麦GS2基因的多样性及其与农艺性状关联分析的研究[D]. 北京: 中国科学院遗传与发育生物学研究所, 2008.
LI X P. Study on the diversity of wheat GS2 gene and its correlation analysis with agronomic traits[D]. Beijing: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 2008. (in Chinese)
[49]
刘丽娟, 王红莉, 王亚军, 任燕, 王庆, 石存斌, 张德锋. 笋壳鱼源柱状黄杆菌的分离鉴定及致病性和药物敏感性. 南方农业学报, 2023, 54(2): 638-646.
LIU L J, WANG H L, WANG Y J, REN Y, WANG Q, SHI C B, ZHANG D F. Isolation, identification, pathogenicity and drug susceptibility of Flavobacterium columnare from Oxyeleotris marmoratus. Journal of Southern Agriculture, 2023, 54(2): 638-646. (in Chinese)
[50]
AN J X, LIU C, WANG Q, YAO M J, RUI J P, ZHANG S H, LI X Z. Soil bacterial community structure in Chinese wetlands. Geoderma, 2019, 337: 290-299.

doi: 10.1016/j.geoderma.2018.09.035
[51]
SONG S S, ZHANG C, GAO Y, ZHU X Y, WANG R H, WANG M D, ZHENG Y L, HOU L J, LIU M, WU D M. Responses of wetland soil bacterial community and edaphic factors to two-year experimental warming and Spartina alterniflora invasion in Chongming Island. Journal of Cleaner Production, 2020, 250: 119502.
[52]
马骁. 海洋及洞穴环境细菌新种多相分类及一株药用植物内生链霉菌新种次级代谢产物研究[D]. 遵义: 遵义医科大学, 2024.
MA X. Polyphase classification of new bacterial species in marine and cave environments and study on secondary metabolites of a new species of endophytic Streptomyces in medicinal plants[D]. Zunyi: Zunyi Medcial University, 2024. (in Chinese)
[53]
马雪晴, 冀傲冉, 郑娇莉, 曹春霞, 龚艳, 黄大野, 王蓓蓓. 植物根际促生菌促生机制及其应用研究进展. 中国农业科技导报(中英文), 2025, 27(2): 13-23.
MA X Q, JI A R, ZHENG J L, CAO C X, GONG Y, HUANG D Y, WANG B B. Research progress on growth-promoting mechanism and application of plant growth-promoting rhizobacteria. Journal of Agricultural Science and Technology, 2025, 27(2): 13-23. (in Chinese)
[54]
张丽珍, 樊晶晶, 牛伟, 李涛, 吴荣海, 金益杰, 鹿茸. 盐碱地柠条根围土中黑曲霉的分离鉴定及解磷能力测定. 生态学报, 2011, 31(24): 7571-7578.
ZHANG L Z, FAN J J, NIU W, LI T, WU R H, JIN Y J, LU R. Isolation of phosphate solubilizing fungus(Aspergillus niger) from Caragana rhizosphere and its potential for phosphate solubilization. Acta Ecologica Sinica, 2011, 31(24): 7571-7578. (in Chinese)
[55]
姜焕焕, 祁佩时, 王通, 迟晓元, 陈明娜. 花生根际多功能固氮菌的分离及其耐盐碱特性研究. 生物技术通报, 2019, 35(3): 24-30.

doi: 10.13560/j.cnki.biotech.bull.1985.2018-0770
JIANG H H, QI P S, WANG T, CHI X Y, CHEN M N. Screening of multi-function nitrogen-fixing bacteria in peanut rhizosphere and their tolerances to saline. Biotechnology Bulletin, 2019, 35(3): 24-30. (in Chinese)
[56]
SHIRMOHAMMADI E, ALI ALIKHANI H, ALI POURBABAEI A, ETESAMI H. Improved phosphorus (P) uptake and yield of rainfed wheat fed with P fertilizer by drought-tolerant phosphate-solubilizing fluorescent pseudomonads strains: A field study in drylands. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2195-2211.
[57]
WU F, LI J R, CHEN Y L, ZHANG L P, ZHANG Y, WANG S, SHI X, LI L, LIANG J S. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests, 2019, 10(4): 348.
[58]
SAFIRZADEH S, CHOROM M, ENAYATIZAMIR N. Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.). Soil Research, 2019, 57(4): 333-341.
[59]
ZHANG T T, HU F, MA L. Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 2019, 14: 246-254.
[60]
刘金涛, 姚凡, 李臻园, 李庆懋, 黄立钰. 植物铁素吸收机制研究进展. 热带农业科学, 2022, 42(5): 26-33.
LIU J T, YAO F, LI Z Y, LI Q M, HUANG L Y. Advances on the mechanism of iron absorption in plants. Chinese Journal of Tropical Agriculture, 2022, 42(5): 26-33. (in Chinese)
[61]
CAVITE H J M, MACTAL A G, EVANGELISTA E V, CRUZ J A. Growth and yield response of upland rice to application of plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 2021, 40(2): 494-508.
[62]
李艳梅, 王琼瑶, 涂卫国, 崔永亮, 钟玘狄, 李俐珩, 陈强, 余秀梅. 镍胁迫下产铁载体细菌对花生的促生性. 微生物学通报, 2017, 44(8): 1882-1890.
LI Y M, WANG Q Y, TU W G, CUI Y L, ZHONG Q D, LI L H, CHEN Q, YU X M. Growth promoting activity of siderophore secreting bacteria for peanut plant under nickel stress. Microbiology China, 2017, 44(8): 1882-1890. (in Chinese)
[63]
SUN Y X, WU J L, SHANG X Y, XUE L G, JI G Y, CHANG S J, NIU J B, EMANEGHEMI B. Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Current Microbiology, 2022, 79(5): 150.

