Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (15): 2999-3009.doi: 10.3864/j.issn.0578-1752.2016.15.014

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Amendment and Enrichment Efficiency of Agro-Forestry Models in Serious Earthquake Region of Northern Sichuan Basin

ZHAO Chang-ping, WANG Jing-yan, GONG Wei, YAN Si-yu, SHU Zheng-yue, CAI Yu   

  1. College of Forestry, Sichuan Agricultural University/Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, Chengdu 611130
  • Received:2016-02-25 Online:2016-08-01 Published:2016-08-01

Abstract: 【Objective】The effects of different agro-forestry models on soil amendment and enrichment efficiency were studied to select the optimum model in serious earthquake region of northern Sichuan basin.【Method】Soil physical properties, nutrient contents and enzyme activities were determined under 8 agro-forestry models (including Pyrus spp+canna edulis (LSJO), Pyrus spp+Vicia faba (LSHD), Pyrus spp+Brassica chinensis (LSYC), Pyrus spp+Ipomoea batatas (LSHS), Juglans regia+Canna edulis (HTJO), Juglans regia+Amorphophallus rivieri (HTMY), Eriobotrya japonica+Glycine max (PPDD), Eriobotrya japonica+ Ipomoea batatas (PPHS)) and farmland control (CK), and the membership function method was used to evaluate soil anti-erodibility, fertility, and amendment and enrichment efficiency of different models.【Result】Compared with the CK, soil non-capillary porosity, capillary porosity, total porosity, ventilation degree, natural water content, maximum water-holding capacity, capillary water-holding capacity, minimum water-holding capacity and drainage capacity of the 8 agro-forestry models were increased by 17.6%-161.8%, 11.6%-32.7%, 12.5%-45.2%, 17.9%-79.5%, 10.7%-35.4%, 13.7%-48.6%, 12.0%-33.1%, 16.4%-58.7% and 10.4%-25.3%, respectively; >0.25 mm soil aggregate (dry sieving), >0.25 mm water-stable aggregate (wet sieving) and mean weight diameter of water-stable aggregates were increased by 0.9%-7.2%, 5.6%-18.1% and 14.8%-138.7%, respectively; ratio of soil structure deterioration and index of unstable aggregate were reduced by 24.0%-51.4% and 17.1%-54.7%, respectively; <0.002 mm clay content, structure particle index, aggregation status, aggregation degree and physical stability index were increased by 15.1%-45.2%, 14.2%-28.9%, 69.3%-417.3%, 58.3%-256.6% and 3.5%-23.9%, respectively; <0.05 mm micro-aggregates content, dispersion rate, erosion coefficient and eroded index were reduced by 5.4%-33.7%, 8.4%-44.1%, 18.0%-49.8% and 19.1%-75.1%, respectively; organic C, total N and hydrolysis N content were increased by 7.1%-46.7%, 4.3%-30.9% and 18.8%-57.5%, respectively; available P and available K content were reduced by 1.7%-29.7% and 20.8%-53.4%, respectively; invertase, phosphatase and urease activity were increased by 17.3%-60.0%, 34.7%-149.2% and 21.0%-102.8%, respectively. The comprehensive value of soil anti-erodibility (CVSA) and amendment and enrichment efficiency (CVAE) in all agro-forestry models were significantly higher than that in CK. The comprehensive value of soil fertility (CVSF) in all agro-forestry models except for LSHS and PPHS were significantly higher than that in CK. Planting canna edulis, canna edulis and Glycine max under Pyrus spp plantation, Juglans regia plantation and Eriobotrya japonica plantation respectively, could gain higher CVSA, CVSF and CVAE. The CVSA positively and significantly correlated with CVSF (P<0.05). 【Conclusion】Planting canna edulis, Vicia faba, Brassica chinensis in Pyrus spp plantation, planting canna edulis and Amorphophallus rivieri in Juglans regia plantation and planting Glycine max in Eriobotrya japonica plantation have significant soil amendment and enrichment efficiency, and are important to improve soil anti-erodibility and soil fertility in serious earthquake region of northern Sichuan basin. The improvement of soil anti-erodibility and soil fertility has a synergistic effect.

Key words: serious earthquake region, agro-forestry model, soil amendment and enrichment efficiency, Sichuan basin

[1]    中华人民共和国民政部, 中华人民共和国国家发展和改革委员会, 中华人民共和国财政部, 中华人民共和国国土资源部, 中国地震局. 汶川地震灾害范围评估结果[R]. 2008.
