Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3767-3782.doi: 10.3864/j.issn.0578-1752.2025.18.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Plant Growth Regulators on Fruit and Raisin Quality of Thompson Seedless Grapes

WANG Di1(), HAN ShouAn2(), ZHANG Wen2, WANG Min2, SHI HuiDong1, ZHU XueHui2, BAI ShiJian3, LIU XuPeng2, TIAN Jia1(), XIE Hui2()   

  1. 1 College of Horticulture, Xinjiang Agricultural University/Key Laboratory of Characteristic Fruit Tree Research, Xinjiang Agricultural University, Urumqi 830052
    2 Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs/Xinjiang Crop Chemical Regulation Engineering Technology Research Center/Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang, Urumqi 830091
    3 Xinjiang Uygur Autonomous Region Grapes and Melons Research Institute, Shanshan 838200, Xinjiang
  • Received:2025-01-27 Accepted:2025-03-25 Online:2025-09-18 Published:2025-09-18
  • Contact: TIAN Jia, XIE Hui

Abstract:

【Objective】 This study aimed to investigate the co-synergistic action of different plant growth regulators compound combination on grape, optimize the increase fruit size method and reduce the concentration of gibberellin, so as to select the suitable plant growth regulators treatment for Thompson Seedless grape, and to provide the theoretical basis and technical support for flower and fruit management technology selection in Xinjiang. 【Method】 With Thompson Seedless grape as the experimental material, a split-split plot field experiment was conducted in Shanshan, Xinjiang Uygur Autonomous Region, China. The GA3 concentration for inflorescence elongation were used as main plots, and four levels were set: 0, 60, 80, and 100 mg·L-1. Three types of fruit-enlarging compound plant growth regulators including CPPU, TDZ, and BR were used as split-plots. The concentration levels of the fruit-enlarging compound plant growth regulators were used as split-split plots, and four levels were set: low, medium, relatively high, and high concentrations. This study focused on analyzing the effects of the three-factor combination GA3 concentration for inflorescence elongation, type of fruit-enlarging compound plant growth regulator, and concentration of the fruit-enlarging compound plant growth regulator on fruit quality, such as single berry weight, fruit shape index, soluble solid-to-acid ratio, and color parameters at the fruit ripening stage. The quality related to raisin processing was investigated, such as dry output rate, browning rate, color parameters and fullness of raisins. 【Result】 The single berry weight under different treatments were ranged from 2.64 to 4.88 g, mainly influenced by the type of fruit-enlarging compound regulator. Significant differences were observed among the three types of regulators, with the order being TDZ > CPPU > BR; The soluble solid content (SSC) in single berry ranged from 16.30% to 23.00%, influenced by three factors and their interactions. In factor A (GA3 concentration for inflorescence elongation), both 60, 80, and 100 mg·L-1 treatments were significantly higher than CK. In factor B (type of fruit-enlarging compound regulator), BR treatment was significantly higher than CPPU and TDZ treatments. The solid-to-acid ratio in berry ranged from 20.40 to 35.14, mainly influenced by factor B. The dry output rate of raisin ranged from 16.10% to 27.90%, affected by both three factors and their interactions. In factor A, the dry output rate of 80 mg·L-1 GA3 treatments were significantly higher than CK and the other two treatments. In factor B, the dry output rate under CPPU and BR treatments were significantly higher than TDZ. In factor C (concentration of fruit-enlarging compound regulator), the low-concentration treatment was significantly higher than the other three concentration treatments. The fullness of raisins index ranged from 0.54 to 0.97, influenced by both three factors and their interactions, and in factor A, both 60, 80, and 100 mg·L-1 GA3 treatments were significantly higher than 0 mg·L-1 GA3 treatment. In factor B, the fullness of raisins with TDZ and BR treatments were significantly higher than CPPU, and the high-concentration treatment was significantly higher than the other three concentration levels. The browning rate of raisin ranged from 5.71% to 65.17%, affected by both three factors and their interactions. In factor A, the 100 mg·L-1 GA3 treatment was significantly lower than CK, 60 and 80 mg·L-1 GA3 treatments. In factor B, the BR treatment was significantly lower than CPPU and TDZ treatments, and the relatively high-concentration treatment was significantly lower than the other three concentration levels. 【Conclusion】T30 treatment (80 mg·L-1 GA3 for inflorescence elongation, and 50 mg·L-1 GA3+10 mg·L-1 GA4+7+3 mg·L-1 TDZ for fruit enlargement) had the highest fresh fruit quality. T34 treatment (80 mg·L-1 GA3 for inflorescence elongation, and 50 mg·L-1 GA3+10 mg·L-1 GA4+7+2 mg·L-1 BR for fruit enlargement) had the highest quality related to raisin.

