Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3145-3158.doi: 10.3864/j.issn.0578-1752.2025.15.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Genome-Wide Association Study of Egg Production Traits in Jinding Duck

LIU HongXiang1(), ZHANG XuePing1, WANG YiFei1, WANG ZhiCheng1, GU HaoTian1, SONG WeiTao1, TAO ZhiYun1, XU WenJuan1, ZHANG ShuangJie1, LU LiZhi2, LI HuiFang1, ZHU ChunHong1,*()   

  1. 1 Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
    2 Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021
  • Received:2025-01-20 Accepted:2025-06-17 Online:2025-08-01 Published:2025-07-30
  • Contact: ZHU ChunHong

Abstract:

【Objective】 This study aimed to screen and identify single nucleotide polymorphisms (SNPs) and candidate genes associated with egg production traits in Jinding ducks using genome-wide association study (GWAS) technology, providing the reference information for molecular breeding of Jinding ducks. 【Method】 A group of 441 healthy female Jinding ducks from the same batch was used as the research subjects, and the number of eggs laid by each duck from the first egg until 43, 55, and 72 weeks of age (referred to W43, W55 and W72, respectively) was collected. Blood samples were collected from the wing veins of all 441 individuals for whole-genome resequencing. The sequencing data was aligned with the duck reference genome (ZJU1.0) to identify SNPs across the genome. After quality control using plink software to obtain high-quality SNPs, the heritability of egg production at 43, 55 and 72 weeks of age as well as the genetic and phenotypic correlations between each pair of traits were estimated using multi-trait animal model of the ASReml-R 4.2 software. Gemma software was used to separately conduct genome-wide association analyses for the three egg production traits, identifying the associated marker loci shared by them. Then, Bedtools software was employed to annotate these loci and mine for candidate genes near the markers. 【Result】 The heritability of egg production at 43, 55, and 72 weeks of age in Jinding ducks was relatively low, ranging from 0.17 to 0.30, and decreased gradually with increasing age. There was a high genetic positive correlation between egg production at different ages, with higher genetic correlation coefficients between adjacent time points than between non-adjacent time points. The genetic correlation coefficient between 43 and 55 weeks of age was 0.75, and between 55 and 72 weeks of age was 0.89. The GWAS results showed that 174 suggestively significant SNPs (P<9.43×10-7) were identified for the egg production trait at 43 weeks of age, distributed on chromosomes 3, 13, and 21; 297 suggestively significant SNPs (P<9.43×10-7) were identified for the egg production trait at 55 weeks of age, distributed on chromosomes 3 and 13; 36 suggestively significant SNPs (P<9.43×10-7) were identified for the egg production trait at 72 weeks of age, all located on chromosome 3. 20 overlapping suggestively significant SNPs (P<9.43×10-7) were shared among the three egg production traits, all located on chromosome 3. These loci formed two large haplotype blocks and involved 5 candidate genes, including the VSNL1 gene involved in calcium ion action, the MSGN1 gene involved in mesoderm formation, the KCNS3 gene with potassium ion channel function, and the SMC6 and GEN1 genes involved in DNA repair.【Conclusion】 The genetic parameters of egg production traits at 43, 55 and 72 weeks of age in Jinding ducks were estimated, and 20 suggestively significant SNPs and 5 candidate genes affecting egg production traits at 3 different ages were identified through GWAS, providing the reference information for molecular breeding of egg production traits in Jinding ducks.

