Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3690-3709.doi: 10.3864/j.issn.0578-1752.2025.18.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Types of Fertilizers and Nitrogen Levels on Nitrogen Utilization, Yield and Quality of Weak Gluten Wheat

LI ZiHong(), ZHAO JiaWen, OU XingYu, LI XuHua, DING XiaoFei, WANG YiLang, HUANG ZhengLai, MA ShangYu, FAN YongHui, ZHANG WenJing()   

  1. College of Agriculture, Anhui Agricultural University/Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huanghe-Huaihe Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036
  • Received:2024-10-31 Accepted:2025-01-23 Online:2025-09-18 Published:2025-09-18
  • Contact: ZHANG WenJing

Abstract:

【Objective】 This research investigated the effects of different types of fertilizers on the field traits, nitrogen absorption and utilization, yield, yield components, and processing quality of weak-gluten wheat following rice cultivation in the Jiang-Huai region. The goal was to provide a theoretical basis for the selection of optimal fertilizer types and regulation of application rates for achieving high yield and quality of weak-gluten wheat in this region. 【Method】 The two weak-gluten wheat varieties, including Yangmai 20 (YM20) and Baihumai 1 (BHM1), were used as experimental materials. The experiment was set three nitrogen levels: 150 kg·hm-2 (N10), 180 kg·hm-2 (N12), and 210 kg·hm-2 (N14), with an additional nitrogen-free treatment (N0) to calculate nitrogen efficiency. Four types of fertilizers were applied: compound fertilizer + urea (F1), slow-release mixed fertilizer (F2), controlled- release fertilizer (F3), and wheat formula fertilizer (F4). The effects of different treatments on wheat population dynamics, nitrogen utilization, yield, and quality were analyzed. 【Result】As nitrogen application levels increased, the yield and quality indicators of weak-gluten wheat improved. The one-time basal application of slow-release mixed fertilizer, controlled-release fertilizer, and wheat formula fertilizer significantly increased the SPAD value of the flag leaf after anthesis and the number of spikes at maturity. Compared with the compound fertilizer+urea treatment, the nitrogen accumulation in the above-ground parts under slow-release mixed fertilizer, controlled-release fertilizer, and wheat formula fertilizer was increased by 5.0%-12.8%, 0.8%-6.2%, and 9.9%-17.2%, respectively; the nitrogen utilization efficiency increased by 10.3%-26.9%, 4.3%-16.5%, and 22.1%-39.8%, respectively; during anthesis, the activities of nitrate reductase (NR) in the flag leaf increased by 2.6%-8.8%, -2.9%-1.5%, and 5.1%-12.8%; glutamine synthetase (GS) activity increased by 9.0%-23.8%, 2.0%-8.9%, and 11.8%-28.7%; and glutamate synthase (GOGAT) activity increased by 3.9%-18.4%, 0.8%-8.9%, and 7.7%-24.0%; yield increased by 5.0%-11.5%, 1.8%-7.6%, and 9.7%-18.4%, respectively. At nitrogen levels of 180 and 210 kg·hm-2, slow-release mixed fertilizer, controlled-release fertilizer, and wheat formula fertilizer all resulted in varying degrees of yield improvement compared with the compound fertilizer+urea treatment. At the same nitrogen levels, slow-release mixed fertilizer and controlled-release fertilizer significantly reduced grain protein content, wet gluten content, grain hardness, and solvent retention capacity compared with the compound fertilizer + urea treatment. They also reduced dough formation time and stability time, lowered water absorption rate, and the farinograph quality number. These treatments also enhanced the dough rheological properties and weakened the gluten strength. 【Conclusion】For weak-gluten wheat cultivation following rice in the Jiang-Huai region, it was recommended to control the nitrogen level at 180-210 kg·hm-2. A one-time basal application of slow-release mixed fertilizer could ensure both high quality and high yield of weak-gluten wheat.