Ministry of Civil Affairs of the People’s Republic of China, National Development and Reform Commission, Ministry of Finance of the People's Republic of China, Ministry of Land and Resources of the People's Republic of China, China Earthquake Administration. Evaluation results of Wenchuan earthquake disaster area[R]. 2008. (in Chinese)
[2]    赵芹, 罗茂盛, 曹叔尤, 刘兴年. 汶川地震四川灾区水土流失经济损失评估及恢复对策. 四川大学学报(工程科学版), 2009, 41(3): 289-293.
Zhao Q, Luo M S, Cao S Y, Liu X N. Research on the recovering measures and economic loss evaluation of soil erosion and water loss in Wenchuan-Earthquake-hit areas of Sichuan province. Journal of Sichuan University(Engineering Science Edition), 2009, 41(3): 289-293. (in Chinese)
[3]    梁嘉陵, 黄艳胜, 王非, 王文杰, 张成军, 聂江力. 低山丘陵区果农复合生态经营模式. 东北林业大学学报, 1999, 27(4): 63-66.
Liang J L, Huang Y S, Wang F, Wang W J, Zhang C J, Nie J L. Fruit-crops compound ecological model in low hilly land. Journal of Northeast Forestry University, 1999, 27(4): 63-66. (in Chinese)
[4]    王娇. 辽西北地区典型农林复合模式下土壤特性研究. 防护林科技, 2014(7): 1-5.
Wang J. Soil characteristics under typical agroforestry model in northwestern areas. Protection Forest Science and Technology, 2014(7): 1-5. (in Chinese)
[5]    尹飞, 熊瑛, 李友军, 付国占. 农林复合生态系统土壤特征研究进展. 河南农业科学, 2009(2): 16-20.
Yi F, Xiong Y, Li Y J, Fu G Z. Research progress on soil characteristics of agroforestry ecosystem. Journal of Henan Agricultural Sciences, 2009(2): 16-20. (in Chinese)
[6]    贾树海, 李明, 邢兆凯, 刘畅, 赵旭炜, 刘红民, 程利. 不同农林复合模式对土壤理化性质及酶活性的影响. 土壤通报, 2014, 45(3): 648-652.
Jia S H, Li M, Xing Z K, Liu C, Zhao X W, Liu H M, Cheng L. Effect of different agroforestry patterns on soil physi-chemical properties and enzyme activities. Chinese Journal of Soil Science, 2014, 45(3): 648-653. (in Chinese)
[7]    Arévalo-Gardini E, Canto M, Alegre J, Loli O, Julca A, Baligar V. Changes in soil physical and chemical properties in long lerm improved natural and traditional agroforestry management systems of Cacao genotypes in Peruvian Amazon. PLoS ONE, 2015, 10(7): 1-29.
[8]    Singh K, Chauhan H S, Rajput D K, Singh D V. Report of a 60 month study on litter production, changes in soil chemical properties and productivity under poplar (P.deltoids) and eucalyptus (E. hybrid) interplanted with aromatic grasses. Agroforestry Systems, 1989, 9(1): 37-45.
[9]    文化一, 马渭俊. 混农林业的生态效益与经济效益研究. 西南农业学报, 1993, 6(4): 48-54.
Wen H Y, Ma W J. Study on ecologic and economic benefits under agri-silviculture. Southwest China Journal of Agricultural Sciences, 1993, 6(4): 48-54. (in Chinese)
[10]   Tornquista C G, Hons F M, Feagley S E, Haggar J. Agroforestry system effects on soil characteristics of the Sarapiquí region of Costa Rica. Agriculture, Ecosystems and Environment, 1999, 73: 19-28.
[11]   沈慧, 姜凤岐. 水土保持林土壤改良效益评价指标体系的研究. 北京林业大学学报, 2000, 22(5): 96-99.
Shen H, Jiang F Q. Evaluation index system on soil improvement benefit of water and soil conservation forests. Journal of Beijing Forestry University, 2000, 22(5): 96-99. (in Chinese)
[12]   夏志光. 黑土区不同农林复合模式土壤孔隙与贮水特性. 防护林科技, 2015(6): 1-3.
Xia Z G. Soil porosity and water storage characteristics of argoforestry models in black soil region. Protection Forest Science and Technology, 2015(6): 1-3. (in Chinese)
[13]   汪贵斌, 曹福亮, 程鹏, 陈雷, 刘婧, 李群. 不同银杏复合经营模式土壤肥力综合评价. 林业科学, 2010, 46(8): 1-7.
Wang G B, Cao F L, Cheng P, Chen L, Liu J, Li Q. Comprehensive evaluation of soil fertility of agroforestry patterns of Ginkgo biloba. Scientia Silvae Sinicae, 2010, 46(8): 1-7. (in Chinese)
[14]   中国标准出版社. 中国林业标准汇编(营造林卷). 北京: 中国标准出版社, 1998.