Key words: grape, raisin, plant growth regulator, flower and fruit management, fruit quality

Table 1

Experimental design of plant growth regulator treatment for Thompson Seedless grapes"

编号
Serial number
拉穗处理
Cluster elongation treatment
膨果复配调节剂种类
Types of fruit-enlarging compound regulator
浓度
Concentration (mg·L-1)
编号
Serial
number
拉穗处理
Cluster elongation treatment
膨果复配调节剂种类
Type of fruit-enlarging compound regulator
浓度
Concentration (mg·L-1)
T1 清水Water
(0 mg·L-1 GA3)
GA3+GA4+7+CPPU 50+10+0.5 T25 80 mg·L-1 GA3 GA3+GA4+7+CPPU 50+10+0.5
T2 GA3+GA4+7+CPPU 50+10+1 T26 GA3+GA4+7+CPPU 50+10+1
T3 GA3+GA4+7+CPPU 50+10+1.5 T27 GA3+GA4+7+CPPU 50+10+1.5
T4 GA3+GA4+7+CPPU 50+10+2 T28 GA3+GA4+7+CPPU 50+10+2
T5 GA3+GA4+7+TDZ 50+10+1 T29 GA3+GA4+7+TDZ 50+10+1
T6 GA3+GA4+7+TDZ 50+10+3 T30 GA3+GA4+7+TDZ 50+10+3
T7 GA3+GA4+7+TDZ 50+10+5 T31 GA3+GA4+7+TDZ 50+10+5
T8 GA3+GA4+7+TDZ 50+10+7 T32 GA3+GA4+7+TDZ 50+10+7
T9 GA3+GA4+7+BR 50+10+1 T33 GA3+GA4+7+BR 50+10+1
T10 GA3+GA4+7+BR 50+10+2 T34 GA3+GA4+7+BR 50+10+2
T11 GA3+GA4+7+BR 50+10+3 T35 GA3+GA4+7+BR 50+10+3
T12 GA3+GA4+7+BR 50+10+4 T36 GA3+GA4+7+BR 50+10+4
T13 60 mg·L-1 GA3 GA3+GA4+7+CPPU 50+10+0.5 T37 100 mg·L-1 GA3 GA3+GA4+7+CPPU 50+10+0.5
T14 GA3+GA4+7+CPPU 50+10+1 T38 GA3+GA4+7+CPPU 50+10+1
T15 GA3+GA4+7+CPPU 50+10+1.5 T39 GA3+GA4+7+CPPU 50+10+1.5
T16 GA3+GA4+7+CPPU 50+10+2 T40 GA3+GA4+7+CPPU 50+10+2
T17 GA3+GA4+7+TDZ 50+10+1 T41 GA3+GA4+7+TDZ 50+10+1
T18 GA3+GA4+7+TDZ 50+10+3 T42 GA3+GA4+7+TDZ 50+10+3
T19 GA3+GA4+7+TDZ 50+10+5 T43 GA3+GA4+7+TDZ 50+10+5
T20 GA3+GA4+7+TDZ 50+10+7 T44 GA3+GA4+7+TDZ 50+10+7
T21 GA3+GA4+7+BR 50+10+1 T45 GA3+GA4+7+BR 50+10+1
T22 GA3+GA4+7+BR 50+10+2 T46 GA3+GA4+7+BR 50+10+2
T23 GA3+GA4+7+BR 50+10+3 T47 GA3+GA4+7+BR 50+10+3
T24 GA3+GA4+7+BR 50+10+4 T48 GA3+GA4+7+BR 50+10+4
CK 0 0 0

Table 2

Effects of different plant growth regulators on basic physiological indicators of fresh fruit in Thompson Seedless grapes"

单粒质量
Single berry weight
(g)
纵径
Longitudinal diameter (cm)
横径
Transverse diameter
(cm)
果形指数
Fruit Shape Index
可溶性固形物含量
Soluble solids content (%)
总酸含量
Total acidity
(%)
固酸比
Solids to acid ratio
拉力
Tensile force (N)
硬度
Firmness
(N)
裂区方差分析(F值) Split-plot ANOVA (F value)
A 8.51* 11.41*** 7.78** 6.56** 68.81*** 12.15** 2.32 3.77* 2.6
B 59.19*** 6.75** 5.6** 3.5* 255.03*** 1.12 19.76*** 0.62 0.55
C 1.6 0.99 4.37** 5.52** 2.77* 0.74 1.44 1.84 2.11
A×B 5.17*** 3.69** 3.26* 2.2 17.24*** 1.75 4.29** 0.86 0.8
A×C 2.67* 2.26* 1.36 1.44 8.51*** 1.22 1.42 0.98 1.47
B×C 2.42* 2.48* 2.49* 2.86* 27.79*** 2.19 5.85*** 0.48 2.89**
A×B×C 2.04* 2.59*** 2.17** 2.68*** 4.52*** 3.58*** 3.47*** 0.44 2.11**
主区(因素A)平均值 Average of main area (Factor A)
0 3.64b 2.08b 1.48b 1.42ab 19.13c 0.77b 25.29a 2.22b 1.14b
60 3.73b 2.19a 1.47b 1.49a 21.22a 0.85a 25.36a 2.45ab 1.24a
80 3.83b 2.21a 1.52b 1.48a 21.56a 0.88a 24.9a 2.45ab 1.24a
100 4.18a 2.23a 1.6a 1.40b 20.73b 0.89a 23.58a 2.7a 1.2ab
副区(因素B)平均值 Average of sub-zone (Factor B)
CPPU 3.78b 2.2a 1.5b 1.48a 20.83b 0.84a 25.22a 2.44a 1.19a
TDZ 4.25a 2.18a 1.56a 1.41b 19.32c 0.84a 23.2b 2.52a 1.2a
BR 3.51c 2.14b 1.49b 1.45ab 21.82a 0.86a 25.93a 2.4a 1.22a
副副区(因素C)平均值 Average of nested factor (Factor C)
低浓度 Low concentration 3.82a 2.15a 1.54a 1.41b 20.86a 0.83a 25.6a 2.29b 1.21ab
中等浓度
Medium concentration
3.93a 2.2a 1.54a 1.45b 20.74ab 0.86a 24.62a 2.61a 1.24a
较高浓度
Relatively high concentration
3.83a 2.18a 1.46b 1.52a 20.54b 0.85a 24.45a 2.46ab 1.22ab
高浓度 High concentration 3.8a 2.17a 1.54a 1.42b 20.5b 0.84a 24.47a 2.46ab 1.15b