Key words: weak gluten wheat, slow-release mixed fertilizer, compound fertilizer, controlled-release fertilizer, wheat formula fertilizer, yield, nitrogen utilization, processing quality, rheological properties

Table 1

Nutrient content of plough layer (0-20 cm) in experimental site"

年份
Year
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
碱解氮
Alkali hydrolysable N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
酸碱度
pH
2022-2023 28.80 1.04 103.22 40.36 100.72 5.43
2023-2024 29.15 0.92 107.30 43.61 106.88 5.35

Fig. 1

Temperature and precipitation during wheat growth period"

Table 2

Fertilizer types and application amount of each treatment"

处理
Treatment
肥料类型及配比
Fertilizer type and ratio
肥料施用量
Fertilizer application amount (kg·hm-2)
纯氮
N (kg·hm-2)
纯磷
P (kg·hm-2)
纯钾
K (kg·hm-2)
N10F1 复合肥+尿素
Traditional compound fertilizer + urea
(17-17-17) (46-0-0)
复合肥Compound 尿素Urea 150.00 147.00 157.50
617.65 97.83
N12F1 741.18 117.39 180.00 147.00 157.50
N14F1 864.71 136.96 210.00 147.00 157.50
N10F2 缓释掺混肥
Slow-release mixed fertilizer
(20-10-15)
750.00 150.00 147.00 157.50
N12F2 900.00 180.00 147.00 157.50
N14F2 1050.00 210.00 147.00 157.50
N10F3 控失肥
Controlled-release fertilizer
(24-12-7)
625.00 150.00 147.00 157.50
N12F3 750.00 180.00 147.00 157.50
N14F3 875.00 210.00 147.00 157.50
N10F4 小麦配方肥
Wheat formula fertilizer
(25-13-7)
600.00 150.00 147.00 157.50
N12F4 720.00 180.00 147.00 157.50
N14F4 840.00 210.00 147.00 157.50

Fig. 2

Effects of different types of fertilizers on SPAD value of main functional leaves of weak gluten wheat A: 2022-2023, B: 2023-2024. JS: Jointing stage; BS: Booting stage; AS: Anthesis stage; 10 DAA: 10 days after anthesis; 20 DAA: 20 days after anthesis. Different lowercase letters are significant at the probability level of 0.05. The same as below"

Fig. 3

Effects of different types of fertilizers on dynamics of stem and tiller in weak gluten wheat"

Fig. 4

Effects of different types of fertilizers on nitrogen use efficiency of weak gluten wheat"

Fig. 5

Effects of different types of fertilizers on the activities of nitrogen metabolism enzymes in flag leaves of weak gluten wheat"

Table 3

Variance analysis of yield and components of weak gluten wheat with different types of fertilizers"

年份
Year
处理
Treatment
白湖麦1号 BHM 1 扬麦20 YM 20
穗数Spike number
(×104·hm-2)
穗粒数Grain per spike 千粒重
1000-kemel weight(g)
产量Grain
yield
(kg·hm-2)
穗数Spike number
(×104·hm-2)
穗粒数
Grain per spike
千粒重
1000-kemel weight(g)
产量Grain
yield
(kg·hm-2)
2022-2023 施氮水平 N level ** ** ** ** ** ** ** **
肥料种类Fertilizer types
施氮水平×肥料种类
N×F
* ** NS ** NS ** * **
NS NS NS NS NS NS NS NS
2023-2024 施氮水平 N level ** ** ** ** ** ** ** **
肥料种类Fertilizer types施氮水平×肥料种类
N×F
NS NS NS ** NS ** NS **
NS NS NS NS NS NS NS NS

Table 4

Effects of different types of fertilizers on yield and components of weak gluten wheat (2022-2023)"

品种
Variety
处理
Treatment
穗数
Spike number (×104·hm2)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg·hm-2)
白湖麦1号
BHM1
N10F1 439.35d 39.54c 38.38ab 6668.54d
N10F2 464.14bcd 40.71abc 38.25b 7218.52cd
N10F3 456.11cd 40.32abc 38.56ab 7104.55cd
N10F4 468.28abcd 41.95ab 38.42ab 7543.60bc
N12F1 456.62cd 39.99bc 38.48ab 7023.55cd
N12F2 494.22abc 40.55abc 38.32ab 7677.11bc
N12F3 470.86abcd 40.61abc 39.03ab 7459.04bc
N12F4 496.57abc 42.07ab 38.62ab 8065.19ab
N14F1 462.45b-d 40.13bc 38.60ab 7157.85cd
N14F2 500.78ab 41.12abc 38.76ab 7977.96ab
N14F3 480.18abcd 41.68abc 38.50ab 7704.45bc
N14F4 507.43a 42.38a 39.43a 8477.79a
扬麦20
YM20
N10F1 458.85ab 37.97d 38.20abc 6648.39e
N10F2 462.43ab 40.37abc 37.48c 6978.85cde
N10F3 445.12b 40.46abc 37.68bc 6786.07de
N10F4 462.52ab 40.84ab 38.63abc 7293.37bcde
N12F1 475.29ab 38.61cd 38.44abc 7061.54cde
N12F2 478.36ab 40.92ab 38.03abc 7450.44bcd
N12F3 464.16ab 41.10ab 38.06abc 7253.29bcde
N12F4 484.84ab 41.37a 39.04a 7822.50ab
N14F1 491.49ab 39.20bcd 38.85ab 7480.28bc
N14F2 494.59a 41.29a 38.53abc 7867.66ab
N14F3 475.93ab 41.32a 38.87ab 7641.28bc
N14F4 507.38a 41.87a 39.14a 8315.69a