Key words: Jinding duck, egg production, genetic parameter, SNPs, GWAS

Table 1

Descriptive statistics of the number of laying-eggs traits of Jinding duck"

性状
Trait
数量
N
最大值
Max
最小值
Min
平均值
Mean
标准差
SD
变异系数
CV (%)
43周龄产蛋数 Egg count of week 43 396 195 105 160.91 14.39 8.93
55周龄产蛋数 Egg count of week 55 363 279 187 239.93 17.39 7.25
72周龄产蛋数 Egg count of week 72 355 384 253 340.54 29.57 8.68

Fig. 1

Frequency distribution histogram of egg production of Jinding duck"

Fig. 2

Chromosome density map and population linkage disequilibrium (LD)"

Fig. 3

Principal component plot of Jinding ducks"

Table 2

Genetic parameter estimation of egg production of different weeks"

43周龄 W43 55周龄 W55 72周龄 W72
43周龄W43 0.30±0.12 0.75±0.18 0.69±0.17
55周龄W55 0.72±0.19 0.22±0.09 0.89±0.19
72周龄W72 0.63±0.21 0.84±0.19 0.17±0.08

Fig. 4

Manhattan and Q-Q plots of GWAS for egg production of different weeks"

Fig. 5

Haplotype blocks in regions of significantly associated loci"

Table 3

The overlapped SNPs significantly associated with egg production traits"

染色体
Chr
SNP编号
SNP NO.
物理位置
Position
基因型
Genotype
P
P value
相对基因位置
Location relative to gene
基因注释
Gene symbol
NCBI基因ID号
Entrez gene ID
基因区间
Gene range
3 SNP01 107735478 G/A 5.15E-07 下游D 67.424 VSNL1 101800936 107799901:107888236
下游D 30.808 SMC6 101800359 107924852:107889694
上游U 9.105 MSGN1 101799965 107957897:107959553
SNP02 107761347 T/C 3.93E-07 上游U 38.554 VSNL1 101800936 107799901:107888236
SNP03 107762776 G/A 1.58E-07 上游U 37.125 VSNL1 101800936 107799901:107888236
SNP04 107763098 A/G 3.47E-07 上游U 36.803 VSNL1 101800936 107799901:107888236
SNP05 107771354 T/C 3.33E-07 上游U 28.547 VSNL1 101800936 107799901:107888236
SNP06 107775833 A/C 4.84E-07 上游U 24.068 VSNL1 101800936 107799901:107888236
SNP07 107782079 C/T 3.98E-07 上游U 17.822 VSNL1 101800936 107799901:107888236
SNP08 107783298 G/A 2.61E-07 上游U 16.603 VSNL1 101800936 107799901:107888236
SNP09 108004296 T/A 4.56E-08 下游D 79.444 SMC6 101800359 107924852:107889694
下游D 44.743 MSGN1 101799965 107957897:107959553
下游D 61.142 GEN1 101800161 107924858:107943154
SNP10 108024959 T/C 6.92E-08 下游D 65.406 MSGN1 101799965 107957897:107959553
下游D 81.805 GEN1 101800161 107924858:107943154
SNP11 108032737 A/G 9.54E-08 下游D 73.184 MSGN1 101799965 107957897:107959553
下游D 89.583 GEN1 101800161 107924858:107943154
SNP12 108040405 G/A 1.54E-08 下游D 80.852 MSGN1 101799965 107957897:107959553
下游D 97.251 GEN1 101800161 107924858:107943154
SNP13 108046603 A/G 1.07E-07 下游D 87.050 MSGN1 101799965 107957897:107959553
SNP14 108047441 A/G 1.12E-07 下游D 87.888 MSGN1 101799965 107957897:107959553
SNP15 108049654 T/C 3.13E-07 下游D 90.101 MSGN1 101799965 107957897:107959553
SNP16 108050428 C/A 7.59E-08 下游D 90.875 MSGN1 101799965 107957897:107959553
SNP17 108062144 T/C 7.39E-08 下游D 24.603 KCNS3 101799545 107994943:108037541
SNP18 108065681 T/G 7.01E-08 下游D 28.140 KCNS3 101799545 107994943:108037541
SNP19 108068212 G/A 1.13E-07 下游D 30.671 KCNS3 101799545 107994943:108037541
SNP20 108070236 A/G 3.00E-07 下游D 89.657 KCNS3 101799545 107994943:108037541