Standards Press of China. The collection of china forestry standardization (Afforestation volume). Beijing: Standards Press of China, 1998. (in Chinese)
[15]   刘孝义, 依艳丽. 土壤物理学基础及其研究法. 沈阳: 东北大学出版社, 1998.
Liu X Y, Yi Y L. Soil Physics Basis and Research Methods. Shenyang: Dongbei University Press, 1998. (in Chinese)
[16]   许光辉, 郑洪元. 土壤微生物分析方法手册. 北京: 农业出版社, 1986.
Xu G H, Zheng H Y. Handbook of analytical methods for Soil Microbiology(in Chinese). Beijing: Agriculture Press, 1986.
[17]   杨玉盛, 何宗明, 陈光水, 陈永宝. 不同生物治理措施对赤红壤抗蚀性影响的研究. 土壤学报, 1999, 36(4): 529-534.
Yang Y S, He Z M, Chen G S, Chen Y B. A study on lateritic red soil anti-erodibility under different biological treatments. Acta Pedologica Sinica, 1999, 36(4): 529-534. (in Chinese)
[18]   宫阿都, 何毓蓉. 金沙江干热河谷典型区(云南)退化土壤的结构性与形成机制. 山地学报, 2001, 19(3): 213-219.
Gong A D, He Y R. The structure feature and formation mechanism of the degraded soil in dry-hot valley region of the Jinsha River, Yunnan province, China. Journal of Mountain Science, 1999, 36(4): 529-534. (in Chinese)
[19]   胡建忠, 张伟华, 李文忠, 郑佳丽, 张春霞. 北川河流域退耕地植物群落土壤抗蚀性研究. 土壤学报, 2004, 41(6): 854-863.
Hu J Z, Zhang W H, Li W Z, Zheng J L, Zhang C X. Effect of plant community on anti-erodibility of land under rehabilitation in Beichuanghe basin. Acta Pedologica Sinica, 2004, 41(6): 854-863. (in Chinese)
[20]   何腾兵. 贵州山区土壤物理性质对土壤侵蚀影响的研究. 土壤侵蚀与水土保持学报, 1995, 1(1): 85-95.
He T B. Study on effect of soil physical properties on soil erosion in Guizhou mountainous region. Journal of Soil Erosion and Soil and Water Conservation, 1995, 1(1): 85-95. (in Chinese)
[21]   苏永中, 赵文智. 土壤有机碳动态: 风蚀效应. 生态学报, 2005, 25(8): 2049-2054.
Su Y Z, Zhao W Z. Soil organic carbon dynamics: wind erosion effect. Acta Ecological Sinica, 2005, 25(8): 2049-2054. (in Chinese)
[22]   王景燕, 龚伟, 李伦刚, 唐海龙, 肖千文, 胡文, 芶国军. 水肥对汉源花椒幼苗抗逆生理的影响. 西北植物学报, 2015, 35(3): 530-539.
Wang J Y, Gong W, Li L G, Tang H L, Xiao Q W, Hu W, Gou G J. Effects of water and fertilizer on physiological characteristics of stress resistance of Zanthoxylum bungeanum Maxim. ‘Hanyuan’ seedling. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3): 530-539. (in Chinese)
[23]   Carvalho R, Goedert W J, Armando M S. Physical features of soil quality under an agroforestry system. Pesquisa Agropecuária Brasileira, 2004, 39(11): 1153-1155.
[24]   陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23(2): 439-444.
Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C. Effects of tillage mode on black soils penetration resistance and bulk density. Chinese Journal of Applied Ecology, 2012, 23(2): 439-444. (in Chinese)
[25]   王景燕, 胡庭兴, 龚伟, 宫渊波, 罗承德. 川南地区不同退耕地对土壤抗蚀性的影响. 中国水土保持, 2010(12): 30-33.
Wang J Y, Hu T X, Gong W, Gong Y B, Luo C D. Influence of diffrent abandoned lands to corrosion resistance of soil in southern Sichuan province. Soil and Water Conservation in China, 2010(12): 30-33. (in Chinese)
[26]   史奕, 陈欣, 沈善敏. 土壤团聚体的稳定机制及人类活动的影响应用生态学报, 2002, 13(11): 1491-1494.
Shi Y, Chen X, Shen S M. Stable mechanisms of soil aggregate and effects of human activities. Chinese Journal of Applied Ecology, 2002, 13(11): 1491-1494. (in Chinese)
[27]   王春燕, 黄丽, 谭文峰, 胡红青. 几种侵蚀红壤中有机质和团聚体的关系. 水土保持学报, 2007, 21(3): 52-56.