Table 5

Effects of different types of fertilizers on yield and components of weak gluten wheat (2023-2024)"

品种
Variety
处理
Treatment
穗数
Spike number (×104 ·hm2)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg·hm-2)
白湖麦1号BHM1 N10F1 437.60e 37.67cd 36.71d 6055.45g
N10F2 463.35c 38.44bcd 37.52cd 6681.75ef
N10F3 448.27cde 37.56d 37.54cd 6321.06fg
N10F4 460.19cd 38.45bcd 37.94bcd 6713.51ef
N12F1 445.11de 40.00abcd 38.62abc 6864.83def
N12F2 460.86cd 41.33ab 38.20abcd 7274.20cde
N12F3 452.86cde 40.67ab 38.13bcd 7027.58de
N12F4 483.19b 41.56a 38.91abc 7811.13abc
N14F1 456.36cd 40.39abcd 38.94abc 7177.03de
N14F2 485.44b 41.56a 39.35ab 7934.85ab
N14F3 463.69c 40.58abc 39.30ab 7399.86bcd
N14F4 503.61a 41.67a 39.86a 8362.78a
扬麦20
YM20
N10F1 430.97e 36.56d 39.85bc 6277.88f
N10F2 442.56cde 39.89abc 38.62d 6823.29def
N10F3 431.25e 38.61cd 39.48cd 6572.72ef
N10F4 448.04abcde 39.83abc 40.01bc 7132.43cde
N12F1 432.23e 39.44bc 40.62bc 6930.52def
N12F2 444.55bcde 41.33ab 39.79bc 7310.64bccd
N12F3 439.27de 40.67abc 39.84bc 7120.63cde
N12F4 457.12abcd 41.00abc 40.91ab 7665.10abc
N14F1 447.98abcde 40.11abc 40.90ab 7352.96bcd
N14F2 466.14ab 41.78ab 40.16bc 7827.38ab
N14F3 462.04abc 40.83abc 40.51bc 7647.15abc
N14F4 467.98a 42.39a 41.81a 8290.91a

Fig. 6

Effects of different types of fertilizers on solvent retention of weak gluten wheat"

Table 6

Effects of different types of fertilizers on processing quality of weak gluten wheat (2022-2023)"

品种 Variety 处理
Treatment
蛋白质含量
Protein content (%)
湿面筋含量
Wet gluten content (%)
硬度指数
Hardness index
沉淀值
Sedimentation value (mL)
出粉率
Flour rate (%)
白湖麦1号BHM1 N10F1 11.16c 22.29d 52.14f 23.37c 63.60d
N10F2 9.59f 19.30f 43.07h 17.70f 62.28e
N10F3 9.88ef 19.61f 42.64h 18.23f 62.41e
N10F4 10.05def 20.71ef 46.71g 18.80ef 63.39d
N12F1 12.43b 24.31bc 51.15b 26.67b 65.34c
N12F2 10.23de 20.32f 46.13g 20.73de 63.70d
N12F3 10.47d 20.63ef 46.51g 21.50cd 64.21d
N12F4 11.52c 23.03cd 53.18ef 23.57c 65.44c
N14F1 13.42a 26.12a 58.09a 31.67a 66.90a
N14F2 11.34c 21.88de 48.00e 23.47c 66.55ab
N14F3 11.62c 23.92c 49.25d 23.90c 66.57ab
N14F4 12.56b 25.30ab 50.75c 26.30b 65.82bc
扬麦20
YM20
N10F1 11.27d 21.90d 40.29de 24.20g 63.10cd
N10F2 10.07e 19.48e 36.09f 21.10h 61.25d
N10F3 10.12e 19.60e 36.65ef 21.40h 61.81d
N10F4 11.06de 20.48de 37.50ef 23.47g 62.92cd
N12F1 12.72bc 25.61c 47.57c 27.95e 65.06abc
N12F2 11.39d 20.83de 38.01ef 24.25g 64.10bc
N12F3 11.43d 21.89d 39.92def 25.60f 64.17bc
N12F4 12.50c 25.72c 43.26d 26.95e 64.80abc
N14F1 14.14a 32.51a 54.05a 40.15a 66.53a
N14F2 12.48c 26.46c 48.61bc 29.55d 64.84abc
N14F3 12.68bc 29.64b 50.66abc 34.95c 65.94ab
N14F4 13.54ab 30.80ab 51.77ab 36.70b 66.13ab

