Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2838-2853.doi: 10.3864/j.issn.0578-1752.2025.14.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Spatial and Temporal Changes of Cropland Topsoil Inorganic Carbon in the Sichuan Basin Based on Gap-Filled Data

LI AiWen(), CHENG JinLi, CHEN Dan, CHEN XinYi, MAO YaRuo, LI QiQuan*()   

  1. College of Resources, Sichuan Agricultural University, Chengdu 611130
  • Received:2024-09-18 Accepted:2024-11-21 Online:2025-07-17 Published:2025-07-17
  • Contact: LI QiQuan

Abstract:

【Objective】This study aimed to fill soil inorganic carbon (SIC) gaps through predictive modeling and assess its impact on spatial interpolation accuracy, thereby providing a scientific basis for rapidly and accurately revealing the spatiotemporal variability of regional soil properties.【Method】This study focused on the Sichuan Basin, utilizing 4 219 cropland topsoil (0-20 cm) samples from the Second National Soil Survey (1980-1985) and 4 409 samples from field sampling conducted between 2017 and 2019. By integrating climate, topography, and other SIC-related soil attributes, Radial Basis Function Neural Network (RBFNN) model and Random Forest (RF) model were used to construct optimal SIC predictive models for the topsoil across six sub-basins in different periods, thereby filling in missing SIC values. Subsequently, this study assessed how adding these filled SIC values as sample points impacted the spatial interpolation accuracy of the Ordinary Kriging (OK) method.【Result】The RBFNN model and RF model effectively filled missing SIC values in the cropland topsoil of the Sichuan Basin. Optimal predictive models differed across sub-basins and periods, with the coefficient of determination (R²) for independent validation samples ranging from 0.70 to 0.96 and the root mean square error (RMSE) ranging from 0.33 to 2.40 g·kg-1. For independent validation samples across the two periods in the entire Sichuan Basin, the best predictive models yielded R² values of 0.76 and 0.86, with RMSE values of 1.75 and 1.26 g·kg-1, respectively. For observed samples, the Ordinary Kriging (OK) method yielded R² values of 0.27 and 0.37 across the two periods, with mean absolute error (MAE), mean relative error (MRE), and RMSE values of 2.11 and 1.56 g·kg-1, 77.15% and 65.96%, 3.09 and 2.66 g·kg-1, respectively. After adding filled SIC values to the sample pool, the OK interpolation results for validation samples showed an increase in R² by 0.10 to 0.14, with reductions in MAE, MRE, and RMSE by 3.56% to 16.36%, and a significant decrease in kriging prediction variance. Based on the filled data, the mean SIC content in the cropland topsoil of the Sichuan Basin declined from 2.85 g·kg-1 to 2.55 g·kg-1 over the past 40 years, representing a 10.53% reduction. Those areas with declining SIC content were widely distributed around the periphery of the basin, while SIC content increased in the central region of the basin. Spatially, SIC in the cropland topsoil exhibited a high-value pattern in the central basin and lower values on the periphery in both periods, with high SIC areas concentrated in the central reaches of the Fujiang and Tuojiang River basins, and low-value areas primarily distributed on the basin’s periphery.【Conclusion】Integrating existing soil and environmental data, the RBFNN model and RF model were employed to construct an optimal regional prediction model, effectively addressing historical gaps in soil property data. This approach, based on supplemented sample points, enhanced spatial interpolation accuracy, enabling rapid and precise acquisition of spatiotemporal soil property information. It provided the critical support for assessing cropland soil quality and developing targeted management strategies.

