Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3304-3316.doi: 10.3864/j.issn.0578-1752.2025.16.013

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Cytogenetic Characterization of Wheat-Thinopyrum intermedium 7JS Addition Line CH71 with Resistance to Both Powdery Mildew and Stripe Rust

ZHANG ShuWei1(), SHI WenYu1, LI BingJie1, CHANG SongHe1, QIAO LinYi1, LI Xin1, CHANG LiFang1, CHEN Fang1, GUO HuiJuan1, CHANG ZhiJian1, ZHANG XiaoJun1,2,*()   

  1. 1 College of Agriculture (Institute of Crop Sciences), Shanxi Agricultural University, Taiyuan 030031
    2 Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taiyuan 030031
  • Received:2025-02-25 Accepted:2025-04-22 Online:2025-08-11 Published:2025-08-11
  • Contact: ZHANG XiaoJun

Abstract:

【Objective】Thinopyrum intermedium, a tertiary gene pool of wheat, harbors valuable genetic resources for wheat improvement. This study aimed to develop novel wheat germplasms by transferring elite chromosomes from Thinopyrum intermedium into wheat via distant hybridization, investigating their impacts on disease resistance and agronomic traits to establish a theoretical foundation for wheat breeding. 【Method】A wheat-Thinopyrum intermedium disomic addition line, CH71 (2n=44), was developed from the BC1F6 progeny of a cross between common wheat cultivar Yannong 999 and the partial amphidiploid TAI8047 (2n=58). Non-denaturing fluorescence in situ hybridization (ND-FISH) with oligonucleotide probes (Oligo-pSc119.2, Oligo-pTa535, Oligo-B11, Oligo-pDb12H) was employed for karyotype analysis. Synteny-based (Synt) Oligo-FISH painting and Th. intermedium-specific STS markers were utilized to identify the homologous group and validate the origin of the alien chromosome. Disease resistance to powdery mildew (race E09) and stripe rust (mixed races CYR32, CYR33, CYR34) was evaluated under artificial inoculation. Agronomic traits, including plant height, spike length, spikelet number, thousand-grain weight, grain length, and grain width, were systematically measured.【Result】The wheat parent Yannong 999 exhibited a standard karyotype of 21 wheat chromosome pairs. TAI8047 contained 58 chromosomes (21 wheat pairs + 8 alien pairs), while CH71 harbored 44 chromosomes (21 wheat pairs + 1 alien pair, JS-1). Synt-FISH and PCR amplification using 183 STS primers specific to Th. intermedium chromosome 7JS confirmed JS-1 as a 7JS-derived chromosome. Twelve STS markers consistently amplified diagnostic bands in Th. intermedium, TAI8047, and CH71. CH71 displayed moderate resistance to powdery mildew and immunity to stripe rust, with genetic analysis indicating both resistances were conferred by the 7JS chromosome. Compared to Yannong 999, CH71 exhibited significant increases in plant height (+24.0 cm), spike length (+3.44 cm), spikelet number (+1.6), and grain length (+0.68 mm), but reductions in thousand-grain weight (-6.78%) and grain width (-2.70%). 【Conclusion】The novel disomic addition line CH71 (wheat-Th. intermedium 7JS) demonstrates dual resistance to powdery mildew and stripe rust, serving as a valuable germplasm resource for disease-resistant breeding and the cloning of alien resistance genes. The 12 STS markers identified herein provide an efficient molecular tool for rapid tracking of the 7JS chromosome in wheat backgrounds.

Key words: wheat, Thinopyrum intermedium, alien addition line, fluorescence in situ hybridization, STS markers

Table 1

Oligonucleotide probe sequences"

探针名称
Probes
修饰类型
Modification types
探针序列
Probe sequences (5′-3′)
参考文献
References
Oligo-B11 5′6-FAM TCCGCTCACCTTGATGACAACATCAGGTGGAATTCCGTTCGAGGG [22]
Oligo-pDb12H 5′TAMRA TCAGAATTTTTAGGATAGCAGAAGTATTCGAAATACCCAGATTGC TACAG [23]
Oligo-pSc119.2 5′6-FAM CCGTTTTGTGGACTATTACTCACCGCTTTGGGGTCCCATAGCTAT [24]
Oligo-pTa535 5′TAMRA AAAAACTTGACGCACGTCACGTACAAATTGGACAAACTCTTTCGGAGTATC
AGGGTTTC
[24]