Table 3

The impact of different plant growth regulators on the color indicators of fresh Thompson Seedless grapes"

E L a b C h
裂区方差分析(F值) Split-plot ANOVA (F value)
A 45.3*** 25.93*** 7.95** 40.17*** 39.29*** 13.72***
B 7.61** 7.33** 43.79*** 5.50** 5.46** 41.35***
C 1.10 1.00 9.72*** 1.03 1.05 9.10***
A×B 5.95*** 5.17*** 2.37* 5.26*** 5.31*** 3.88**
A×C 1.58 1.13 4.12*** 1.67 1.68 4.36***
B×C 1.22 1.51 7.15*** 0.66 0.57 6.21***
A×B×C 2.39** 2.40** 3.31*** 3.31*** 3.31*** 3.00***
主区(因素A)平均值 Average of main area (Factor A)
0 20.93c 14.35c -1.41b 15.12c 117.93c 95.51a
60 20.62c 14.48c -1.17a 14.55d 107.78d 94.66b
80 22.99a 16.24a -1.03a 16.19a 133.21a 93.66c
100 21.98b 15.21b -1.17a 15.77b 127.93b 94.41b
副区(因素B)平均值 Average of sub-zone (Factor B)
CPPU 21.45b 14.98b -1.24b 15.27b 119.13b 94.73b
TDZ 21.00b 14.52b -1.44c 15.03b 116.20b 95.66a
BR 22.44a 15.72a -0.90a 15.91a 129.32a 93.29c
副副区(因素C)平均值 Average of nested factor (Factor C)
低浓度 Low concentration 22.01a 15.35a -1.17b 15.67a 125.75a 94.38bc
中等浓度 Medium concentration 21.49a 14.86a -1.03a 15.41a 121.87a 93.98c
较高浓度 Relatively high concentration 21.59a 15.12a -1.37c 15.30a 119.68a 95.25a
高浓度 High concentration 21.42a 14.95a -1.20b 15.23a 118.90a 94.63b

Table 4

The impact of different plant growth regulators on the quality of dried Thompson Seedless grapes"

单粒质量
Single berry weight
(g)
出干率
Drying yield
(%)
饱满度
Plumpness
纵径
Longitudinal diameter
(cm)
横径
Transverse diameter
(cm)
果形指数
Fruit Shape Index
可溶性固形物含量
Soluble solids content (%)
总酸含量
Total acidity
(%)
固酸比
Solids to acid ratio
裂区方差结果分析(F值) Split-plot ANOVA (F value)
A 22.28** 3.88 21.91** 3.87* 25.47*** 34.93*** 128.65*** 56.54*** 112.2***
B 4.95* 37.4*** 6.16** 2.84 0.81 1.94 291.37*** 13.13*** 15.94***
C 13.86*** 2.88* 2.63 2.91* 1.51 1.05 40.35*** 177 1.42
A×B 4.22** 6.11** 6.26** 3.44** 7.40*** 3.27** 118.16*** 18.70*** 22.59***
A×C 5.50*** 3.37** 1.93 1.95* 2.58** 2.42* 66.48*** 10.43*** 7.19***
B×C 12.42*** 3.93** 2.63* 2.45* 2.52* 2.01 46.9*** 2.31* 1.14
A×B×C 8.06*** 2.14* 7.22*** 3.01*** 7.16*** 2.39** 78.57*** 11.14*** 11.43***
主区(因素A)平均值 Average of main area (Factor A)
0 0.76b 21.15ab 0.66b 1.91b 0.96a 2.01b 78.33a 1.94c 43.69a
60 0.82a 22.45a 0.78a 1.99a 0.86b 2.33a 77.07b 2.96ab 27.61b
80 0.81a 21.46ab 0.78a 2.00a 0.87b 2.32a 73.14d 2.92b 26.72b
100 0.83a 19.98b 0.77a 1.97ab 0.85b 2.34a 75.53c 3.21a 25.91b
副区(因素B)平均值 Average of sub-zone (Factor B)
CPPU 0.82a 21.95a 0.71b 2.01a 0.89a 2.28a 74.72b 2.93a 28.03b
TDZ 0.80ab 19.08b 0.75a 1.94b 0.89a 2.20a 74.15c 2.63b 32.13a
BR 0.79b 22.75a 0.77a 1.95ab 0.88a 2.26a 79.19a 2.71b 32.78a
副副区(因素C)平均值 Average of nested factor (Factor C)
低浓度 Low concentration 0.82a 21.93a 0.74ab 1.98ab 0.90a 2.24a 77.18a 2.70a 31.12a
中等浓度
Medium concentration
0.83a 21.33ab 0.73b 2.01a 0.89a 2.29a 77.25a 2.87a 30.00a
较高浓度
Relatively high concentration
0.78b 20.59b 0.72b 1.95b 0.89a 2.22a 75.50b 2.78a 32.44a
高浓度 High concentration 0.79b 21.2ab 0.77a 1.93b 0.87a 2.25a 74.14c 2.69a 30.36a