Table 7

Effects of different types of fertilizers on processing quality of weak gluten wheat (2023-2024)"

品种 Variety 处理 Treatment 蛋白质含量
Protein content (%)
湿面筋含量
Wet gluten content (%)
硬度指数
Hardness index
沉淀值
Sedimentation value (mL)
出粉率
Flour rate (%)
白湖麦1号BHM1 N10F1 10.23e 21.34d 45.19ef 24.07e 65.37de
N10F2 8.93g 18.17h 41.68f 19.77f 64.93e
N10F3 9.29fg 19.27fg 42.12f 22.80e 64.90e
N10F4 9.38f 19.92ef 45.10ef 23.13e 65.33de
N12F1 11.74c 22.16c 51.18bc 27.47bcd 66.33bc
N12F2 10.05e 18.90g 46.35de 22.70e 65.37de
N12F3 10.67d 19.91ef 49.43cd 24.57de 65.90cd
N12F4 10.86d 20.37e 51.04bc 25.77cde 66.13bc
N14F1 13.32a 23.72a 56.91a 32.00a 67.03a
N14F2 11.69c 19.27fg 51.42bc 28.00bc 66.37bc
N14F3 12.23b 22.74bc 53.79ab 29.47ab 66.47bc
N14F4 12.43b 23.00b 56.39a 30.50ab 66.57ab
扬麦20 YM20 N10F1 10.33f 23.23cd 53.01cde 23.17de 63.93cd
N10F2 9.89g 19.58h 46.39e 21.90e 63.03d
N10F3 9.98g 20.80g 47.46de 21.87e 63.20d
N10F4 10.14fg 21.52f 51.90cde 23.03de 63.90cd
N12F1 11.32d 24.59b 54.38cd 27.37bc 65.53ab
N12F2 10.44ef 21.69f 49.25cde 25.07cd 64.73bc
N12F3 10.73e 22.35e 50.23cde 25.43c 64.77bc
N12F4 11.13d 23.17cd 53.77cd 25.73c 65.50ab
N14F1 13.97a 26.13a 64.08a 31.30a 66.13a
N14F2 12.17c 22.83de 54.65cd 26.10bc 65.57ab
N14F3 12.12c 23.74c 56.45bc 28.10b 65.70ab
N14F4 12.92b 25.79a 61.69ab 30.60a 66.07a

Table 8

Effects of different types of fertilizers on rheological properties of weak gluten wheat dough"