Table 4

The sample size of different genotypes at 20 SNPs"

SNP 基因型及数量
Genotype and counts
SNP 基因型及数量
Genotype and counts
SNP 基因型及数量
Genotype and counts
SNP01 GG GT TT SNP02 CC CT TT SNP03 AA AG GG
2 62 377 377 62 2 379 60 2
SNP04 AA AG GG SNP05 CC TC TT SNP06 AA AC CC
2 60 379 377 62 2 2 59 380
SNP07 CC CT TT SNP08 AA AG GG SNP09 AA AT TT
2 61 378 378 61 2 372 67 2
SNP10 CC TC TT SNP11 AA AG GG SNP12 AA AG GG
375 63 3 2 65 374 375 64 2
SNP13 AA AG GG SNP14 AA AG GG SNP15 CC CT TT
2 66 373 2 66 373 372 66 3
SNP16 AA AC CC SNP17 CC TC TT SNP18 GG TG TT
376 63 2 374 65 2 374 65 2
SNP19 AA AG GG SNP20 AA AG GG
373 66 2 2 61 378

Fig. 6

Genetic effect analysis of significant SNPs associated with egg production"

[1]
刘灵芝. 中国蛋鸭产业市场现状与未来趋势研判. 中国禽业导刊, 2024, 41(5): 13-22.
LIU L Z. Market Status and future trends analysis of China’s Duck Egg Industry. Guide to Chinese Poultry, 2024, 41(5): 13-22. (in Chinese)
[2]
侯水生, 刘灵芝. 2023年水禽产业与技术发展报告. 中国畜牧杂志, 2024, 60(3): 318-321.
HOU S S, LIU L Z. Report on waterfowl industry and technology development in 2023. Chinese Journal of Animal Science, 2024, 60(3): 318-321. (in Chinese)
[3]
BELLO S F, ADEOLA A C, NIE Q H. The study of candidate genes in the improvement of egg production in ducks - A review. Poultry Science, 2022, 101(7): 101850.
[4]
DU Y, LIU L, HE Y, DOU T, JIA J, GE C. Endocrine and genetic factors affecting egg laying performance in chickens: A review. British Poultry Science, 2020, 61(5): 538-549.
[5]
MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.

doi: 10.1093/genetics/157.4.1819 pmid: 11290733
[6]
LONG A D, LANGLEY C H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research, 1999, 9(8): 720-731.

pmid: 10447507
[7]
严西萍. 鸭产蛋量和蛋重关键基因的筛选及其调控机制研究[D]. 雅安: 四川农业大学, 2023.
YAN X P. Screening the candidate genes and regulatory pathways associated with the trait of egg production and egg weight in ducks[D]. Yaan: Sichuan Agricultural University, 2023. (in Chinese)
[8]
王珍珍. 不同蛋鸭品种产蛋性能的比较分析及绍兴鸭产蛋性能的全基因组关联分析[D]. 金华: 浙江师范大学, 2020.
WANG Z Z. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)
[9]
XU W W, WANG Z Z, QU Y Q, LI Q Y, TIAN Y, CHEN L, TANG J H, LI C F, LI G Q, SHEN J D, TAO Z R, CAO Y Q, ZENG T, LU L Z. Genome-wide association studies and haplotype-sharing analysis targeting the egg production traits in Shaoxing duck. Frontiers in Genetics, 2022, 13: 828884.
[10]
ZHOU J, YU J Z, ZHU M Y, YANG F X, HAO J P, HE Y, ZHU X L, HOU Z C, ZHU F. Genome-wide association analysis and genetic parameters for egg production traits in Peking ducks. Animals, 2024, 14(13): 1891.
[11]
MANOLIO T A, COLLINS F S, COX N J, GOLDSTEIN D B, HINDORFF L A, HUNTER D J, MCCARTHY M I, RAMOS E M, CARDON L R, CHAKRAVARTI A, et al. Finding the missing heritability of complex diseases. Nature, 2009, 461(7265): 747-753.
[12]
YANG J, BENYAMIN B, MCEVOY B P, GORDON S, HENDERS A K, NYHOLT D R, MADDEN P A, HEATH A C, MARTIN N G, MONTGOMERY G W, GODDARD M E, VISSCHER P M. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 2010, 42(7): 565-569.