Key words: soil inorganic carbon, spatiotemporal change, pedotransfer functions, Radial Basis Function Neural Network (RBFNN) model, Random Forest (RF) model, Sichuan basin

Fig. 1

Location of the Sichuan Basin and spatial distributions of soil sampling sites in the two periods"

Fig. 2

Correlation coefficients between SIC and auxiliary factors across sub-basins for different periods"

Fig. 3

Prediction accuracy of the RF model for SIC content in sub-basins during the 1980s: (a-f) modeling points and (g-l) validation points"

Fig. 4

Prediction accuracy of the RBFNN model for SIC content in sub-basins during the 1980s: (a-f) modeling points and (g-l) validation points"

Fig. 5

Prediction accuracy of the RF model for SIC content in sub-basins during the 2010s: (a-f) modeling points and (g-l) validation points"

Fig. 6

Prediction accuracy of the RBFNN model for SIC content in sub-basins during the 2010s: (a-f) modeling points and (g-l) validation points"

Fig. 7

The optimal model prediction accuracy for SIC content in Sichuan Basin"

Fig. 8

Statistical characteristics of SIC content based on filled data in different periods in the Sichuan Basin"

Table 1

Semi-variance analysis of cropland topsoil inorganic carbon content in the Sichuan Basin"

采样时期
Sampling period
数据类型
Data type
模型
Model
块金值
Nugget
基台值
Sill
块金效应
Nugget effect (%)
变程
Range
(km)
决定系数
R2
残差
RSS
1980-1985 实测值
Observed value
指数
Exponential
0.59 1.16 50.86 173 0.90 0.04
实测值+填补值
Observed value and imputed value
球状
Spherical
0.45 0.89 50.56 140 0.99 <0.01
2017-2019 实测值
Observed value
球状
Spherical
0.52 1.2 43.33 175 0.95 0.05
实测值+填补值
Observed value and imputed value
球状
Spherical
0.42 0.96 43.75 192 0.98 0.01

Fig. 9

Spatial prediction accuracy of SIC content before and after increasing soil samples with filled values in the Sichuan Basin"

Fig. 10

Spatial prediction errors of SIC content before and after increasing soil samples with filled values in the Sichuan Basin"

[1]
NOTTINGHAM A T, MEIR P, VELASQUEZ E, TURNER B L. Soil carbon loss by experimental warming in a tropical forest. Nature, 2020, 584: 234-237.
[2]
MELILLO J M, FREY S D, DEANGELIS K M, WERNER W J, BERNARD M J, BOWLES F P, POLD G, KNORR M A, GRANDY A S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358(6359): 101-105.

doi: 10.1126/science.aan2874 pmid: 28983050
[3]
JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423.
[4]
ZAMANIAN K, ZHOU J B, KUZYAKOV Y. Soil carbonates: The unaccounted, irrecoverable carbon source. Geoderma, 2021, 384: 114817.
[5]
HUANG Y Y, SONG X D, WANG Y P, CANADELL J G, LUO Y Q, CIAIS P, CHEN A P, HONG S B, WANG Y G, TAO F, et al. Size, distribution, and vulnerability of the global soil inorganic carbon. Science, 2024, 384(6692): 233-239.