doi: 10.1007/s00284-022-02777-w pmid: 35396958
[64]
杨晓蕾, 李建宏, 姚拓, 梅丽娜, 李琦, 白洁, 朱青青, 赵晓倩, 赵树栋. 5株植物根际促生菌功能特性及培养条件. 草业科学, 2022, 39(1): 30-38.
YANG X L, LI J H, YAO T, MEI L N, LI Q, BAI J, ZHU Q Q, ZHAO X Q, ZHAO S D. Functional characteristics and culture conditions of five plant growth-promoting rhizobacteria strains. Pratacultural Science, 2022, 39(1): 30-38. (in Chinese)
[65]
SADEGHI A, KARIMI E, DAHAJI P A, JAVID M G, DALVAND Y, ASKARI H. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 2012, 28(4):1503-1509.
[66]
吴昕劢, 栗晗, 王经邦, 贾保磊, 姚燕来, 郑华宝, 刘妍. 耐盐菌株筛选及其对盐胁迫下番茄种子萌发促进效应解析. 南京农业大学学报, 2025: 1-14. https://link.cnki.net/urlid/32.1148.S.20250517.1811.002.
WU X M, LI H, WANG J B, JIA B L, YAO Y L, ZHENG H B, LIU Y. Screening of salt-tolerant bacterial strains and analysis of their effects on promoting tomato seed germination under salt stress. Journal of Nanjing Agricultural University, 2025: 1-14. https://link.cnki.net/urlid/32.1148.S.20250517.1811.002. (in Chinese)
[67]
王博瑞, 罗汶婧, 马红彬, 李慧萍. 根际促生细菌调控植物响应盐胁迫的作用机制. 微生物学通报, 2025: 1-20. https://doi.org/10.13344/j.microbiol.china.250187.
WANG B R, LUO W J, MA H B, LI H P. Mechanism of regulation of plant response to salt stress by plant growth-promoting rhizobacteria. Microbiology China, 2025: 1-20. https://doi.org/10.13344/j.microbiol.china.250187. (in Chinese)
[1] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[2] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[3] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[4] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[5] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[6] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[7] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[8] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[9] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[10] QU HaiYue, HAN JieNan, LI Ran, ZHANG Ze, LIU QianQian, HAO ZhuanFang, WENG JianFeng, ZHANG DeGui, ZHOU ZhiQiang, XU ZhenNan, RONG ZiGuo, WANG JuYing, YONG HongJun, LI MingShun. Evaluation of Salt Tolerance in Newly Developed Zhongdan Series Maize Hybrid Varieties and Their Parental Inbred Lines [J]. Scientia Agricultura Sinica, 2025, 58(20): 4100-4116.
[11] CHEN Jian, WU LiuGe, ZHANG Xin, DENG AiXing, SONG ZhenWei, ZHANG WeiJian, ZHENG ChengYan. Effects of Ridge Tillage and Sowing in Furrow on Soil Water and Salt Dynamics and Maize Growth in Coastal Saline-Alkali Land [J]. Scientia Agricultura Sinica, 2025, 58(20): 4259-4271.
[12] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[13] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[14] LI YueQi, MA ZhongHua, SU Ming, LIU Hao, MA FengLan, MA XiaoYing, LI Tao, LI QingYun, ZHANG Dan, LIU JiLi, WU Na. Response of Maize Photosynthetic Production Capacity in Saline- Alkaline Soil to Organic Fertilizer Application Rates Under Differential Tillage Practices [J]. Scientia Agricultura Sinica, 2025, 58(19): 3872-3889.
[15] LI ShuaiBing, LI ChenXin, REN Li, YU XiaoNa, GENG SaiNan, SHENG Kai, ZHANG YinJie, WANG YiLun. Effects of Soybean Planting on Phosphorus Absorption of Wheat and Phosphorus Transformation in Soil [J]. Scientia Agricultura Sinica, 2025, 58(19): 3932-3945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!