doi: 10.1038/ng.608 pmid: 20562875
[13]
朱志明, 缪中纬, 赵邦哲, 施文莉, 蔡倩楠, 章琳俐, 辛清武, 李丽, 林顺东, 郑嫩珠. 金定鸭不同养殖模式生产性能的比较分析. 福建畜牧兽医, 2024, 46(2): 23-25.
ZHU Z M, MIAO Z W, ZHAO B Z, SHI W L, CAI Q N, ZHANG L L, XIN Q W, LI L, LIN S D, ZHENG N Z. Comparative analysis of production performance of different rearing methods in Jinding ducks. Fujian Journal of Animal Husbandry and Veterinary Medicine, 2024, 46(2): 23-25. (in Chinese)
[14]
国家市场监督管理总局、 中国国家标准化管理委员会. 畜禽品种标准编制导则家禽: GB/T 36177—2018[S]. 北京: 中国标准出版社, 2018.
Standardization Administration of the People’s Republic of China. Directives for standard formulation of domestic animal breeds— Poultry: GB/T 36177—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
[15]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559-575.

doi: 10.1086/519795 pmid: 17701901
[16]
胡进, 李东锋, 潘在续, 许盛海, 张康宁, 牛欣然, 陈国宏. 雪山草鸡蛋壳缺陷性状的全基因组关联分析. 中国畜牧杂志, 2025, 61(3): 100-108.
HU J, LI D F, PAN Z X, XU S H, ZHANG K N, NIU X R, CHEN G H. Genome-wide association study of eggshell defect character of Snow Mountain grass. Chinese Journal of Animal Science, 2025, 61(3): 100-108. (in Chinese)
[17]
NICODEMUS K K, LIU W L, CHASE G A, TSAI Y Y, FALLIN M D. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genetics, 2005, 6(Suppl. 1): S78.
[18]
张磊, 郑麦青, 刘冉冉, 文杰, 吴丹, 胡耀东, 孙艳发, 李鹏, 刘丽, 赵桂苹. 鸡胸腺重和脾脏重性状的全基因组关联. 中国农业科学, 2012, 45(15): 3165-3175. doi: 10.3864/j.issn.0578-1752.2012.15.019.
ZHANG L, ZHENG M Q, LIU R R, WEN J, WU D, HU Y D, SUN Y F, LI P, LIU L, ZHAO G P. Genome-wide association of Thymus and spleen mass in chicken. Scientia Agricultura Sinica, 2012, 45(15): 3165-3175. doi: 10.3864/j.issn.0578-1752.2012.15.019. (in Chinese)
[19]
刘叶, 孙宇航, 王宇哲, 张博, 肖凡, 吴寒宇, 胡晓湘, 张浩. 全基因组关联分析鉴定白羽肉鸡腹脂沉积相关基因. 中国畜牧杂志, 2025, 61(3): 143-146, 153.
LIU Y, SUN Y H, WANG Y Z, ZHANG B, XIAO F, WU H Y, HU X X, ZHANG H. Identification of genes related to abdominal fat deposition in white feather broilers by genome-wide association study. Chinese Journal of Animal Science, 2025, 61(3): 143-146, 153. (in Chinese)
[20]
PERSYN E, REDON R, BELLANGER L, DINA C. The impact of a fine-scale population stratification on rare variant association test results. PLoS ONE, 2018, 13(12): e0207677.
[21]
PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909.