品种
Variety
处理
Treatment
吸水率
Absorption (%)
形成时间
Development time (min)
稳定时间
Stability time (min)
弱化度
Degree of softening (FU)
粉质质量指数
Farinograph quality number
白湖麦1号
BHM1
N10F1 56.30d 1.94cd 2.20cde 118.00b 23.33e
N10F2 53.90g 1.79d 1.76e 138.67a 20.33f
N10F3 53.97g 1.89d 1.83de 124.33b 22.67e
N10F4 54.73f 1.93cd 1.86de 118.67b 23.00e
N12F1 58.37b 2.47b 2.79b 93.00de 27.67b
N12F2 55.47e 1.98bcd 1.94de 108.67c 24.00e
N12F3 55.13ef 2.05bcd 1.93de 106.67c 26.00bcd
N12F4 55.80de 2.43bc 2.40bcd 104.67c 27.33bc
N14F1 61.03a 3.48a 4.03a 88.00e 29.67a
N14F2 56.43d 2.12bcd 2.61bc 103.67c 25.67d
N14F3 57.13c 2.26bcd 2.76bc 100.33cd 27.67b
N14F4 58.77b 3.33a 3.79a 92.00e 28.00bcd
扬麦20
YM20
N10F1 56.13b 2.24efg 2.10fg 107.00a 20.50f
N10F2 54.40d 1.85g 2.00g 113.67a 18.33g
N10F3 54.47d 1.98fg 1.90g 111.00a 18.50g
N10F4 55.23c 2.16efg 2.00g 108.00a 20.50f
N12F1 56.13b 2.78cd 2.60de 86.33b 27.00d
N12F2 55.73bc 2.41e 1.90g 96.00b 23.00e
N12F3 55.23c 2.49de 2.00g 95.67b 24.50e
N12F4 56.00b 2.94c 2.40ef 93.33b 26.50d
N14F1 57.40a 4.28a 5.10a 67.33c 35.50a
N14F2 56.23b 2.86c 2.80d 85.67b 28.00d
N14F3 56.20b 2.90c 4.40c 86.67b 30.50c
N14F4 57.13a 3.51b 5.20b 70.00c 32.50b

Fig. 7

Correlation analysis of wheat related variables In the heatmap, each square represents the Pearson correlation between variables, where blue indicates a positive correlation and orange indicates a negative correlation. The intensity of the color represents the strength of the correlation, while the size of the square reflects the absolute value of the correlation coefficient. The thickness of the lines represents the strength of the correlation, and the color of the lines indicates the level of significance. Solid and dashed lines represent the sign of the correlation coefficients (positive or negative) between protein content, yield, and related wheat variables. * Indicates significance at the 0.05 level, and ** indicates significance at the 0.01 level"

[1]
董一帆, 任毅, 程宇坤, 王睿, 张志辉, 时晓磊, 耿洪伟. 冬小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2023, 56(11): 2047-2063. doi: 10.3864/j.issn.0578-1752.2023.11.002.
DONG Y F, REN Y, CHENG Y K, WANG R, ZHANG Z H, SHI X L, GENG H W. Genome-wide association study of grain main quality related traits in winter wheat. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063. doi: 10.3864/j.issn.0578-1752.2023.11.002. (in Chinese)
[2]
WU H Y, WANG Z J, ZHANG X, WANG J C, HU W J, WANG H, GAO D R, SOUZA E, CHENG S H. Effects of different fertilizer treatments, environment and varieties on the yield-, grain-, flour-, and dough-related traits and cookie quality of weak-gluten wheat. Plants, 2022, 11(23): 3370.
[3]
ANAS M, LIAO F, VERMA K K, SARWAR M A, MAHMOOD A, CHEN Z L, LI Q, ZENG X P, LIU Y, LI Y R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 2020, 53(1): 47.

doi: 10.1186/s40659-020-00312-4 pmid: 33066819
[4]
RAVIER C, MEYNARD J M, COHAN J P, GATE P, JEUFFROY M H. Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat. European Journal of Agronomy, 2017, 89: 16-24.
[5]
ZHOU L L, CAI D Q, HE L L, ZHONG N Q, YU M, ZHANG X, WU Z Y. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 645-653.
[6]
PRIYA E, SARKAR S, MAJI P K. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. Journal of Environmental Chemical Engineering, 2024, 12(4): 113211.
[7]
VEJAN P, KHADIRAN T, ABDULLAH R, AHMAD N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release, 2021, 339: 321-334.

doi: 10.1016/j.jconrel.2021.10.003 pmid: 34626724
[8]
KASSEM I, ABLOUH E H, EL BOUCHTAOUI F Z, JAOUAHAR M, EL ACHABY M. Polymer coated slow/controlled release granular fertilizers: Fundamentals and research trends. Progress in Materials Science, 2024, 144: 101269.
[9]
YANG Y C, ZHANG M, ZHENG L, CHENG D D, LIU M, GENG Y Q. Controlled release urea improved nitrogen use efficiency, yield, and quality of wheat. Agronomy Journal, 2011, 103(2): 479-485.
[10]
XIA L L, LAM S K, CHEN D L, WANG J Y, TANG Q, YAN X Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(5): 1917-1925.