doi: 10.1126/science.adi7918 pmid: 38603490
[6]
SCHLESINGER W H. The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 1985, 49(1): 57-66.
[7]
ZANG H D, BLAGODATSKAYA E, WEN Y, XU X L, DYCKMANS J, KUZYAKOV Y. Carbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesis. GCB Bioenergy, 2018, 10(4): 262-271.
[8]
冯晓琳, 张楚天, 许晨阳, 耿增超, 胡斐南, 杜伟. 陕西省土壤无机碳的时空分布特征及影响因素. 中国农业科学, 2024, 57(8): 1517-1532. doi: 10.3864/j.issn.0578-1752.2024.08.008.
FENG X L, ZHANG C T, XU C Y, GENG Z C, HU F N, DU W. Spatiotemporal distribution characteristics and influencing factors of soil inorganic carbon in Shaanxi Province. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532. doi: 10.3864/j.issn.0578-1752.2024.08.008. (in Chinese)
[9]
KIM J H, JOBBÁGY E G, RICHTER D D, TRUMBORE S E, JACKSON R B. Agricultural acceleration of soil carbonate weathering. Global Change Biology, 2020, 26(10): 5988-6002.
[10]
RAHEB A, HEIDARI A, MAHMOODI S. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran. Catena, 2017, 153: 66-74.
[11]
SHANHUN F L, ALMOND P C, CLOUGH T J, SMITH C M S. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology and Biochemistry, 2012, 53: 99-111.
[12]
TAMIR G, SHENKER M, HELLER H, BLOOM P R, FINE P, BAR-TAL A. Can soil carbonate dissolution lead to overestimation of soil respiration? Soil Science Society of America Journal, 2011, 75(4): 1414-1422.
[13]
ZAMANIAN K, KUZYAKOV Y. Contribution of soil inorganic carbon to atmospheric CO2: More important than previously thought. Global Change Biology, 2019, 25(1): e1-e3.
[14]
李艾雯, 冉敏, 宋靓颖, 薛晶玲, 张元媛, 李呈吉, 邓茜, 方红艳, 代天飞, 李启权. 四川盆地耕地表层土壤有机碳含量空间分布特征及其影响因素. 长江流域资源与环境, 2023, 32(5): 1102-1112.
LI A W, RAN M, SONG L Y, XUE J L, ZHANG Y Y, LI C J, DENG Q, FANG H Y, DAI T F, LI Q Q. Spatial distribution characteristics and influencing factors of cropland topsoil organic carbon content in the Sichuan Basin. Resources and Environment in the Yangtze Basin, 2023, 32(5): 1102-1112. (in Chinese)
[15]
AN H, WU X Z, ZHANG Y R, TANG Z S. Effects of land-use change on soil inorganic carbon: A meta-analysis. Geoderma, 2019, 353: 273-282.