Table 2

Sequences of STS markers specific to the chromosomes of Thinopyrum intermedium"

序号
No.
引物名称
Primer name
染色体
Chromosome
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
退火温度
Annealing temperature (℃)
1 C19-08 7JS CTTAGTCTGCAGCCTCTGTCC AGAGCATCGTCAATAGCCCAG 60
2 C19-22 7JS AAACATAGCCTAAGACGGGC GGTCATTGGGTGCAGAATAG 60
3 C19-39 7JS GAATCTGCGGTGTGCTATTT TCGGTCGACAACATAGTGTG 60
4 C19-54 7JS ACGCAAGTTTCAGATAAACAAGACT TCTCTTGATCGGTTGGACACC 58
5 C19-61 7JS CGTGTATCGAACGTGAAATG CAGTTGGAAATCCAGGAATG 60
6 C19-68 7JS CTCTTGTCGTCGAGGGTCT GTAGAGGTACTTAGCGGCGA 58
7 C19-83 7JS TTTGCTCACTCTCTGGTTCC GAAAGTTGGAGAACGCTCAA 60
8 C19-103 7JS GGATGAAGCATCTCCACAAC ATCAGGAAGCTCAGCATCAG 58
9 C19-105 7JS TTCTCATGTGTGTGACCCGC TTGGTAGAACGGCCACAAGA 60
10 C19-109 7JS AGTAGTGCTGAACTTGCCACT GCAAACGTCTTCGGCGTATC 60
11 C19-136 7JS GCTCACCATGAGAAGGAAAA GGATGAATGTTAATGGCGAG 60
12 C19-138 7JS CCTAGAAGTTCACGGCCTC GGCACTTCTGTAGCTTGCAT 60

Fig. 1

Karyotype identification of TAI8047, Yannong999 and CH71 a, b: Karyotype of TAI8047 chromosomes with different probes. a: The probes used are Oligo-B11 (green) and Oligo-pDb12H (red), b: The probes used are Oligo-pSc119.2 (green) and Oligo-pTa535 (red); c: Karyotype of Yannong 999 chromosomes with wheat probes, d-f: Karyotype of CH71 chromosomes with different probes. d: The probes used are Oligo-B11 (green) and Oligo-pDb12H (red), e: The probes used are Oligo-pSc119.2 (green) and Oligo-pTa535 (red), f: The probe used is the 7th homologous group of wheat probe sleeve Synt7 (red); g: Detailed karyotypes of CH71; h: Karyotype comparison between JS-1 chromosome of TAI8047 and foreign chromosome of CH71. The four karyotypes in each group were DAPI staining, probe Oligo-B11 (green)/probe Oligo-pSc119.2 (green), probe Oligo-pDb12H (red)/probe Oligo-pTa535 (red), and the first three combined images. Scale: 10 μm"

Fig. 2

Amplification results of molecular markers and their genetic map on 7JS chromosome M: Marker; 1: Thinopyrum intermedium; 2: TAI8047; 3: CH71; 4: Yannong 999; 5: Chinese spring. The white arrows indicate the specific band positions. a-l indicate the amplification results of marker C19-08, C19-22, C19-39, C19-54, C19-61, C19-68, C19-83, C19-103, C19-105, C19-109, C19-136, and C19-138, the figure of m indicates the genetic map of markers on 7JS chromosome"

Fig. 3

Identification of disease resistance of CH71 and its parents a: Identification of resistance to powdery mildew during the seedling stage; b: Identification of resistance to powdery mildew during the adult stage; c: Identification of resistance to stripe rust during the adult stage. The numbers at the bottom indicate the resistance level. 0: Immunity, 0;: Near immunity, 1: High resistance, 2: Moderate resistance, 3: Moderate sensitivity, 4: High sensitivity"