doi: 10.1111/gcb.13455 pmid: 27506858
[11]
LIU R H, KANG Y H, PEI L, WAN S Q, LIU S P, LIU S H. Use of a new controlled-loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou Reservoir area of China. Communications in Soil Science and Plant Analysis, 2016, 47(9): 1137-1147.
[12]
YANG Y C, ZHANG M, LI Y C, FAN X H, GENG Y Q. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield. Soil Science Society of America Journal, 2012, 76(6): 2307-2317.
[13]
ZHANG G X, ZHAO D H, LIU S J, LIAO Y C, HAN J. Can controlled-release urea replace the split application of normal urea in China? A meta-analysis based on crop grain yield and nitrogen use efficiency. Field Crops Research, 2022, 275: 108343.
[14]
邓先亮. 缓控释肥一次性基施对小麦产量形成及品质的影响[D]. 扬州: 扬州大学, 2019.
DENG X L. Effect of one-time basal application of slow and controlled release fertilizer on yield formation and quality of wheat[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[15]
LI G H, GU R, XU K, GUO B W, DAI Q G, HUO Z Y, WEI H Y. Split application of a mixture of controlled-release and common urea for improving quality and agronomic and economic performance in wheat production. Crop Science, 2021, 61(6): 4402-4415.
[16]
刘丰, 蒋佳丽, 周琴, 蔡剑, 王笑, 黄梅, 仲迎鑫, 戴廷波, 曹卫星, 姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析. 中国农业科学, 2022, 55(19): 3723-3737. doi: 10.3864/j.issn.0578-1752.2022.19.004.
LIU F, JIANG J L, ZHOU Q, CAI J, WANG X, HUANG M, ZHONG Y X, DAI T B, CAO W X, JIANG D. Analysis of American soft wheat grain quality and its suitability evaluation according to Chinese weak gluten wheat standard. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737. doi: 10.3864/j.issn.0578-1752.2022.19.004. (in Chinese)
[17]
王犇, 任开明, 马尚宇, 樊永惠, 张文静, 黄正来. 不同类型肥料对稻茬弱筋小麦产量与品质的影响. 华北农学报, 2023, 38(4): 159-166.

doi: 10.7668/hbnxb.20193711
WANG B, REN K M, MA S Y, FAN Y H, ZHANG W J, HUANG Z L. Effect of different types of fertilizers on yield and quality of weak gluten wheat from rice stubble. Acta Agriculturae Boreali-Sinica, 2023, 38(4): 159-166. (in Chinese)

doi: 10.7668/hbnxb.20193711
[18]
BLANDINO M, MARINACCIO F, VACCINO P, REYNERI A. Nitrogen fertilization strategies suitable to achieve the quality requirements of wheat for biscuit production. Agronomy Journal, 2015, 107(4): 1584-1594.
[19]
MA Q, WANG M Y, ZHENG G L, YAO Y, TAO R R, ZHU M, DING J F, LI C Y, GUO W S, ZHU X K. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Research, 2021, 267: 108163.
[20]
MA Q, SUN Q, ZHANG X B, LI F J, DING Y G, TAO R R, ZHU M, DING J F, LI C Y, GUO W S, ZHU X K. Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food and Energy Security, 2022, 11(2): e361.
[21]
刘虹丹. 基于缓释肥减氮增密对中筋小麦产量、品质和生理特性的影响[D]. 扬州: 扬州大学, 2022.
LIU H D. Effects of slow-release fertilizer on yield, quality and physiological characteristics of medium-gluten wheat[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[22]
李丽, 贾文欣, 徐昊, 李春燕, 丁锦峰, 朱敏, 郭文善, 朱新开. 缓释肥类型及其运筹方式对弱筋小麦产量及品质的影响. 麦类作物学报, 2024, 44(6): 758-769.
LI L, JIA W X, XU H, LI C Y, DING J F, ZHU M, GUO W S, ZHU X K. Effects of types and application methods of slow-release fertilizer on yield and quality of weak-gluten wheat. Journal of Triticeae Crops, 2024, 44(6): 758-769. (in Chinese)
[23]
董召娣, 易媛, 张明伟, 郭明明, 朱新开, 封超年, 郭文善, 彭永欣. 春性和半冬性小麦花后旗叶和籽粒氮代谢关键酶活性的差异. 麦类作物学报, 2015, 35(8): 1098-1106.
DONG Z D, YI Y, ZHANG M W, GUO M M, ZHU X K, FENG C N, GUO W S, PENG Y X. Difference of activities of nitrogen metabolism enzymes in flag leaves and grain after anthesis of semi-winter and spring wheat varieties. Journal of Triticeae Crops, 2015, 35(8): 1098-1106. (in Chinese)
[24]
OAKS A, STULEN I, JONES K, WINSPEAR M J, MISRA S, BOESEL I L. Enzymes of nitrogen assimilation in maize roots. Planta, 1980, 148(5): 477-484.