doi: 10.1016/j.geoderma.2019.07.008
[16]
WANG X J, XU M G, WANG J P, ZHANG W J, YANG X Y, HUANG S M, LIU H. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in Northern China. Plant and Soil, 2014, 380(1): 89-100.
[17]
FILIPPI P, CATTLE S R, PRINGLE M J, BISHOP T F A. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma, 2020, 371: 114382.
[18]
CHEN B M, FENG W T, JING X, WANG Y G. Dryland agricultural expansion leads to lower content and higher variability of soil inorganic carbon in topsoil. Agriculture, Ecosystems & Environment, 2023, 356: 108620.
[19]
CHEN S C, ARROUAYS D, LEATITIA MULDER V, POGGIO L, MINASNY B, ROUDIER P, LIBOHOVA Z, LAGACHERIE P, SHI Z, HANNAM J, MEERSMANS J, RICHER-DE-FORGES A C, WALTER C. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 2022, 409: 115567.
[20]
ZHANG G L, LIU F, SONG X D. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 2017, 16(12): 2871-2885.
[21]
张振华, 丁建丽, 王敬哲, 葛翔宇, 王瑾杰, 田美玲, 赵启东. 集成土壤-环境关系与机器学习的干旱区土壤属性数字制图. 中国农业科学, 2020, 53(3): 563-573. doi: 10.3864/j.issn.0578-1752.2020.03.009.
ZHANG Z H, DING J L, WANG J Z, GE X Y, WANG J J, TIAN M L, ZHAO Q D. Digital soil properties mapping by ensembling soil- environment relationship and machine learning in arid regions. Scientia Agricultura Sinica, 2020, 53(3): 563-573. doi: 10.3864/j.issn.0578-1752.2020.03.009. (in Chinese)
[22]
CHEN S C, SABY N P A, MARTIN M P, BARTHÈS B G, GOMEZ C, SHI Z, ARROUAYS D. Integrating additional spectroscopically inferred soil data improves the accuracy of digital soil mapping. Geoderma, 2023, 433: 116467.
[23]
MINASNY B, MCBRATNEY A B. Digital soil mapping: A brief history and some lessons. Geoderma, 2016, 264: 301-311.
[24]
申哲, 张认连, 龙怀玉, 王转, 朱国龙, 石乾雄, 喻科凡, 徐爱国. 基于3种空间预测方法的黄土区土壤颗粒组成空间分布研究—以宁夏海原县为例. 中国农业科学, 2020, 53(18): 3716-3728. doi: 10.3864/j.issn.0578-1752.2020.18.008.
SHEN Z, ZHANG R L, LONG H Y, WANG Z, ZHU G L, SHI Q X, YU K F, XU A G. Research on spatial distribution of soil particle size distribution in loess region based on three spatial prediction methods-Taking Haiyuan County in Ningxia as an example. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728. doi: 10.3864/j.issn.0578-1752.2020.18.008. (in Chinese)
[25]
巫振富, 赵彦锋, 程道全, 陈杰. 样点数量与空间分布对县域尺度土壤属性空间预测效果的影响. 土壤学报, 2019, 56(6): 1321-1335.
WU Z F, ZHAO Y F, CHENG D Q, CHEN J. Influences of sample size and spatial distribution on accuracy of predictive soil mapping on a county scale. Acta Pedologica Sinica, 2019, 56(6): 1321-1335. (in Chinese)
[26]
孙越琦, 孙笑梅, 巫振富, 闫军营, 赵彦锋, 陈杰. 样点规模与采样方法对表层土壤pH空间预测精度的影响. 土壤学报, 2023, 60(6): 1595-1609.
SUN Y Q, SUN X M, WU Z F, YAN J Y, ZHAO Y F, CHEN J. Impact of sample size and sampling method on accuracy of topsoil pH prediction on a regional scale. Acta Pedologica Sinica, 2023, 60(6): 1595-1609. (in Chinese)
[27]
LOISEAU T, ARROUAYS D, RICHER-DE-FORGES A C, LAGACHERIE P, DUCOMMUN C, MINASNY B. Density of soil observations in digital soil mapping: A study in the Mayenne region, France. Geoderma Regional, 2021, 24: e00358.
[28]
RAZA S, MIAO N, WANG P Z, JU X T, CHEN Z J, ZHOU J B, KUZYAKOV Y. Dramatic loss of inorganic carbon by nitrogen- induced soil acidification in Chinese croplands. Global Change Biology, 2020, 26(6): 3738-3751.
[29]
TAO J J, RAZA S, ZHAO M Z, CUI J J, WANG P Z, SUI Y Y, ZAMANIAN K, KUZYAKOV Y, XU M G, CHEN Z J, ZHOU J B. Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. The Science of the Total Environment, 2022, 825: 154087.
[30]
LI Q Q, LI A W, DAI T F, FAN Z M, LUO Y L, LI S, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, LI H X, WILSON J P. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 2020, 26(7): 4134-4146.