Table 3

Investigation of disease resistance of CH71 and its parents at seedling and adult stages"

材料名称
Material name
染色体数目
Number of
chromosome
外源染色体
Alien
chromosome
条锈菌小种
CYR32/CYR33/CYR34
Stripe rust species
CYR32/CYR33/CYR34
白粉菌小种E09 Powdery mildew species E09
苗期
Seedling resistance
成株期
Adult-plant resistance
太原768 Taiyuan 768 42 4 4 4
系76(64)Line 76(64) 42 4 4 4
TAI8047 58 J+JS+St 0 0; 0
CH71 44 7JS 0; 2 2
烟农999 Yannong 999 42 4 4 4
SY95-71 42 4 4
TC29 42 4

Table 4

Investigation of agronomical traits between CH71 and its parents"

材料名称
Material
name
外源染色体
Alien chromosome
株高
Plant height
(cm)
穗长
Spike length
(cm)
小穗数
Spikelet number
千粒重
Thousand grain weight (g)
粒长
Grain length
(mm)
粒宽
Grain width
(mm)
太原768 Taiyuan 768 76.60±3.51a 8.88±0.43a 20.80±1.10a 49.43±1.67b 6.84±0.17a 3.75±0.11c
系76(64)Line76 (64) 77.20±3.90a 9.06±0.36a 20.40±0.89a 49.03±1.21b 6.86±0.14a 3.72±0.08bc
TAI8047 J+JS+St 94.80±4.44b 17.20±0.57c 21.60±1.67a 29.89±3.09a 8.10±0.17c 2.95±0.09a
烟农999 Yannong 999 77.40±3.96a 8.30±0.35a 20.40±0.89a 52.39±5.09b 6.82±0.24a 3.70±0.12bc
CH71 7JS 101.40±7.78b 11.74±1.28b 22.00±1.33a 48.84±2.43b 7.50±0.18b 3.60±0.09b

Fig. 4

Comparison of agronomic traits between CH71 and its parent Yannong 999 a: Comparison of plant types at harvest time; b: Comparison of spike type; c: Comparison of grain morphology. 1: CH71, 2: Yannong 999"

[1]
BARRERO R A, BELLGARD M, ZHANG X Y. Diverse approaches to achieving grain yield in wheat. Functional & Integrative Genomics, 2011, 11(1): 37-48.
[2]
HUANG X Y, ZHU M Q, ZHUANG L F, ZHANG S Y, WANG J J, CHEN X J, WANG D R, CHEN J Y, BAO Y G, GUO J, ZHANG J L, FENG Y G, CHU C G, DU P, QI Z J, WANG H G, CHEN P D. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 2018, 131(9): 1967-1986.

doi: 10.1007/s00122-018-3126-2 pmid: 29947816
[3]
董玉琛. 作物种质资源学科的发展和展望. 中国工程科学, 2001, 3(1): 1-5, 43.
DONG Y C. The development and prospect of crop germplasm science. Engineering Science, 2001, 3(1): 1-5, 43. (in Chinese)
[4]
JIANG J M, FRIEBE B, GILL B S. Recent advances in alien gene transfer in wheat. Euphytica, 1993, 73(3): 199-212.
[5]
刘成, 韩冉, 汪晓璐, 宫文萍, 程敦公, 曹新有, 刘爱峰, 李豪圣, 刘建军. 小麦远缘杂交现状、抗病基因转移及利用研究进展. 中国农业科学, 2020, 53(7): 1287-1308. doi: 10.3864/j.issn.0578-1752.2020.07.001.
LIU C, HAN R, WANG X L, GONG W P, CHENG D G, CAO X Y, LIU A F, LI H S, LIU J J. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308. doi: 10.3864/j.issn.0578-1752.2020.07.001. (in Chinese)
[6]
李建波, 乔麟轶, 李欣, 张晓军, 詹海仙, 郭慧娟, 任永康, 畅志坚. 小麦-中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位. 作物学报, 2015, 41(1): 49-56.
LI J B, QIAO L Y, LI X, ZHANG X J, ZHAN H X, GUO H J, REN Y K, CHANG Z J. Molecular mapping of powdery mildew resistance gene PmCH7124 in a putative wheat-Thinopyrum intermedium introgression line. Acta Agronomica Sinica, 2015, 41(1): 49-56. (in Chinese)
[7]
COLMER T D, FLOWERS T J, MUNNS R. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57(5): 1059-1078.