Table 5

The impact of different plant growth regulators on the color of dried Thompson Seedless grapes"

褐变率
Browning rate (%)
△E L a b C h
裂区方差结果分析(F值) Split-plot ANOVA (F value)
A 37.61*** 30.60*** 14.50*** 66.50*** 9.58*** 14.35*** 32.14***
B 19.19*** 0.26 6.77** 0.90 6.14** 7.97*** 0.73
C 1.68 2.38 1.03 1.42 3.42* 2.74* 2.44
A×B 14.76*** 10.43*** 8.40*** 7.75*** 6.03*** 3.55** 7.76***
A×C 8.08*** 2.31* 2.07* 3.13** 3.18** 3.03** 3.19**
B×C 28.73*** 4.23*** 3.13** 6.97*** 2.59* 1.27 5.47***
A×B×C 12.17*** 2.77*** 2.36** 3.32*** 3.62*** 4.33*** 2.96***
主区(因素A)平均值 Average of main area (Factor A)
0 32.68b 21.02ab 34.73b 5.04c 14.41a 15.51b 70.05b
60 38.10a 20.06b 34.27b 5.96b 13.50b 14.99c 65.33c
80 34.11ab 16.80c 33.11c 7.01a 14.65a 16.43a 63.96c
100 19.89c 21.30a 36.53a 4.30d 15.06a 15.77b 73.71a
副区(因素B)平均值 Average of sub-zone (Factor B)
CPPU 30.79b 19.67a 34.34b 5.64a 14.29b 15.63b 67.80a
TDZ 35.89a 19.92a 34.23b 5.44a 14.11b 15.40b 68.16a
BR 26.91c 19.79a 35.41a 5.65a 14.81a 16.01a 68.82a
副副区(因素C)平均值 Average of nested factor (Factor C)
低浓度 Low concentration 31.28ab 19.08b 34.19a 5.78a 13.90b 15.33b 66.77b
中等浓度 Medium concentration 31.32ab 20.25a 34.88a 5.65a 14.54a 15.88a 68.10ab
较高浓度 Relatively high concentration 29.81b 19.96ab 34.69a 5.38a 14.75a 15.85a 69.54a
高浓度 High concentration 32.37a 19.89ab 34.19a 5.49a 14.43ab 15.66ab 68.63ab

Fig. 1

Correlation between raisin browning rate and color parameters of raisins A: Raisin browning rate; B: Raisin color difference; △E; C: Brightness L value; D: Red-Green value a; E: Yellow-Blue value b; F: Saturation C value; G: Hue angle h value. “*” indicate significant difference at 0.05 level. The same as below"

Fig. 2

Correlation between fruit quality and raisin quality indicators “**” and “***” indicate significant differences at 0.01 and 0.001 level, respectively"

Table 6

Calculation results of entropy weight method for fresh table grapes and raisins"

鲜食葡萄项
Fresh table grape category
信息熵值
Entropy
value (E)
信息效用值
Information utility value (D)
权重
Weight
(%)
葡萄干项
Raisin category
信息熵值
Entropy
value (E)
信息效用值
Information utility value (D)
权重
Weight
(%)
固酸比 Solids to acid ratio 0.942 0.058 18.628 饱满度 Plumpness 0.949 0.051 21.196
果形指数 Fruit shape index 0.957 0.043 13.899 果形指数 Fruit shape index 0.962 0.038 15.895
C 0.964 0.036 11.575 出干率 Drying yield 0.964 0.036 15.164
拉力 Tensile force 0.965 0.035 11.050 C 0.968 0.032 13.359
总酸含量 Total acidity 0.972 0.028 9.000 横径 Transverse diameter 0.974 0.026 10.805
硬度 Firmness 0.973 0.027 8.482 褐变率 Browning rate 0.976 0.024 9.985
可溶性固形物含量
Soluble solids content
0.973 0.027 8.474 纵径
Longitudinal diameter
0.981 0.019 8.100
单粒质量 Single berry weight 0.975 0.025 7.955 单粒质量 Single berry weight 0.987 0.013 5.495
横径 Transverse diameter 0.977 0.023 7.366
纵径 Longitudinal diameter 0.989 0.011 3.569

Table 7

Comprehensive evaluation scores and rankings of fruit quality and raisin quality"