doi: 10.1111/gcb.15110 pmid: 32267043
[31]
LI Q Q, LI A W, YU X L, DAI T F, PENG Y Y, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, WU D Y, XU Q. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. The Science of the Total Environment, 2020, 698: 134320.
[32]
WANG Z W, HUANG L M, SHAO M A. Development of pedotransfer functions for predicting hydraulic parameters of van Genuchten model by incorporating environmental variables on the Qinghai-Tibet Plateau. Soil and Tillage Research, 2024, 236: 105952.
[33]
SONG X D, YANG F, WU H Y, ZHANG J, LI D C, LIU F, ZHAO Y G, YANG J L, JU B, CAI C F, et al. Significant loss of soil inorganic carbon at the continental scale. National Science Review, 2022, 9(2): nwab120.
[34]
YAN X Y, CAI Z, WANG S W, SMITH P. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17(3): 1487-1496.
[35]
BAKER L, ELLISON D. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 2008, 144(1/2): 212-224.
[36]
VAN LEEUWEN C C E, MULDER V L, BATJES N H, HEUVELINK G B M. Effect of measurement error in wet chemistry soil data on the calibration and model performance of pedotransfer functions. Geoderma, 2024, 442: 116762.
[37]
WANG S N, LI R P, WU Y J, WANG W J. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). The Science of the Total Environment, 2023, 876: 162558.
[38]
BENEDET L, ACUÑA-GUZMAN S F, FARIA W M, SILVA S H G, MANCINI M, DOS SANTOS TEIXEIRA A F, PIERANGELI L M P, ACERBI F W Jr, GOMIDE L R, PÁDUA A L Jr, et al. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena, 2021, 197: 105003.
[39]
LI Q Q, LI S, XIAO Y, ZHAO B, WANG C Q, LI B, GAO X S, LI Y D, BAI G C, WANG Y D, YUAN D G. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena, 2019, 175: 278-285.
[40]
LI A W, LI C J, ZHANG Y Y, DENG Q, FANG H Y, ZHAO B, RAN M, SONG L Y, XUE J L, TAO Q, et al. The driving factors and buffering mechanism regulating cropland soil acidification across the Sichuan Basin of China. Catena, 2023, 220: 106688.
[41]
李艾雯, 宋靓颖, 冉敏, 李文丹, 张元媛, 李呈吉, 史文娇, 李启权. 气候变暖对四川盆地水稻土有机碳含量变化的影响. 环境科学, 2023, 44(8): 4679-4688.
LI A W, SONG L Y, RAN M, LI W D, ZHANG Y Y, LI C J, SHI W J, LI Q Q. Impact of climate warming on paddy soil organic carbon change in the Sichuan Basin of China. Environmental Science, 2023, 44(8): 4679-4688. (in Chinese)
[42]
LI A W, ZHANG Y Y, LI C J, DENG Q, FANG H Y, DAI T F, CHEN C P, WANG J T, FAN Z M, SHI W J, et al. Divergent responses of cropland soil organic carbon to warming across the Sichuan Basin of China. The Science of the Total Environment, 2022, 851(Pt 2): 158323.
[43]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
[44]
LI Q Q, YUE T X, WANG C Q, ZHANG W J, YU Y, LI B, YANG J, BAI G C. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena, 2013, 104: 210-218.
[45]
LI Q Q, ZHANG H, JIANG X Y, LUO Y L, WANG C Q, YUE T X, LI B, GAO X S. Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 2017, 9(2): 1167-1185.
[46]
李艾雯, 李文丹, 宋靓颖, 冉敏, 陈丹, 成金礼, 齐浩然, 郭聪慧, 李启权. 四川盆地耕地表层土壤容重缺失数据填补方法. 土壤学报, 2025, 62(01): 40-53.
LI A W, LI W D, SONG L Y, RAN M, CHEN D, CHENG J L, QI H R, GUO C H, LI Q Q. Methods of filling in bulk density gaps of cropland topsoil in The Sichuan Basin. Acta Pedologica Sinica, 2025, 62(01): 40-53. (in Chinese)
[47]
SLESSAREV E W, LIN Y, BINGHAM N L, JOHNSON J E, DAI Y, SCHIMEL J P, CHADWICK O A. Water balance creates a threshold in soil pH at the global scale. Nature, 2016, 540: 567-569.
[1] FENG XiaoLin, ZHANG ChuTian, XU ChenYang, GENG ZengChao, HU FeiNan, DU Wei. Spatiotemporal Distribution Characteristics and Influencing Factors of Soil Inorganic Carbon in Shaanxi Province [J]. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532.
[2] ZHAO Chang-ping, WANG Jing-yan, GONG Wei, YAN Si-yu, SHU Zheng-yue, CAI Yu. Soil Amendment and Enrichment Efficiency of Agro-Forestry Models in Serious Earthquake Region of Northern Sichuan Basin [J]. Scientia Agricultura Sinica, 2016, 49(15): 2999-3009.
[3] LIANG Tao, CHEN Xuan-jing, ZHAO Ya-nan, HUANG Xing-cheng, LI Hong, SHI Xiao-jun, ZHANG Yue-qiang. Response of Rice Yield to Inherent Soil Productivity of Paddies and Fertilization in Sichuan Basin [J]. Scientia Agricultura Sinica, 2015, 48(23): 4759-4768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!