Wang C Y, Huang L, Tan W F, Hu H Q. Relationship between organic matter and aggregates in several eroded ultisols. Journal of Soil and Water Conservation, 2007, 21(3): 52-56. (in Chinese)
[28]   陈佳, 陈洪松, 冯腾, 王克林, 张伟. 桂西北喀斯特地区不同土地利用类型土壤抗蚀性研究. 中国生态农业学报, 2012, 20(1): 105-110.
Chen J, Chen H S, Feng T, Wang K L, Zhang W. Anti-soil erodibility of different land use types in northwest Guangxi karst regions. Chinese Journal of Eco-Agriculture, 2012, 20(1): 105-110. (in Chinese)
[29]   薛萐, 刘国彬, 张超, 余娜. 黄土丘陵区人工灌木林土壤抗蚀性演变特征. 中国农业科学, 2010, 43(15): 3143-3150.
Xue S, Liu G B, Zhang C, Yu N. Change of soil anti-erodibility of artificial shrubs in loess hilly area. Scientia Agricultura Sinica, 2010, 43(15): 3143-3150. (in Chinese)
[30]   卢喜平, 史东梅, 蒋光毅, 刘立志. 两种果草模式根系提高土壤抗蚀性的研究. 水土保持学报, 2004, 18(5): 64-68.
Lu X P, Shi D M, Jiang G Y, Liu L Z. Study on root systerm of two kinds of interopping orehard-pasturage model improving soil anti-erodibulity. Journal of Soil and Water Conservation, 2004, 18(5): 64-68. (in Chinese)
[31]   史晓梅, 史东梅, 文卓立. 紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究. 水土保持学报, 2007, 21(4): 63-66.
Shi X M, Shi D M, Wen Z L. Study on soil anti-erodibility of different land utilization types in purple soil hilly region. Journal of Soil and Water Conservation, 2007, 21(4): 63-66. (in Chinese)
[32]   韩鲁艳, 贾燕锋, 王宁, 焦菊英. 黄土丘陵沟壑区植被恢复过程中的土壤抗蚀与细沟侵蚀演变. 土壤, 2009, 41(3): 483-489.
Han L Y, Jia Y F, Wang N, Jiao J Y. Soil anti-erodibility and soil erosion evolution of during process of vegetation recovering in loess hilly-gully region. Soils, 2009, 41(3): 483-489. (in Chinese)
[33]   李阳兵, 魏朝富, 谢德体, 高明. 岩溶山区植被破坏前后土壤团聚体稳定性研究. 中国农学通报, 2005, 21(10): 232-234.
Li Y B, Wei C F, Xie D T, Gao M. The features of soil water-stable aggregate before and after vegetation destruction in karst mountains. Chinese Agricultural Science Bulletin, 2005, 21(10): 232-234. (in Chinese)
[34]   骆东奇, 侯春霞, 魏朝富, 谢德体, 朱波. 紫色土团聚体抗蚀特征研究. 水土保持学报, 2003, 17(2): 20-24.
Luo D Q, Hou C X, Wei C F, Xie D T, Zhu B. Study on characteristics of purple soils aggregates erosion-resistant. Journal of Soil and Water Conservation, 2003, 17(2): 20-24. (in Chinese)
[35]   刘中良, 宇万太, 周桦, 徐永刚, 黄宝同. 长期施肥对土壤团聚体分布和养分含量的影响. 土壤, 2011, 43(5): 720-728.
Liu Z L, Yu W T, Zhou H, Xu Y G, Huang B T. Effects of long-term fertilization on aggregate size distribution and nutrient content. Soils, 2011, 43(5): 720-728. (in Chinese)
[36]   Cardoso I M, Janssen B H, Oenema O, Kuyper T. Phosphorus fractionation in oxisols under agroforestry and convertional coffee systems in Brazil. Germany: Springer Netherlands, 2001: 424-431.
[37]   查小春, 唐克丽. 黄土丘陵林区开垦地人为加速侵蚀与土壤物理力学性质的时间变化. 水土保持学报, 2001, 15(3): 20-23.
Zha X C, Tang K L. Temporal change about man-made accelerated erosion and soil physical and force properties of reclaimed forest lands in Loess Hilly Region. Journal of Soil and Water Conservation, 2001, 15(3): 20-23. (in Chinese)
[38]   常庆瑞, 安韶山, 刘京, 王斌, 魏永胜. 黄土高原恢复植被防止土地退化效益研究. 土壤侵蚀与水土保持学报, 1999, 5(4): 6-9, 44.
Chang Q R, An S S, Liu J, Wang B, Wei Y S. Study on benefits of recovering vegetation to prevent land deterioration on Loess Plateau. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(4): 6-9, 44. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!