doi: 10.1038/ng1847 pmid: 16862161
[22]
林如龙. 山麻鸭体重、 产蛋量和蛋重的遗传参数研究. 中国家禽, 2016, 38(11): 62-64.
LIN R L. Study on genetic parameters of body weight, egg production and egg weight of Shanma duck. China Poultry, 2016, 38(11): 62-64. (in Chinese)
[23]
郭军, 邵丹, 窦套存, 马猛, 卢建, 胡玉萍, 王星果, 王强, 李永峰, 郭伟, 童海兵, 曲亮. 鸡产蛋期剩余采食量的随机回归分析及遗传标记筛选. 中国农业科学, 2024, 57(22): 4568-4577. doi: 10.3864/j.issn.0578-1752.2024.22.014.
GUO J, SHAO D, DOU T C, MA M, LU J, HU Y P, WANG X G, WANG Q, LI Y F, GUO W, TONG H B, QU L. Random regression analysis on residual feed intake in laying hens with and identification of the genetic markers. Scientia Agricultura Sinica, 2024, 57(22): 4568-4577. doi: 10.3864/j.issn.0578-1752.2024.22.014. (in Chinese)
[24]
郭军, 曲亮, 邵丹, 马猛, 窦套存, 卢建, 胡玉萍, 王星果, 王强, 李永峰, 郭伟, 童海兵. 基于一步法全基因组关联分析解析蛋黄比率遗传结构. 中国农业科学, 2024, 57(21): 4356-4366. doi: 10.3864/j.issn.0578-1752.2024.21.014.
GUO J, QU L, SHAO D, MA M, DOU T C, LU J, HU Y P, WANG X G, WANG Q, LI Y F, GUO W, TONG H B. Dissecting the genetic architecture of yolk ratio with single-step genome-wide association study. Scientia Agricultura Sinica, 2024, 57(21): 4356-4366. doi: 10.3864/j.issn.0578-1752.2024.21.014. (in Chinese)
[25]
刘勃攻, 杨杰, 肖健, 贺喜, 张海涵. 利用BLUP和Bayes方法对湘佳黑凤鸡S1系产蛋性状基因组育种值预测效果的比较研究. 中国家禽, 2025, 47(1): 1-7.
LIU B G, YANG J, XIAO J, HE X, ZHANG H H. Comparative study on the effect of predicting genomic breeding values for laying traits of Xiangjia Heifeng S1 line chicken using BLUP and Bayes methods. China Poultry, 2025, 47(1): 1-7. (in Chinese)
[26]
郭军, 曲亮, 窦套存, 胡玉萍, 沈曼曼, 王星果, 王克华. 蛋鸡资源群体产蛋性状遗传参数分析. 四川农业大学学报, 2019, 37(2): 227-231.
GUO J, QU L, DOU T C, HU Y P, SHEN M M, WANG X G, WANG K H. Genetic parameters estimated for egg production traits in layer resource population. Journal of Sichuan Agricultural University, 2019, 37(2): 227-231. (in Chinese)
[27]
沈乃民, 金良, 陈会新. 蛋鸡产蛋量遗传规律及对育种选择的启示. 中国家禽, 1997, 19(5): 10-13.
