Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2924-2932.doi: 10.3864/j.issn.0578-1752.2025.14.016

• RESEARCH NOTES • Previous Articles    

Identification of Wild Potato Introgression Lines Resistant to Southern Root-Knot Nematode

XIE HuiHui1(), YANG QiuHua1, LI WenLi2, ZHU JinCheng1, LI HuiXia3, ZHANG Feng1,*()   

  1. 1 College of Agriculture, Gansu Agricultural University/State Key Laboratory of Arid Land Crop Science, Lanzhou 730070
    2 College of Horticulture, Gansu Agricultural University, Lanzhou 730070
    3 College of Plant Protection, Gansu Agricultural University, Lanzhou 730070
  • Received:2025-03-13 Accepted:2025-05-08 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHANG Feng

Abstract:

【Objective】The southern root-knot nematode (Meloidogyne incognita) affects potato yield and quality. Screening for resistance to this nematode can provide a foundation for discovering new resistance genes and breeding resistant potato varieties. 【Method】The root-knot nematode was identified using PCR and propagated using water spinach. Southern root-knot nematodes were inoculated into 103 wild potato introgression lines at the seedling stage. After 35 days, root fresh weight was measured, and the number of root knots and egg masses were counted. Root knot index, egg index, and reproduction factor were calculated. Using statistical data, the membership function value was computed, and resistant materials were screened based on the membership function value and reproduction factor. The expression levels of 10 candidate resistance genes in potatoes at different stages were detected. The resistance evaluation results and the expression levels of candidate resistance genes were comprehensively analyzed to screen for wild potato introgression lines resistant to southern root-knot nematode. 【Result】The tested nematode as southern root-knot nematode. Among the 103 introgression lines, the number of root knots ranged from (8.00±3.61) to (359.00±242.00); the number of egg masses ranged from (1.00±0.00) to (483.67±5.69); the root knot index ranged from (0.62±0.28) to (36.59±2.21); the egg index ranged from (0.09±0.01) to (10 610±503.61); the reproduction factor ranged from (0.06±0.00) to (29.58±1.94); and the membership function value ranged from 1.96 to 4.98. Among these, lines 232-14 and 390-19 had the lowest root knot index, number of egg masses, root knot index, egg index, and reproduction factor, with values of (8.00±3.61) and (9.00±2.65), (1.00±0.00) and (1.33±0.58), (0.67±0.27) and (0.62±0.28), (0.09±0.01) and (0.09±0.05), and (0.06±0.00) and (0.08±0.03), respectively. Their membership function values were the highest, at 4.98 and 4.77, respectively. Lines 232-14, 390-19, 271-5, and 374-7 all had fewer than 100 egg masses and root knots. Line 271-5 exhibited lower root fresh weight and hypersensitive necrosis symptoms., with a higher egg index and reproduction factor. Expression profiling of candidate resistance genes revealed distinct temporal patterns: In line 390-19, overall gene expression exhibited a biphasic response to M. incognita infection, characterized by an initial upregulation followed by gradual decline, with Invertase inhibitor showing peak expression on the 1st day post-inoculation. Line 232-14 demonstrated significant upregulation of resistance genes specifically on the 3rd and 7th days after infection. Similarly, line 374-7 displayed a comparable biphasic expression pattern, where both PIN2 and Replication factor A reached their maximum expression levels on the 7th day post-infection. Resistance gene expression levels in line 374-7 were significantly lower overall than in line 390-19 and line 232-14. The highly suscep-tible control Burbank showed the lowest expression of resistance genes. 【Conclusion】This study identified introgression lines 232-14 and 390-19, with S.blb+R4 as the donor parent, as resistant wild potato introgression lines to southern root-knot nematode. The wild species S.blb can provide gene resources for resistance to southern root-knot nematode.

Key words: potato, southern root-knot nematode, resistance evaluation, resistance gene, resistance breeding

Table 1

Primer sequences"

引物名称 Primer 引物序列 Primer sequences (5′-3′)
D2A ACAAGTACCGTGAGGGAAAGTTG
D3B TCGGAAGGAACCAGCTAC
SEC-F GGGCAAGTAAGGATGCTCTG
SEC-R GCACCTCTTTCATAGCCACG

Table 2

Gene and qRT-PCR primer sequences"