doi: 10.1093/jxb/erj124 pmid: 16513812
[8]
BAO Y, LI X, LIU S, CUI F, WANG H. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenetic and Genome Research, 2009, 126(4): 390-395.
[9]
CAUDERON Y. Etude cytogenetique de l'evolution du materiel issu de croisement entre Triticum aestivum et Agropyron intermedium: I. Creation de types d'addition stables. Annales Améliorament des Plantes, 1966, 16: 43-70.
[10]
孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法. 作物学报, 1981, 7(1): 51-58.
SUN S C. The approach and methods of breeding new varieties and new species from agrotriticum hybrids. Acta Agronomica Sinica, 1981, 7(1): 51-58. (in Chinese)
[11]
孙善澄. 小麦与偃麦草远缘杂交的研究. 华北农学报, 1987, 2(1): 7-12.

doi: 10.3321/j.issn:1000-7091.1987.01.002
SUN S C. A study on the distant cross of wheat and Agropyron. Acta Agriculturae Boreali-Sinica, 1987, 2(1): 7-12. (in Chinese)
[12]
杨足君, 刘登才, 李光蓉. 一个多抗性小麦中间偃麦草新种质的遗传鉴定. 四川大学学报(自然科学版), 2000, 37(S1): 20-25.
YANG Z J, LIU D C, LI G R. Genetic identification of a new wheat-Thinopyrum intermedium germplasm with multi-resistance. Journal of Sichuan University (Natural Science Edition), 2000, 37(S1): 20-25. (in Chinese)
[13]
王洪刚, 刘树兵, 李兴锋, 高居荣, 封德顺, 陈冬花. 六个八倍体小偃麦的选育和鉴定. 麦类作物学报, 2006, 26(4): 6-10.
WANG H G, LIU S B, LI X F, GAO J R, FENG D S, CHEN D H. Breeding and identification of six octoploid Trititrigia. Journal of Triticeae Crops, 2006, 26(4): 6-10. (in Chinese)
[14]
CHANG Z J, ZHANG X J, YANG Z J, ZHAN H X, LI X, LIU C, ZHANG C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147(6): 304-312.
[15]
鲍印广. 小麦-中间偃麦草异染色体系的分子细胞遗传学鉴定与遗传分析[D]. 泰安: 山东农业大学, 2010.
BAO Y G. Molecular cytogenetic identification and hereditary analysis of wheat-Thinopyrum intermedium alien chromosome lines[D]. Taian: Shandong Agricultural University, 2010. (in Chinese)
[16]
WANG Y H, WANG H G. Characterization of three novel wheat- Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. Journal of Genetics and Genomics, 2016, 43(1): 45-48.
[17]
ZHANG X J, LI J B, GE Y D, GUAN H X, LI G R, ZHANG S W, WANG X L, LI X, CHANG Z J, ZHANG P, JIA J Q, LIU C. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium homoeologous group-6 chromosome disomic substitution line with resistance to leaf rust and stripe rust. Frontiers in Plant Science, 2022, 13: 1006281.
[18]
YU Z H, WANG H J, XU Y F, LI Y S, LANG T, YANG Z J, LI G R. Characterization of chromosomal rearrangement in new wheat: Thinopyrum intermedium addition lines carrying Thinopyrum: Specific grain hardness genes. Agronomy, 2019, 9(1): 18.
[19]
LANG T, LA S X, LI B, YU Z H, CHEN Q H, LI J B, YANG E N, LI G R, YANG Z J. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018, 61(3): 177-185.
[20]
FU S L, CHEN L, WANG Y Y, LI M, YANG Z J, QIU L, YAN B J, REN Z L, TANG Z X. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Scientific Reports, 2015, 5: 10552.