doi: 10.1007/BF00552663 pmid: 24310191
[25]
SINGH R P, SRIVASTAVA H S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiologia Plantarum, 1986, 66(3): 413-416.
[26]
中华人民共和国国家质量监督检验检疫总局. 小麦品种品质分类: GB/T 17320—2013. 北京: 中国标准出版社, 2013.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Quality classification of wheat varieties: GB/T 17320—2013. Beijing: Standard Press of China, 2013. (in Chinese)
[27]
国家质量技术监督局. 优质小麦弱筋小麦: GB/T17893—1999. 北京: 中国标准出版社, 1999.
The State Bureau of Quality and Technical Supervision. High quality wheat and weak gluten wheat: GB/T17893—1999. Beijing: Standard Press of China, 1999. (in Chinese)
[28]
DUAN Q F, JIANG S, CHEN F Y, LI Z X, MA L T, SONG Y, YU X J, CHEN Y X, LIU H S, YU L. Fabrication, evaluation methodologies and models of slow-release fertilizers: A review. Industrial Crops and Products, 2023, 192: 116075.
[29]
XIE Q, MAYES S, SPARKES D L. Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Annals of Botany, 2016, 117(1): 51-66.
[30]
RAHMAN M Z, AKTER S, HOQUE M, SADEQUE A, RAHMAN M M, ISLAM M R. Impact of SPAD 502 meter based N fertilization on growth and yield attributes of wheat. Journal of Bioscience and Agriculture Research, 2020, 24(1): 1969-1976.
[31]
TANG S H, YANG S H, CHEN J S, XU P Z, ZHANG F B, AI S Y, HUANG X. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza safiva L.). Agricultural Sciences in China, 2007, 6(5): 586-596.
[32]
CUI P Y, CHEN Z X, NING Q Q, WEI H Y, ZHANG H P, LU H, GAO H, ZHANG H C. One-time nitrogen fertilizer application using controlled-release urea ensured the yield, nitrogen use efficiencies, and profits of winter wheat. Agronomy, 2022, 12(8): 1792.
[33]
KENAWY E R, HOSNY A, SAAD-ALLAH K. Reducing nitrogen leaching while enhancing growth, yield performance and physiological traits of rice by the application of controlled-release urea fertilizer. Paddy and Water Environment, 2021, 19(1): 173-188.
[34]
WANG L, XUE C, PAN X, CHEN F, LIU Y. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China. Frontiers in Plant Science, 2018, 9: 999.