基因 Gene 引物序列 Primer sequences (5′-3′)
PIN2 F:CAAGGCATGTACCCTGGAATGTGAC
R:GGCTCTCCAGTACAAATTAAAGATCCATC
Invertase inhibitor F:GATGGTATGGATGATGTTGTTGTTGAAGC
R:GCAACTTTTGATAGTTCAATTATTTCCCTACTC
Glutathione S- transferase F:CTGATCCTTATGAGAGATCACAAGCC
R:GCTTCCTCCAGTAACTTGAGTGG
PR-1 F:CTGTAGGATGCAACACTCTGGTGGC
R:CCAAGACGTACTGAGTTACGCCAG
MAPK F:CGGAGAATCTACGAGCAGTGGCG
R:CACAGATTCCCTCCAAATGAGCTCC
Replication factor A F:GCACAAATGTCATCAGCAGCTTC
R:GCATCCTGAGCATTCAAGCAC
TOM20 F:CTTGGCGAGGTGGGGACG
R:CCCAAACACCAAAGCACATCATGC
Gene of unknown function F:CACCACGTAGATCCCTCTACCTTAG
R:CATGATCCACGATCAGGTGACG
Lectin F:GAAGTGGCTGAGCTTGTTAGAACTTG
R:GCCTTTTCAAGTCCATGTGAATCCTC
BEL5 F:GTGGATCAAAGGTATAGACAATACCATCACC
R:GAAATTGTGTGCAAAGCAAGTTGTGTG

Fig. 1

Results of molecular identification of root-knot nematode M: DL2000 Marker; 1-6: Amplified with the M. incognita specific primer SEC-F/SEC-R; 7-12: Amplified with the nematode general primer D2A/D3B"

Fig. 2

Disease indicators related to introversive lines of wild potato species infected by M. incognita A: Number of root knots; B: Number of egg masses; C: Gall index; D: Egg index; E: Reproduction factor; F: Membership function value"

Fig. 3

Infection symptoms in potato infected by M. incognita on day 35"

Fig. 4

Expression of resistance genes in different stages of infection with M. incognita"

[1]
TAPIA-VÁZQUEZ I, MONTOYA-MARTÍNEZ A C, DE LOS SANTOS-VILLALOBOS S, EK-RAMOS M J, MONTESINOS- MATÍAS R, MARTÍNEZ-ANAYA C. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: biology, current control strategies, and perspectives. World Journal of Microbiology and Biotechnology, 2022, 38(2): 26.
[2]
JONES J T, HAEGEMAN A, DANCHIN E G J, GAUR H S, HELDER J, JONES M G K, KIKUCHI T, MANZANILLA-LÓPEZ R, PALOMARES-RIUS J E, WESEMAEL W M L, PERRY R N. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 2013, 14(9): 946-961.

doi: 10.1111/mpp.12057 pmid: 23809086
[3]
MALEITA C M N, SANTOS D A F, ABRANTES I M O, ESTEVES I. First report of root knot nematodes Meloidogyne incognita and M. javanica parasitizing sweet potato, Ipomoea batatas L., in Portugal. Plant Disease, 2022, 95(6): 770.
[4]
HAJIHASSANI A, NUGRAHA G T, TYSON C. First report of the root-knot nematode Meloidogyne enterolobii on sweet potato in Georgia, United States. Plant Disease, 2023, 107(1): 226.
[5]
JIA L M, WU H Y, WANG Y, LI H F. First report of the root-knot nematode Meloidogyne enterolobii on sweet potato in Guangxi Province, China. Plant Disease, 2022, 106(4): 1308.
[6]
DATIR S S. Invertase inhibitors in potato: Towards a biochemical and molecular understanding of cold-induced sweetening. Critical Reviews in Food Science and Nutrition, 2021, 61(22): 3804-3818.
[7]
KIM S, KIM H M, SEO H J, YEON J, PARK A R, YU N H, JEONG S G, CHANG J Y, KIM J C, PARK H W. Root-knot nematode (Meloidogyne incognita) control using a combination of Lactiplantibacillus plantarum WiKim0090 and copper sulfate. Journal of Microbiology and Biotechnology, 2022, 32(8): 960-966.
[8]
FAN H Y, YAO M L, WANG H M, ZHAO D, ZHU X F, WANG Y Y, LIU X Y, DUAN Y X, CHEN L J. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiology, 2020, 20(1): 299.
[9]
FAN Z Q, QIN Y K, LIU S, XING R E, YU H H, LI P C. Chitosan oligosaccharide fluorinated derivative control root-knot nematode (Meloidogyne incognita) disease based on the multi-efficacy strategy. Marine Drugs, 2020, 18(5): 273.
[10]
DIYAPOGLU A, ONER M, MENG M. Application potential of bacterial volatile organic compounds in the control of root-knot nematodes. Molecules, 2022, 27(14): 4355.
[11]
DINH P T Y, BROWN C R, ELLING A A. RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology, 2014, 104(10): 1098-1106.
[12]
BALI S, HU S W, VINING K, BROWN C, MOJTAHEDI H, ZHANG L, GLEASON C, SATHUVALLI V. Nematode genome announcement: draft genome of Meloidogyne chitwoodi, an economically important pest of potato in the Pacific northwest. Molecular Plant-Microbe Interactions, 2021, 34(8): 981-986.
[13]
SAUCET S B, VAN GHELDER C, ABAD P, DUVAL H, ESMENJAUD D. Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytologist, 2016, 211(1): 41-56.
[14]
MARQUEZ J, HAJIHASSANI A. Identification, diversity, and distribution of Meloidogyne spp. in vegetable fields of south Georgia, U.S.A. Phytopathology, 2023, 113(6): 1093-1102.
[15]
BALI S, VINING K, GLEASON C, MAJTAHEDI H, BROWN C R, SATHUVALLI V. Transcriptome profiling of resistance response to Meloidogyne chitwoodi introgressed from wild species Solanum bulbocastanum into cultivated potato. BMC Genomics, 2019, 20(1): 907.
[16]
ALEXANDER D, GOODMAN R M, GUT-RELLA M, GLASCOCK C, WEYMANN K, FRIEDRICH L, MADDOX D, AHL-GOY P, LUNTZ T, WARD E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(15): 7327-7331.
[17]
TURRÀ D, VITALE S, MARRA R, WOO S L, LORITO M. Heterologous expression of PKPI and Pin1 proteinase inhibitors enhances plant fitness and broad-spectrum resistance to biotic threats. Frontiers in Plant Science, 2020, 11: 461.