SHEN N M, JIN L, CHEN H X. Genetics of egg production in layers and its importance to selection. China Poultry, 1997, 19(5): 10-13. (in Chinese)
[28]
YUAN J W, SUN C J, DOU T C, YI G Q, QU L J, QU L, WANG K H, YANG N. Identification of promising mutants associated with egg production traits revealed by genome-wide association study. PLoS ONE, 2015, 10(10): e0140615.
[29]
孙艳发, 李焰, 林如龙, 陈红萍, 吴琼, 李建磊, 陈羽, 林泽. 龙岩山麻鸭产蛋量和蛋重性状的遗传参数估计. 中国畜牧杂志, 2020, 56(10): 51-55.
SUN Y F, LI Y, LIN R L, CHEN H P, WU Q, LI J L, CHEN Y, LIN Z. Estimation of genetic parameters for egg production and weight traits in Longyan Shan-ma duck. Chinese Journal of Animal Science, 2020, 56(10): 51-55. (in Chinese)
[30]
徐铁山, 黄苇, 刘小林, 侯水生. 北京鸭繁殖性能的遗传分析. 畜牧兽医学报, 2006, 37(3): 299-304.
XU T S, HUANG W, LIU X L, HOU S S. Genetic analysis of reproductive performation traits in Beijing ducks. Acta Veterinaria et Zootechnica Sinica, 2006, 37(3): 299-304. (in Chinese)
[31]
郭军, 王克华, 曲亮, 沈曼曼, 窦套存, 胡玉萍. 基于随机回归模型的如皋黄鸡产蛋数遗传参数分析. 西北农林科技大学学报(自然科学版), 2016, 44(5): 8-12, 19.
GUO J, WANG K H, QU L, SHEN M M, DOU T C, HU Y P. Estimation of genetic parameters for egg production of Rugao Yellow Chicken with random regression. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(5): 8-12, 19. (in Chinese)
[32]
孙艳发, 吴琼, 林如龙, 陈红萍, 甘秋云, 沈玥, 王亚茹, 薛鹏飞, 陈飞帆, 刘健涛, 周陈鑫, 兰诗诗, 潘浩哲, 邓凡, 岳稳, 江宵兵, 李焰. 龙岩山麻鸭蛋品质性状的全基因组关联研究. 中国农业科学, 2023, 56(3): 572-586. doi: 10.3864/j.issn.0578-1752.2023.03.014.
SUN Y F, WU Q, LIN R L, CHEN H P, GAN Q Y, SHEN Y, WANG Y R, XUE P F, CHEN F F, LIU J T, ZHOU C X, LAN S S, PAN H Z, DENG F, YUE W, JIANG X B, LI Y. Genome-wide association study of egg quality traits in Longyan Shan-ma duck. Scientia Agricultura Sinica, 2023, 56(3): 572-586. doi: 10.3864/j.issn.0578-1752.2023.03.014. (in Chinese)
[33]
ZHANG H, DU Z Q, DONG J Q, WANG H X, SHI H Y, WANG N, WANG S Z, LI H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genomics, 2014, 15: 517.