doi: 10.3389/fpls.2018.00999 pmid: 30073007
[35]
ZHENG C Y, LI C L, TIAN L B, SHEN Z Y, FENG G Z, HOU W F, LIU F L, GAO Q, WANG Y. Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling. European Journal of Agronomy, 2023, 151: 126994.
[36]
XIAO Z L, ZHANG Y, WANG C R, WEN Y, WANG W L, ZHU K Y, ZHANG W Y, GU J F, LIU L J, ZHANG J H, YANG J C, ZHANG H. Optimized controlled-release nitrogen strategy achieves high yield and nitrogen use efficiency of wheat following rice in the lower reaches of Yangtze River of China. Field Crops Research, 2024, 317: 109567.
[37]
ZHANG Y J, REN W C, ZHU K Y, FU J Y, WANG W L, WANG Z Q, GU J F, YANG J C. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: A global meta-analysis. Field Crops Research, 2024, 306: 109221.
[38]
白由路, 杨俐苹. 我国农业中的测土配方施肥. 土壤肥料, 2006(2): 3-7.
BAI Y L, YANG L P. Soil testing and fertilizer recommendation in Chinese agriculture. Soil and Fertilizer Sciences in China, 2006(2): 3-7. (in Chinese)
[39]
GOVIL S, VAN DUC LONG N, ESCRIBÀ-GELONCH M, HESSEL V. Controlled-release fertiliser: Recent developments and perspectives. Industrial Crops and Products, 2024, 219: 119160.
[40]
ZHANG G X, LIU S J, DONG Y J, LIAO Y C, HAN J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. Field Crops Research, 2022, 277: 108405.
[41]
LU H, WANG R, DUN C P, WANG D, ZHANG H P, CUI P Y, DAI Q G, ZHANG H C. Effects of controlled-release bulk blending fertilizer on wheat yield of different varieties under various soil basic fertility. Environmental Pollutants and Bioavailability, 2022, 34(1): 273-283.
[42]
张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则. 作物学报, 2023, 49(5): 1282-1291.
ZHANG X, LU C B, JIANG W, ZHANG Y, G F, WU H Y, WANG C S, LI M, WU S L, GAO D R. Quality selection indices and parent combination principle of weak-gluten wheat. Acta Agronomica Sinica, 2023, 49(5): 1282-1291. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21026
[43]
张向前, 徐云姬, 杜世州, 严文学, 袁立伦, 乔玉强, 陈欢, 赵竹, 李玮, 曹承富. 氮肥运筹对稻茬麦区弱筋小麦生理特性、品质及产量的调控效应. 麦类作物学报, 2019, 39(7): 810-817.
ZHANG X Q, XU Y J, DU S Z, YAN W X, YUAN L L, QIAO Y Q, CHEN H, ZHAO Z, LI W, CAO C F. Regulation effect of nitrogen application on physiological characteristics, quality and yield of weak gluten wheat in rice-wheat cropping area. Journal of Triticeae Crops, 2019, 39(7): 810-817. (in Chinese)
[44]
SWARBRECK S M, WANG M, WANG Y, KINDRED D, SYLVESTER-BRADLEY R, SHI W M, VARINDERPAL-SINGH, BENTLEY A R, GRIFFITHS H. A roadmap for lowering crop nitrogen requirement. Trends in Plant Science, 2019, 24(10): 892-904.
[45]
张文霞, 李盼, 殷文, 陈桂平, 樊志龙, 胡发龙, 范虹, 何蔚. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响. 中国农业科学, 2023, 56(17): 3317-3330. doi: 10.3864/j.issn.0578-1752.2023.17.007.
ZHANG W X, LI P, YIN W, CHEN G P, FAN Z L, HU F L, FAN H, HE W. Effects of multiple green manure after wheat combined with different levels of nitrogen fertilization on wheat yield, grain quality, and nitrogen utilization. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330. doi: 10.3864/j.issn.0578-1752.2023.17.007. (in Chinese)
[46]
FAN Z, CHEN J X, ZHAI S, DING X H, ZHANG H Z, SUN S C, TIAN X F. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1103-1111.
[47]
JIANG Z R, CHEN Q L, LIU D, TAO W K, GAO S, LI J Q, LIN C H, ZHU M C, DING Y F, LI W W, LI G H, SAKR S, XUE L H. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality. BMC Plant Biology, 2024, 24(1): 621.

doi: 10.1186/s12870-024-05309-9 pmid: 38951829
[48]
WEI H Y, CHEN Z F, XING Z P, ZHOU L, LIU Q Y, ZHANG Z Z, JIANG Y, HU Y J, ZHU J Y, CUI P Y, DAI Q G, ZHANG H C. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. Journal of Integrative Agriculture, 2018, 17(10): 2222-2234.
[49]
MA F Y, BAIK B K. Soft wheat quality characteristics required for making baking powder biscuits. Journal of Cereal Science, 2018, 79: 127-133.
[50]
GAJU O, ALLARD V, MARTRE P, LE GOUIS J, MOREAU D, BOGARD M, HUBBART S, FOULKES M J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2014, 155: 213-223.
[51]
MAGALLANES LÓPEZ A M, SIMSEK S. Solvent retention capacity: Supplemental solvents for evaluation of gluten quality. Journal of Cereal Science, 2021, 102: 103339.
[52]
DE SANTIS M A, GIULIANI M M, FLAGELLA Z, REYNERI A, BLANDINO M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Research, 2020, 254: 107829.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] JI ShengYang, LU BaiYi, LI PeiWu. Some Reflections on Modern Science of Agricultural Product Quality [J]. Scientia Agricultura Sinica, 2025, 58(9): 1830-1844.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[9] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[10] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[11] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[12] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[15] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!