doi: 10.1038/srep10552 pmid: 25994088
[21]
LI G R, YANG Z J. Oligo-FISH paints in Triticeae. Current Protocols, 2022, 2(2): e364.
[22]
XI W, TANG Z X, TANG S Y, YANG Z J, LUO J, FU S L. New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. International Journal of Molecular Sciences, 2019, 20(8): 2031.
[23]
YANG Z J, LIU C, FENG J, LI G R, ZHOU J P, DENG K J, REN Z L. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas, 2006, 143(2006): 47-54.
[24]
TANG Z X, YANG Z J, FU S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 2014, 55(3): 313-318.

doi: 10.1007/s13353-014-0215-z pmid: 24782110
[25]
CRISTINA D, CIUC M, CORNEA C P. Comparison of four genomic DNA isolation methods from single dry seed of wheat, barley and rye. AgroLife Scientific Journal, 2017, 6(1): 84-91.
[26]
QIAO L Y, LIU S J, LI J B, LI S J, YU Z H, LIU C, LI X, LIU J, REN Y K, ZHANG P, ZHANG X J, YANG Z J, CHANG Z J. Development of sequence-tagged site marker set for identification of J, JS, and St sub-genomes of Thinopyrum intermedium in wheat background. Frontiers in Plant Science, 2021, 12: 685216.
[27]
LIU C, LI G R, GONG W P, LI G Y, HAN R, LI H S, SONG J M, LIU A F, CAO X Y, CHU X S, YANG Z J, HUANG C Y, ZHAO Z D, LIU J J. Molecular and cytogenetic characterization of a powdery mildew-resistant wheat-Aegilops mutica partial amphiploid and addition line. Cytogenetic and Genome Research, 2015, 147(2/3): 186-194.
[28]
HU L J, LI G R, ZENG Z X, CHANG Z J, LIU C, YANG Z J. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. Journal of Applied Genetics, 2011, 52(3): 279-285.
[29]
PETO F H. Hybridization of TRITICUM and AGROPYRON: ii. Cytology of the male parents and F1 generation. Canadian Journal of Research, 1936, 14c(5): 203-214.
[30]
LIU Z W, WANG R R. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica, and Thinopyrum intermedium (Triticeae: Gramineae). Genome, 1993, 36(1): 102-111.
[31]
GILL B S, KIMBER G. Giemsa C-banding and the evolution of wheat. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(10): 4086-4090.
[32]
GILL B S, FRIEBE B, ENDO T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 1991, 34(5): 830-839.
[33]
FRIEBE B, JIANG J, KNOTT D R, GILL B S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Science, 1994, 34(2): 400-404.
[34]
CHEN Q, CONNER R L, LAROCHE A, THOMAS J B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome, 1998, 41(4): 580-586.
[35]
MAHELKA V, KOPECKÝ D, PAŠTOVÁ L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evolutionary Biology, 2011, 11: 127.

doi: 10.1186/1471-2148-11-127 pmid: 21592357
[36]
CUADRADO Á, GOLCZYK H, JOUVE N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Research, 2009, 17(6): 755-762.