处理
Experimental
treatment
鲜果综合评价
Comprehensive evaluation
of fresh fruits
排名
Ranking
处理
Experimental
treatment
葡萄干综合评价
Comprehensive evaluation
of raisins
排名
Ranking
T30 0.63046 1 T34 0.76374 1
T35 0.59237 2 T35 0.60628 2
T13 0.58234 3 T16 0.60122 3
T45 0.58077 4 T36 0.58582 4
T23 0.57811 5 T48 0.58183 5
T42 0.57524 6 T45 0.55168 6
T22 0.56787 7 T26 0.54968 7
T1 0.56585 8 T46 0.54228 8
T11 0.56360 9 T24 0.53774 9
T32 0.55482 10 T13 0.52848 10
T18 0.54471 11 T23 0.52813 11
T37 0.53980 12 T29 0.52734 12
T46 0.53773 13 T33 0.52534 13
T29 0.53543 14 T42 0.51516 14
T28 0.53396 15 T14 0.51476 15
T26 0.53183 16 T38 0.50854 16
T39 0.52440 17 T37 0.50831 17
T36 0.52437 18 T27 0.50314 18
T3 0.52085 19 T47 0.48774 19
T44 0.51070 20 T17 0.48512 20
T12 0.50706 21 T32 0.48451 21
T33 0.50273 22 T44 0.48024 22
T16 0.50007 23 T21 0.47782 23
T27 0.49742 24 T39 0.47721 24
T10 0.49724 25 T2 0.47631 25
T38 0.49708 26 T15 0.47338 26
T15 0.47724 27 T41 0.47331 27
T43 0.47504 28 T1 0.46958 28
T2 0.47344 29 T12 0.46678 29
T25 0.46336 30 T3 0.45284 30
T9 0.46030 31 T30 0.44870 31
T24 0.44854 32 T31 0.44500 32
T48 0.44275 33 T22 0.43962 33
T20 0.44135 34 T25 0.43049 34
T17 0.43501 35 T4 0.42830 35
T34 0.43144 36 T18 0.41589 36
T41 0.42700 37 T28 0.40540 37
T47 0.41738 38 T10 0.40077 38
T40 0.41649 39 T19 0.39294 39
T14 0.40659 40 T9 0.39135 40
T19 0.38924 41 T20 0.38624 41
T31 0.38228 42 T43 0.37588 42
CK 0.37035 43 T11 0.37247 43
T8 0.36615 44 T40 0.35880 44
T5 0.35495 45 CK 0.34774 45
T7 0.34140 46 T7 0.34187 46
T21 0.33167 47 T5 0.32411 47
T6 0.26103 48 T6 0.31295 48
T4 0.21646 49 T8 0.29751 49
[1]
孔庆山. 中国葡萄志. 北京: 中国农业科学技术出版社, 2004: 12-46.
KONG Q S. Chinese Grapevine. Beijing: China Agricultural Science and Technology Press, 2024: 12-46. (in Chinese)
[2]
新疆维吾尔自治区统计局. 新疆统计年鉴. 北京: 中国统计出版社, 2022.
Statistics Bureau of Xinjiang Uygur Autonomous Region. 2022 Xinjiang Statistical Yearbook. Beijing: Standards Press of China, 2022. (in Chinese)
[3]
白世践, 郑明, 户金鸽. 不同植物生长调节剂对无核白葡萄及葡萄干产量和品质的影响. 黑龙江农业科学, 2023(11):77-82.
BAI S J, ZHENG M, HU J G. Effects of different plant growth regulators on quality and yield of Thompson Seedless grape and raisin. Heilongjiang Agricultural Sciences, 2023(11): 77-82. (in Chinese)
[4]
WANG X C, ZHAO M Z, WU W M, KORIR N K, QIAN Y M, WANG Z W. Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis vinifera L. Genes & Genomics, 2017, 39(5): 493-507.
[5]
陶建敏, 韩传光, 章镇, 徐喜楼. GA3在葡萄生产上的应用. 中外葡萄与葡萄酒, 2003(6): 33-35.
TAO J M, HAN C G, ZHANG Z, XU X L. Application of GA3 on grapes. Sino-Overseas Grapevine & Wine, 2003(6): 33-35. (in Chinese)
[6]
张首伟, 张剑侠. 葡萄无核化与膨果处理研究进展. 中国果树, 2022(5): 8-14.
ZHANG S W, ZHANG J X. Advance on seedless induction and fruit enlargement of grape. China Fruits, 2022(5): 8-14. (in Chinese)
[7]
吐鲁番市市场监督管理局. 植物生长调节剂赤霉素的使用规程[S]. 吐鲁番: 吐鲁番市市场监督管理局, 2019.
Turpan Municipal Market Supervision Administration. Regulations for the use of plant growth regulator gibberellic acid[S]. Turpan: Turpan Municipal Market Supervision Administration, 2019. (in Chinese)
[8]
张万毅. 赤霉酸(GA3)对无核白葡萄果穗及果实生长的影响[D]. 石河子: 石河子大学, 2018.
ZHANG W Y. Effects of gibberellic acid (GA3) on cluster and fruit growth of Thompson Seedless grapes[D]. Shihezi: Shihezi University, 2018. (in Chinese)
[9]
张飞雪, 张书红, 马延东, 陈峰, 宋贤杰, 刘锐杰. TDZ、CPPU和GA3对‘阳光玫瑰’葡萄果实品质的影响. 园艺学报, 2023, 50(12): 2633-2640.