doi: 10.3389/fpls.2020.00461 pmid: 32425963
[18]
REHMAN S, AZIZ E, AKHTAR W, ILYAS M, MAHMOOD T. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family. Biotechnology Letters, 2017, 39(5): 647-666.

doi: 10.1007/s10529-017-2298-1 pmid: 28185031
[19]
DATIR S, GHOSH P. In silico analysis of the structural diversity and interactions between invertases and invertase inhibitors from potato (Solanum tuberosum L.). 3 Biotech, 2020, 10(4): 178.
[20]
MCKENZIE M J, CHEN R K Y, HARRIS J C, ASHWORTH M J, BRUMMELL D A. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant, Cell & Environment, 2013, 36(1): 176-185.
[21]
HAMMES U Z, SCHACHTMAN D P, BERG R H, NIELSEN E, KOCH W, MCINTYRE L M, TAYLOR C G. Nematode-induced changes of transporter gene expression in Arabidopsis roots. Molecular Plant-Microbe Interactions, 2005, 18(12): 1247-1257.
[22]
容万韬, 王金成, 刘鹏, 林宇, 郭京泽, 黄国明, 孙建华. 单条线虫DNA提取方法研究. 华北农学报, 2014, 29(2): 127-132.

doi: 10.7668/hbnxb.2014.02.024
RONG W T, WANG J C, LIU P, LIN Y, GUO J Z, HUANG G M, SUN J H. Research on DNA extraction methods from a single nematode. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 127-132. (in Chinese)
[23]
DE ALMEIDA ENGLER J, GHEYSEN G. Nematode-induced endoreduplication in plant host cells: Why and how molecular plant-microbe interactions. Molecular Plant-Microbe Interactions, 2013, 26(1): 17-24.
[24]
王曦茁, 汪来发, 杨佐忠, 刘子雄, 余明忠. 四川省茂县花椒根结线虫病病原鉴定. 植物保护, 2014, 40(4): 84-88, 100.
WANG X Z, WANG L F, YANG Z Z, LIU Z X, YU M Z. Identification of the root-knot nematode on pepper in Mao County, Sichuan Province. Plant Protection, 2014, 40(4): 84-88, 100. (in Chinese)
[25]
TANG X, ZHANG N, SI H J, CALDERÓN-URREA A. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13: 85.

doi: 10.1186/s13007-017-0238-7 pmid: 29075311
[26]
彭德良, SUBBOTIN S, MOENS M. 小麦禾谷胞囊线虫(Heterodera avenae)的核糖体基因(rDNA)限制性片段长度多态性研究. 植物病理学报, 2003, 33(4): 323-329.
PENG D L, SUBBOTIN S, MOENS M. rDNA restriction fragment length polymorphism of Heterodera avenae in China. Acta Phytopathologica Sinica, 2003, 33(4): 323-329. (in Chinese)
[27]
LIN B R, ZHUO K, CHEN S Y, HU L L, SUN L H, WANG X H, ZHANG L H, LIAO J L. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytologist, 2016, 209(3): 1159-1173.