doi: 10.1007/s10577-009-9060-z pmid: 19669910
[37]
WANG Y Z, CAO Q, ZHANG J J, WANG S W, CHEN C H, WANG C Y, ZHANG H, WANG Y J, JI W Q. Cytogenetic analysis and molecular marker development for a new wheat-Thinopyrum ponticum 1JS (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Frontiers in Plant Science, 2020, 11: 1282.
[38]
DU X, FENG X B, LI R X, JIN Y L, SHANG L H, ZHAO J X, WANG C Y, LI T D, CHEN C H, TIAN Z R, DENG P C, JI W Q. Cytogenetic identification and molecular marker development of a novel wheat-Leymus mollis 4Ns(4D) alien disomic substitution line with resistance to stripe rust and Fusarium head blight. Frontiers in Plant Science, 2022, 13: 1012939.
[39]
LI G R, ZHANG T, YU Z H, WANG H J, YANG E N, YANG Z J. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. The Plant Journal, 2021, 105(4): 978-993.
[40]
YU Z H, WANG H J, YANG E N, LI G R, YANG Z J. Precise identification of chromosome constitution and rearrangements in wheat-Thinopyrum intermedium derivatives by ND-FISH and Oligo- FISH painting. Plants, 2022, 11(16): 2109.
[41]
LI G R, CHEN Q H, JIANG W X, ZHANG A H, YANG E N, YANG Z J. Molecular and cytogenetic identification of wheat-Thinopyrum intermedium double substitution line-derived progenies for stripe rust resistance. Plants, 2023, 12(1): 28.
[42]
PU J, WANG Q, SHEN Y F, ZHUANG L F, LI C X, TAN M F, BIE T D, CHU C G, QI Z J. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theoretical and Applied Genetics, 2015, 128(7): 1319-1328.
[43]
刘树兵, 贾继增, 王洪刚, 孔令让, 周荣华. 长穗偃麦草(Agropyron elongatum, 2n=14)与普通小麦间的多态性及E组染色体的特异RAPD标记. 作物学报, 1998, 24(6): 687-690.
LIU S B, JIA J Z, WANG H G, KONG L R, ZHOU R H. Special chromosome markers for E genome and DNA polymorphism between Agropyron elongatum (2n=14) and common wheat detected by RAPD markers. Acta Agronomica Sinica, 1998, 24(6): 687-690. (in Chinese)
[44]
WANG S W, WANG C Y, FENG X B, ZHAO J X, DENG P C, WANG Y J, ZHANG H, LIU X L, LI T D, CHEN C H, WANG B T, JI W Q. Molecular cytogenetics and development of St-chromosome- specific molecular markers of novel stripe rust resistant wheat- Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biology, 2022, 22(1): 111.
[45]
SALINA E A, ADONINA I G, BADAEVA E D, KROUPIN P Y, STASYUK A I, LEONOVA I N, SHISHKINA A A, DIVASHUK M G, STARIKOVA E V, KHUAT T M L, SYUKOV V V, KARLOV G I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101.
[46]
QI X L, LI X F, HE F, HU L Q, BAO Y G, GAO J R, WANG H G. Cytogenetic and molecular identification of a new wheat-Thinopyrum intermedium addition line with resistance to powdery mildew. Cereal Research Communications, 2015, 43(3): 353-363.
[47]
CSEH A, YANG C Y, HUBBART-EDWARDS S, SCHOLEFIELD D, ASHLING S S, BURRIDGE A J, WILKINSON P A, KING I P, KING J, GREWAL S. Development and validation of an exome-based SNP marker set for identification of the St, Jrand Jvs genomes of Thinopyrum intermedium in a wheat background. Theoretical and Applied Genetics, 2019, 132(5): 1555-1570.
[48]
WANG R R, LARSON S R, JENSEN K B, BUSHMAN B S, DEHAAN L R, WANG S W, YAN X B. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome, 2015, 58(2): 63-70.