doi: 10.16420/j.issn.0513-353x.2023-0083
ZHANG F X, ZHANG S H, MA Y D, CHEN F, SONG X J, LIU R J. Effects of TDZ, CPPU and GA3 on fruit quality of ‘Shine Muscat’ grape. Acta Horticulturae Sinica, 2023, 50(12): 2633-2640. (in Chinese)
[10]
李雅善, 南立军, 王萌, 郁松林, 崔长伟, 杨俊梅, 王艳君. 芸苔素内酯对紫香无核葡萄果实基本特征指标的影响. 中国果菜, 2019, 39(6): 27-31.
LI Y S, NAN L J, WANG M, YU S L, CUI C W, YANG J M, WANG Y J. Effects of brassinolide on basic characteristic indices of Purple Sweet Seedless grape. China Fruit and Vegetable, 2019, 39(6): 27-31. (in Chinese)
[11]
AZUARA M, GONZÁLEZ M R, MANGAS R, MARTÍN P. Effects of the application of forchlorfenuron (CPPU) on the composition of verdejo grapes. BIO Web of Conferences, 2023, 56: 01022.
[12]
户金鸽, 白世践, 陈光, 赵荣华, 蔡军社. 不同级别无核白葡萄果实外观与品质差异特征及分级. 新疆农业科学, 2022, 59(3): 567-577.

doi: 10.6048/j.issn.1001-4330.2022.03.006
HU J G, BAI S J, CHEN G, ZHAO R H, CAI J S. Research on preliminary grading evaluation of fruit quality of Thompson Seedless grape. Xinjiang Agricultural Sciences, 2022, 59(3): 567-577. (in Chinese)
[13]
户金鸽, 白世践. 无核白葡萄营养系果实品质及葡萄干特性分析. 新疆农业科学, 2023, 60(11): 2751-2763.

doi: 10.6048/j.issn.1001-4330.2023.11.019
HU J G, BAI S J. Study on the fruit quality and raisins character of Thompson Seedless and its lines. Xinjiang Agricultural Sciences, 2023, 60(11): 2751-2763. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.11.019
[14]
邹震, 于爱水, 任洪春, 战良, 刘更森, 冷翔鹏, 房经贵. 日光温室‘藤稔’葡萄更新修剪时期对其生长、产量和品质的影响. 园艺学报, 2021, 48(12): 2471-2480.