doi: 10.1186/1471-2164-15-517 pmid: 24962627
[34]
朱文俊. 番鸭产蛋模型构建及AMPK通路调控脂质代谢影响产蛋机理研究[D]. 合肥: 安徽农业大学, 2021.
ZHU W J. The construction of egg production model and the mechanism of lipid metabolism mediated by AMPK pathway affecting egg production in Muscovy duck[D]. Hefei: Anhui Agricultural University, 2021. (in Chinese)
[35]
SHERWOOD R M, GODBEY C B. Construction of score card for judging for egg-production. Poultry Science, 1928, 7(6): 263-274.
[36]
HAFEZ E S E. Organ development in relation to egg-laying capacity in the fowl. The Journal of Agricultural Science, 1954, 45(2): 148-155.
[37]
李云雷, 薛夫光, 徐松山, 白皓, 刘一帆, 孙研研, 陈继兰. 产蛋后期母鸡脂肪沉积量与繁殖性能相关性研究. 畜牧兽医学报, 2018, 49(6): 1163-1168.
LI Y L, XUE F G, XU S S, BAI H, LIU Y F, SUN Y Y, CHEN J L. Relationship between fat deposition and reproduction performance of Beijing-you chickens during the late stage of reproductive period. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(6): 1163-1168. (in Chinese)
[38]
毛智琼, 杨静, 许汉峰, 马国明, 牛山, 徐桂云, 郑传威. 矮小型纯系蛋鸡屠体性状遗传相关及腹脂率与后期产蛋性能的关系研究. 中国畜牧杂志, 2021, 57(9): 65-69, 73.
MAO Z Q, YANG J, XU H F, MA G M, NIU S, XU G Y, ZHENG C W. Genetic correlation of carcass traits of dwarf pure-line laying hens and study on the relationship between abdominal fat rate and late laying performance. Chinese Journal of Animal Science, 2021, 57(9): 65-69, 73. (in Chinese)
[39]
GUO J, QU L, SHAO D, WANG Q, LI Y F, DOU T C, WANG X G, HU Y P, TONG H B. Genetic architecture of abdominal fat deposition revealed by a genome-wide association study in the laying chicken. Genes, 2024, 15(1): 10.
[40]
刘光宇, 李星星, 曾铭菲, 荣誉, 田博文, 胡志刚, 贾俊海, 刘小林. 家禽繁殖性状相关基因的研究进展. 家畜生态学报, 2019, 40(12): 86-90.
LIU G Y, LI X X, ZENG M F, RONG Y, TIAN B W, HU Z G, JIA J H, LIU X L. Research progress of reproductive traits related genes in poultry. Journal of Domestic Animal Ecology, 2019, 40(12): 86-90. (in Chinese)
[41]
WILLIAMS T A, MONTICONE S, CRUDO V, WARTH R, VEGLIO F, MULATERO P. Visinin-like 1 is upregulated in aldosterone- producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension, 2012, 59(4): 833-839.
[42]
LIN C W, CHANG L C, TSENG G C, KIRKWOOD C M, SIBILLE E L, SWEET R A. VSNL1 co-expression networks in aging include calcium signaling, synaptic plasticity, and Alzheimer’s disease pathways. Frontiers in Psychiatry, 2015, 6: 30.
[43]
王玉璘, 张亚丽. 不同饲粮钙水平对海兰褐蛋鸡产蛋后期生产性能的影响. 中国家禽, 2015, 37(17): 60-61.
WANG Y L, ZHANG Y L. The impact of different dietary calcium levels on the late egg-laying performance of Hy-Line Brown chickens. China Poultry, 2015, 37(17): 60-61. (in Chinese)
[44]
DE JUAN A F, SCAPPATICCIO R, AGUIRRE L, FONDEVILA G, GARCÍA J, CÁMARA L, MATEOS G G. Influence of the calcium and nutrient content of the prelay diet on egg production, egg quality, and tibiae mineralization of brown egg-laying hens from 16 to 63 wk of age. Poultry Science, 2023, 102(4): 102491.
[45]
XIA W G, CHEN W, ABOUELEZZ K F M, AZZAM M M M, RUAN D, WANG S, ZHANG Y N, LUO X, WANG S L, ZHENG C T. Estimation of calcium requirements for optimal productive and reproductive performance, eggshell and tibial quality in egg-type duck breeders. Animal, 2019, 13(10): 2207-2215.