doi: 10.1139/gen-2014-0186 pmid: 26000870
[49]
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433.
[50]
ZHANG X, WANG H Y, SUN H J, LI Y B, FENG Y L, JIAO C Z, LI M L, SONG X Y, WANG T, WANG Z K, YUAN C X, SUN L, LU R J, ZHANG W L, XIAO J, WANG X E. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. Molecular Plant, 2023, 16(2): 432-451.
[51]
刘赢, 张军, 敖游, 宋丽莉, 束永俊. 基于高通量测序的长穗偃麦草功能分子标记发掘和分析. 生物信息学, 2015, 13(2): 82-87.
LIU Y, ZHANG J, AO Y, SONG L L, SHU Y J. Genome-wide identification and characterization of SNPs from Thinopyrum elongatum using high-thought sequencing. Chinese Journal of Bioinformatics, 2015, 13(2): 82-87. (in Chinese)
[52]
李晨旭, 刘志涛, 庄丽芳, 亓增军. 基于RNA-seq的百萨偃麦草染色体特异分子标记开发与应用. 中国农业科学, 2015, 48(6): 1052-1062. doi: 10.3864/j.issn.0578-1752.2015.06.02.
LI C X, LIU Z T, ZHUANG L F, QI Z J. Development and application of specific molecular markers of Thinopyrum bessarabicum löve based on RNA-seq. Scientia Agricultura Sinica, 2015, 48(6): 1052-1062. doi: 10.3864/j.issn.0578-1752.2015.06.02. (in Chinese)
[53]
YANG G T, ZHENG Q, HU P, LI H W, LUO Q L, LI B, LI Z S. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat-Thinopyrum intermedium translocation line WTT11. aBIOTECH, 2021, 2(4): 343-356.
[54]
LI G R, GAO D, ZHANG H J, LI J B, WANG H J, LA S X, MA J W, YANG Z J. Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Molecular Cytogenetics, 2016, 9: 6.
[55]
DU W L, WANG J, WANG L M, ZHANG J, CHEN X H, ZHAO J X, YANG Q H, WU J. Development and characterization of a Psathyrostachys huashanica Keng 7Ns chromosome addition line with leaf rust resistance. PLoS ONE, 2013, 8(8): e70879.
[56]
SONG X J, LI G R, ZHAN H X, LIU C, YANG Z J. Molecular identification of a new Wheat-Thinopyrum intermedium ssp. Trichophorum addition line for resistance to stripe rust. Cereal Research Communications, 2013, 41(2): 211-220.
[57]
LU M J, LU Y Q, LI H H, PAN C L, GUO Y, ZHANG J P, YANG X M, LI X Q, LIU W H, LI L H. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE, 2016, 11(7): e0159577.
[58]
HOHMANN U, BUSCH W, BADAEVA K, FRIEBE B, GILL B S. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome, 1996, 39(2): 336-347.
[59]
FRIEBE B, JIANG J, GILL B S, DYCK P L. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86(2): 141-149.
[60]
CHEN Q, CONNER R L, LAROCHE A, JI W Q, ARMSTRONG K C, FEDAK G. Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat-Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome, 1999, 42(6): 1217-1223.
[61]
YANG G T, ZHANG N, BOSHOFF W H P, LI H W, LI B, LI Z S, ZHENG Q. Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7JS into wheat. Theoretical and Applied Genetics, 2023, 136(11): 231.
[62]
LI J B, BAO Y G, HAN R, WANG X L, XU W J, LI G R, YANG Z J, ZHANG X J, LI X, LIU A F, LI H S, LIU J J, ZHANG P, LIU C. Molecular and cytogenetic identification of stem rust resistant wheat- Thinopyrum intermedium introgression lines. Plant Disease, 2022, 106(9): 2447-2454.
[63]
RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theoretical and Applied Genetics, 2016, 129(7): 1383-1392.
[64]
HAN G H, LIU H, ZHU S Y, GU T T, CAO L J, YAN H W, JIN Y L, WANG J, LIU S Y, ZHOU Y L, SHI Z P, HE H G, AN D G. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. Plant Biotechnology Journal, 2024, 22(1): 66-81.

doi: 10.1111/pbi.14165 pmid: 38153293
[65]
LIU C Y, GUO W, WANG Y, FU B S, DOLEŽEL J, LIU Y, ZHAI W L, SAID M, MOLNÁR I, HOLUŠOVÁ K, ZHANG R Q, WU J Z. Introgression of sharp eyespot resistance from Dasypyrum villosum chromosome 2VL into bread wheat. The Crop Journal, 2023, 11(5): 1512-1520.
[66]
WANG J, HAN G H, LIU H, YAN H W, JIN Y L, CAO L J, ZHOU Y L, AN D G. Development of novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS. Theoretical and Applied Genetics, 2023, 136(9): 179.
[67]
JIANG C Z, LUO Y J, QI Y L, LIU S M, DUNDAS I, LI G R, YANG Z J. Characterization of novel wheat-Thinopyrum ponticum introgression lines derived from partial amphiploid AUS6770 for resistance to stripe rust. The Crop Journal, 2024, 12(6): 1735-1744.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[3] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[4] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[5] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[6] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[7] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[8] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[9] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[10] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[11] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[12] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[13] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[14] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[15] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!