doi: 10.1111/nph.13701 pmid: 26484653
[28]
WILLIAMSON V M, HUSSEY R S. Nematode pathogenesis and resistance in plants. The Plant Cell, 1996, 8(10): 1735-1745.
[29]
TRUDGILL D L, BLOK V C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 2001, 39: 53-77.

pmid: 11701859
[30]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.
[31]
KEIKOTLHAILE B M, SPANOGHE P, STEURBAUT W. Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach. Food and Chemical Toxicology, 2010, 48(1): 1-6.

doi: 10.1016/j.fct.2009.10.031 pmid: 19879312
[32]
ZHANG X, PENG H, ZHU S R, XING J J, LI X, ZHU Z Z, ZHENG J Y, WANG L, WANG B Q, CHEN J, MING Z H, YAO K, JIAN J Z, LUAN S, COLEMAN-DERR D, LIAO H D, PENG Y S, PENG D L, YU F. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Molecular Plant, 2020, 13(10): 1434-1454.
[33]
BARKER K R. Nematode extraction and bioassays. North Carolina State University, 1985.
[34]
MORIKAWA K, SHIRAKAWA M. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA. Mutation Research/DNA Repair, 2000, 460(3/4): 257-275.
[35]
MER G, BOCHKAREV A, GUPTA R, BOCHKAREVA E, FRAPPIER L, INGLES C J, EDWARDS A M, CHAZIN W J. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell, 2000, 103(3): 449-456.

doi: 10.1016/s0092-8674(00)00136-7 pmid: 11081631
[36]
ABOUSSEKHRA A, BIGGERSTAFF M, SHIVJI M K K, VILPO J A, MONCOLLIN V, PODUST V N, PROTIĆ M, HÜBSCHER U, EGLY J M, WOOD R D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 1995, 80(6): 859-868.

doi: 10.1016/0092-8674(95)90289-9 pmid: 7697716
[37]
ZHOU D M, GODINEZ-VIDAL D, HE J M, TEIXEIRA M, GUO J Z, WEI L H, VAN NORMAN J M, KALOSHIAN I. A G-type lectin receptor kinase negatively regulates Arabidopsis immunity against root-knot nematodes. Plant Physiology, 2023, 193(1): 721-735.
[1] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[2] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[3] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[4] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[5] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[6] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[7] ZHAO TianTian, YUAN JianLong, ZHUO FengQi, TANG ZhenSan, XU Jie, ZHANG Feng. Comprehensive Evaluation of Potato Flour Quality and Variety Screening [J]. Scientia Agricultura Sinica, 2025, 58(13): 2522-2537.
[8] CUI MengJie, SUN ZiQi, QI FeiYan, LIU Hua, XU Jing, DU Pei, HUANG BingYan, DONG WenZhao, HAN SuoYi, ZHANG XinYou. Evaluation of 322 Peanut Germplasms for Resistance to Aspergillus flavus Infection [J]. Scientia Agricultura Sinica, 2025, 58(12): 2303-2315.
[9] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[10] WU QiBin, XIE WanJie, ZHONG Hui, FENG ChunYan, PAN HaoRan, QI YiYing, ZHANG JiSen, WANG HengBo. Identification of the Bru1 Genomic Region for Brown Rust Resistance and Functional Analysis of Candidate Resistance Genes in Sugarcane [J]. Scientia Agricultura Sinica, 2024, 57(5): 855-867.
[11] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[12] WANG Shuai, ZHANG RuYang, WANG RongHuan, SONG Wei, ZHAO JiuRan. Research Progress of Southern Corn Rust and Resistance Breeding [J]. Scientia Agricultura Sinica, 2024, 57(14): 2732-2743.
[13] WANG YongJiang, QIAO Qi, WANG Shuang, ZHAO FuMei, TIAN YuTing, ZHANG DeSheng, ZHANG ZhenChen. Establishment and Application of RT-RPA-LFD Detection Method for Sweet Potato Chlorotic Stunt Virus WA Strain [J]. Scientia Agricultura Sinica, 2024, 57(14): 2781-2790.
[14] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[15] GAO Fu, WANG Rui, LIU DongJun, SUN HuiYan, WANG ZiYe, SONG WeiFu, LI TianYa. Stem Rust Resistance Genes Identification and Evaluation of 88 Wheat Cultivars (Lines) in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2024, 57(13): 2568-2582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!