doi: 10.1017/S1751731119000648 pmid: 31062683
[46]
LENZ S E, HENSCHEL Y, ZOPF D, VOSS B, GUNDELFINGER E D. VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Molecular Brain Research, 1992, 15(1/2): 133-140.
[47]
DE PICCOLI G, TORRES-ROSELL J, ARAGÓN L. The unnamed complex: What do we know about Smc5-Smc6? Chromosome Research, 2009, 17(2): 251-263.

doi: 10.1007/s10577-008-9016-8 pmid: 19308705
[48]
GAO M, RENDTLEW DANIELSEN J, WEI L Z, ZHOU D P, XU Q, LI M M, WANG Z Q, TONG W M, YANG Y G. A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS ONE, 2012, 7(11): e49687.
[49]
VERVER D E, VAN PELT A M M, REPPING S, HAMER G. Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. Cell Death & Disease, 2013, 4(8): e749.
[50]
CHALAMALASETTY R B, GARRIOCK R J, DUNTY W C Jr, KENNEDY M W, JAILWALA P, SI H, YAMAGUCHI T P. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development, 2014, 141(22): 4285-4297.

doi: 10.1242/dev.110908 pmid: 25371364
[51]
SUDHEER S, LIU J H, MARKS M, KOCH F, ANURIN A, SCHOLZE M, SENFT A D, WITTLER L, MACURA K, GROTE P, HERRMANN B G. Different concentrations of FGF ligands, FGF2 or FGF8 determine distinct states of WNT-induced presomitic mesoderm. Stem Cells, 2016, 34(7): 1790-1800.

doi: 10.1002/stem.2371 pmid: 27038343
[52]
GUO Y, TIAN J, SONG C, HAN W, ZHU C H, LI H F, ZHANG S J, CHEN K W, LI N, CARLBORG Ö, HU X X. Mapping and functional dissection of the rumpless trait in Piao chicken identifies a causal loss of function mutation in the novel gene RumOpen access. Molecular Biology and Evolution, 2023, 40(12): msad273.
[53]
KOPARIR A, LEKSZAS C, KESEROGLU K, ROSE T, RAPPL L, RAD A, MAROOFIAN R, NARENDRAN N, HASANZADEH A, KARIMIANI E G, et al. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Human Genomics, 2024, 18(1): 23.
[54]
MIYAMAE T, HASHIMOTO T, ABRAHAM M, KAWABATA R, KOSHIKIZAWA S, BIAN Y F, NISHIHATA Y, KIKUCHI M, ERMENTROUT G B, LEWIS D A, GONZALEZ-BURGOS G. Kcns3 deficiency disrupts Parvalbumin neuron physiology in mouse prefrontal cortex: Implications for the pathophysiology of schizophrenia. Neurobiology of Disease, 2021, 155: 105382.
[55]
DELGADO-BERMÚDEZ A, YESTE M, BONET S, PINART E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology, 2025, 13(2): 184-201.
[56]
VISSCHER P M, BROWN M A, MCCARTHY M I, YANG J. Five years of GWAS discovery. American Journal of Human Genetics, 2012, 90(1): 7-24.

doi: 10.1016/j.ajhg.2011.11.029 pmid: 22243964
[1] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[2] GUO Jun, SHAO Dan, DOU TaoCun, MA Meng, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing, QU Liang. Random Regression Analysis on Residual Feed Intake in Laying Hens with and Identification of the Genetic Markers [J]. Scientia Agricultura Sinica, 2024, 57(22): 4568-4577.
[3] GUO Jun, QU Liang, SHAO Dan, MA Meng, DOU TaoCun, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing. Dissecting the Genetic Architecture of Yolk Ratio with Single-Step Genome-Wide Association Study [J]. Scientia Agricultura Sinica, 2024, 57(21): 4356-4366.
[4] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[5] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[6] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[7] YANG MingLu, ZHANG HaiLiang, LUO HanPeng, HUANG XiXia, ZHANG HanLin, ZHANG ShiShi, WANG Yan, LIU Lin, GUO Gang, WANG YaChun. Estimation of Genetic Parameters and Genome-Wide Association Study of Heat Indicators in Holstein Cattle Based on Collar-Mounted Device [J]. Scientia Agricultura Sinica, 2023, 56(5): 995-1006.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[10] ZENG Jian, WANG RuMeng, GONG Pan, YANG Xiao, YIN XiaoQi, LI JiangHe, CHEN ShiLong, YAO Lei, SONG HaiXing, KANG Lei, ZHANG ZhenHua. Genome-Wide Association Study of Nitrogen Efficiency Related Traits at Seedling Stage in Brassica juncea [J]. Scientia Agricultura Sinica, 2023, 56(20): 3946-3959.
[11] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[12] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[13] TONG Xiong, LUO Wei, MIN Li, ZHANG ZhiFei, MA XinYan, LUO ChengLong, CHEN WeiDong, XU Bin, LI DaGang. Population Structure and Genetic Diversity of Lufeng Cattle and Leiqiong Cattle Based on Genome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(14): 2798-2811.
[14] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[15] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!