doi: 10.16420/j.issn.0513-353x.2021-0097
ZOU Z, YU A S, REN H C, ZHAN L, LIU G S, LENG X P, FANG J G. Effect of different renewal pruning time on the growth,yield and fruit quality of ‘Fujiminori’ grapes in sunlight greenhouse. Acta Horticulturae Sinica, 2021, 48(12): 2471-2480. (in Chinese)
[15]
张克坤, 陈可钦, 李婉平, 乔浩蓉, 张俊霞, 刘凤之, 房玉林, 王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响. 中国农业科学, 2023, 56(1): 129-143. doi: 10.3864/j.issn.0578-1752.2023.01.010.
ZHANG K K, CHEN K Q, LI W P, QIAO H R, ZHANG J X, LIU F Z, FANG Y L, WANG H B. Effects of irrigation amount on berry development and aroma components accumulation of Shine Muscat grape in root-restricted cultivation. Scientia Agricultura Sinica, 2023, 56(1): 129-143. doi: 10.3864/j.issn.0578-1752.2023.01.010. (in Chinese)
[16]
吕馨宁, 王玥, 贾润普, 王胜男, 姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰’葡萄采后品质的影响. 中国农业科学, 2022, 55(7): 1411-1422. doi: 10.3864/j.issn.0578-1752.2022.07.012.
X N, WANG Y, JIA R P, WANG S N, YAO Y X. Effects of melatonin treatment on quality of stored Shine Muscatgrapes under different temperatures. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422. doi: 10.3864/j.issn.0578-1752.2022.07.012. (in Chinese)
[17]
麦斯乐, 王艳蒙, 朱学慧, 韩守安, 王敏, 谢辉, 杭林枫, 周龙, 张雯. 冠菌素对‘火焰无核’葡萄果实着色及品质的影响. 经济林研究, 2024, 42(1): 201-210.
MAI S L, WANG Y M, ZHU X H, HAN S A, WANG M, XIE H, HANG L F, ZHOU L, ZHANG W. Effects of coronatine on coloration and quality of ‘Flame Seedless’ grape berry. Non-wood Forest Research, 2024, 42(1): 201-210. (in Chinese)
[18]
谢辉, 张雯, 韩守安, 王敏, 白世践, 权睿杰, 唐晨淇, 赵哲啸, 潘明启, 艾孜买提·艾海提, 李疆, 陆胜祖. 新疆晾房环境对绿色葡萄干色泽的影响. 农业工程学报, 2019, 35(7): 295-302.
XIE H, ZHANG W, HAN S A, WANG M, BAI S J, QUAN R J, TANG C Q, ZHAO Z X, PAN Q M, AIHAITI A Z M T, LI J, LU S Z. Effect of drying room environment on color of green raisin in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 295-302. (in Chinese)
[19]
王有霞, 陵军成. 栽培中赤霉酸处理对葡萄品质和耐藏力的影响. 保鲜与加工, 2018, 18(3): 38-42.
WANG Y X, LING J C. Effect of GA3 treatment on quality and storage tolerance of grape in growth. Storage and Process, 2018, 18(3): 38-42. (in Chinese)
[20]
SHIN H W, KIM G H, CHOI C. Effects of plant growth regulators and floral cluster thinning on fruit quality of ‘Shine Muscat’ grape. Horticultural Science and Technology, 2019, 37(6): 678-686.
[21]
郁松林, 肖年湘, 王春飞. 植物生长调节剂对葡萄果实品质调控的研究进展. 石河子大学学报(自然科学版), 2008, 26(4): 439-443.
YU S L, XIAO N X, WANG C F. Regulation of quality of grape berries by plant growth regulators. Journal of Shihezi University (Natural Science), 2008, 26(4): 439-443. (in Chinese)
[22]
王西成, 王壮伟, 吴伟民, 赵密珍. 植物生长调节剂对葡萄果实品质影响的研究进展. 中外葡萄与葡萄酒, 2018(4): 103-107.
WANG X C, WANG Z W, WU W M, ZHAO M Z. Research progress on effect of plant growth regulators of grape quality. Sino-Overseas Grapevine & Wine, 2018(4): 103-107. (in Chinese)
[23]
刘莹. 植物生长调节剂对葡萄果实品质的影响[D]. 沈阳: 沈阳农业大学, 2023.
LIU Y. Effects of plant growth regulators ongrape berries[D]. Shenyang: Shenyang Agricultural University, 2023. (in Chinese)
[24]
LATT T T, LWIN H P, SEO H J, HONG S S, LEE J. Preharvest gibberellic acid4+7 (GA4+7) treatment induces physiological disorders by mediating major metabolites in cold-stored ‘Wonhwang’ pears (Pyrus pyrifolia Nakai). Scientia Horticulturae, 2024, 329: 112971.
[25]
KAPŁAN M, NAJDA A, BARYŁA P, KLIMEK K. Effect of gibberellic acid concentration and number of treatments on yield components of ‘Einset Seedless’ grapevine cultivar. Horticultural Science, 2017, 44(4): 195-200.
[26]
王莎, 程大伟, 顾红, 李明, 何莎莎, 李芳菲, 谷世超, 陈锦永. 植物生长调节剂对‘阳光玫瑰’葡萄果实无核及品质的影响. 果树学报, 2019, 36(12): 1675-1682.
WANG S, CHENG D W, GU H, LI M, HE S S, LI F F, GU S C, CHEN J Y. Effects of plant growth regulators on the seedless rate and fruit quality of ‘Shine Muscat’ grape. Journal of Fruit Science, 2019, 36(12): 1675-1682. (in Chinese)
[27]
李秀杰, 韩真, 李晨, 逯志斐, 李勃. 生长调节剂对阳光玫瑰葡萄果实品质的影响. 中外葡萄与葡萄酒, 2016(6): 20-23.
LI X J, HAN Z, LI C, LU Z F, LI B. Effects of plant growth regulators on Shine Muscat fruit quality. Sino-Overseas Grapevine & Wine, 2016(6): 20-23. (in Chinese)
[28]
郝峰鸽, 李桂荣, 王梓豪, 牛生洋. GA3和CPPU对‘金田玫瑰’葡萄无核化及果实品质的影响. 中外葡萄与葡萄酒, 2020(2): 29-33.
HAO F G, LI G R, WANG Z H, NIU S Y. Effects of GA3 and CPPU on seedlessness and berry quality of ‘Jintian Meigui’ grape. Sino- Overseas Grapevine & Wine, 2020(2): 29-33. (in Chinese)
[29]
JÁUREGUI-RIQUELME F, KREMER-MORALES M S, ALCALDE J A, PÉREZ-DONOSO A G. Pre-anthesis CPPU treatment modifies quality and susceptibility to post-harvest berry cracking of Vitis vinifera cv. ‘Thompson Seedless’. Journal of Plant Growth Regulation, 2017, 36(2): 413-423.
[30]
REYNOLDS A, ROBBINS N, LEE H S, KOTSAKI E. Impacts and interactions of abscisic acid and gibberellic acid on sovereign coronation and Skookum Seedless table grapes. American Journal of Enology and Viticulture, 2016, 67(3): 327-338.
[31]
杨阳, 蒋锡龙, 任凤山, 王咏梅, 苏玲, 王鹏飞, 高欢欢. 芸苔素内酯对酿酒葡萄果穗拉长及果实品质的影响. 中外葡萄与葡萄酒, 2018(5): 7-11.
YANG Y, JIANG X L, REN F S, WANG Y M, SU L, WANG P F, GAO H H. Effect of brassinolide on cluster length and berry quality of wine grape. Sino-Overseas Grapevine & Wine, 2018(5): 7-11. (in Chinese)
[32]
郑秋玲, 王婷, 张超杰, 肖慧琳, 刘万好, 卢建声, 唐美玲. 设施促早栽培‘藤稔’葡萄无核化试验初探. 烟台果树, 2021(1): 9-11.
ZHENG Q L, WANG T, ZHANG C J, XIAO H L, LIU W H, LU J S, TANG M L. A preliminary study on the denuclearization experiment of promoting early cultivation of ‘Fujimori’ grape by facilities. Yantai Fruits, 2021(1): 9-11. (in Chinese)
[33]
郭淑萍, 杨顺林, 杨玉皎, 张永辉, 孟富宣, 何建军, 张俊松, 金杰. GA3和CPPU对无核翠宝葡萄果实品质的影响. 果树学报, 2022, 39(10): 1834-1844.
GUO S P, YANG S L, YANG Y J, ZHANG Y H, MENG F X, HE J J, ZHANG J S, JIN J. Effect of GA3 and CPPU treatments on fruit quality of Wuhe Cuibao grape. Journal of Fruit Science, 2022, 39(10): 1834-1844. (in Chinese)
[34]
白世践, 李超, 赵荣华, 陈光, 蔡军社. 赤霉素与氯吡苯脲处理对‘克瑞森’无核葡萄果实品质的影响. 北方园艺, 2015(14): 7-10.
BAI S J, LI C, ZHANG R H, CHENG G, CAI J S. Effect of GA3 and CPPU treatments on fruit quality of ‘Crimson Seedless’ grape. Northern Horticulture. 2015(14): 7-10. (in Chinese)
[35]
郑直. CPPU、TDZ及不同套袋方式处理对‘阳光玫瑰’葡萄果实生长发育的影响[D]. 南京: 南京农业大学, 2021.
ZHANG Z. Effects of CPPU, TDZ and different bagging methods onfruit growth and development of ‘Shine Muscat’[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
[36]
王瑞华, 郭峰, 李海峰. 吐鲁番葡萄干产业发展分析及再升级策略. 中外葡萄与葡萄酒, 2015(6): 58-60.
WANG R H, GUO F, LI H F. Turpan raisin industry development analysis and re-upgrading strategy. Sino-Overseas Grapevine & Wine, 2015(6): 58-60. (in Chinese)
[37]
郭春苗, 伍新宇, 周晓明, 樊丁宇, 谢辉, 张付春, 潘明启, 卢春生. 葡萄干饱满度评定指标及影响因子研究. 新疆农业科学, 2015, 52(6): 1033-1039.
GUO C M, WU X Y, ZHOU X M, FAN D Y, XIE H, ZHANG F C, PAN Q M, LU C S. Study on evaluation index and impact factors of the raisins replete rate. Xinjiang Agricultural Sciences, 2015, 52(6): 1033-1039. (in Chinese)
[38]
李超, 白世践, 赵荣华, 陈光, 郑贺云, 蔡军社. 不同糖度葡萄对制干效果的影响. 北方园艺, 2015(15): 132-135.
LI C, BAI S J, ZHAO R H, CHEN G, ZHENG H Y, CAI J S. Effect of different sugar content grapes on the influence of raisin. Northern Horticulture, 2015(15): 132-135. (in Chinese)
[39]
ASGHARI M, REZAEI-RAD R. 24-Epibrassinolide enhanced the quality parameters and phytochemical contents of table grape. Journal of Applied Botany and Food Quality, 2018, 91: 226-231.
[40]
加帕尔·卡迪尔, 何丹, 麦麦提艾力·热合曼, 尼加提·阿布德热衣木, 海利力·库尔班, 促干剂对GA3处理和未处理无核白葡萄产量及品质的影响. 安徽农业科学, 2017, 45(33): 45-48, 51.
KADIER J P E, HE D, REHEMAN M M T A L, ABUDEREYIMU N J T, KUERBAN H L L. Effect of pro-dry agent on the productivity and quality of Thompson Seedless grapes (Vitis vinifera L.) treated or untreated by GA3. Journal of Anhui Agricultural Sciences, 2017, 45(33): 45-48, 51. (in Chinese)
[41]
户金鸽, 白世践. 赤霉素处理对‘无核白’葡萄及葡萄干品质的影响. 食品与发酵工业, 2024(9): 1-14.
HU J G, BAI S J. Effects of gibberellic acid on berry and raisin of Thompson Seedless grape. Food and Fermentation Industries, 2024(9): 1-14. (in Chinese)
[42]
李具鹏, 傅茂润, 杨晓颖. 1-MCP处理对采后葡萄果梗褐变及叶绿素降解相关基因的影响. 食品工业科技, 2018, 39(20): 268-273, 285.
LI J P, FU M R, YANG X Y. Effect of 1-MCP treatment on postharvest browning and chlorophyll breakdown pathway related genes in grape rachis. Science and Technology of Food Industry, 2018, 39(20): 268-273, 285. (in Chinese)
[1] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[2] TANG XueShen, DANG ShiZhuo, ZHOU Juan, LI JiaHao, LI MeiHua, HU Hao, ZHANG YaHong. Analysis of VvBES1-1 Involvement in Flower Bud Differentiation of Red Globe Grape Based on Red and Blue Light Regulation [J]. Scientia Agricultura Sinica, 2025, 58(8): 1650-1662.
[3] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[4] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[5] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[6] YU Huan, LIN Ling, GUO RongRong, CAO XiongJun, WANG Bo, FANG JingGui, XIE ShuYu, HUANG XiaoYun, HAN JiaYu, BAI XianJin. Investigation and Evaluation of Inflorescence Attachment and Quality of Grape Germplasm Resources in The Hot Zone Guangxi [J]. Scientia Agricultura Sinica, 2025, 58(17): 3503-3515.
[7] WANG HuiLing, ZHANG YingYing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape [J]. Scientia Agricultura Sinica, 2025, 58(13): 2645-2662.
[8] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[9] DONG Jie, ZHANG Peng, LI WangZe, LI HeFang, ZHOU GuoChao, CHEN KeQin, FANG YuLin, ZHANG KeKun. Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of 'Shine Muscat' Grapes [J]. Scientia Agricultura Sinica, 2025, 58(10): 2008-2021.
[10] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[11] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[12] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[13] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[14] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[15] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!