Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2316-2332.doi: 10.3864/j.issn.0578-1752.2025.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATIONTECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Panicle Fertilizer on Yield, Quality and Aroma of Southern Japonica Rice Nanjing 9108

WANG RuiZhi(), LI Tao, QIAN XiangLing, ZHANG Ya, YANG XiaoZhuo, LI GuangYan, WEI HaiYan, ZHANG HongCheng, LIU GuoDong()   

  1. College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou 225009, Jiangsu
  • Received:2024-11-13 Accepted:2025-05-09 Online:2025-06-19 Published:2025-06-19
  • Contact: LIU GuoDong

Abstract:

【Objective】Nitrogen panicle fertilizer is one of the key factors affecting rice yield and quality. Studying its impact on the yield, quality, and aroma of aromatic japonica rice in southern China could provide a theoretical basis for high-yield and high-quality cultivation of southern japonica rice. 【Method】 Conducted from 2022 to 2023, this study used Nanjing 9108, a representative variety of aromatic japonica rice in southern China, as the material, and three nitrogen application modes were set up: no nitrogen fertilizer (N0), no panicle fertilizer (N1), and conventional application of panicle fertilizer (N2, with 70% base and tillering fertilizer + 30% panicle fertilizer). In addition, the experiment of applying ear fertilizer at different leaf age stages, including the top sixth leaf, fifth leaf, fourth leaf, third leaf, second leaf and first leaf just after emerging from the sheath (designated as L6, L5, L4, L3, L2, and L1), was conducted to study the synergistic regulation mechanism of nitrogen panicle fertilizer on yield, quality, and aroma of Nanjing 9108.【Result】Compared with no nitrogen fertilizer application and no panicle fertilizer application, the application of panicle fertilizer could significantly increase the effective panicle number per unit area and grains per panicle of aromatic japonica rice, thereby enhancing its yield. As the period of panicle fertilizer application was delayed, the yield first increased and then decreased, reaching a maximum at the treatment of applying fertilizer at the fourth leaf from the top (counted downwards from the flag leaf). The application of panicle fertilizer improved rice processing quality, appearance quality, and aroma quality. The period of panicle fertilizer application had an impact on these qualities of aromatic japonica rice. With the delay in the period of panicle fertilizer application, the milled rice rate of Nanjing 9108 showed an increasing trend, but the chalkiness degree increased, leading to a deterioration in appearance quality. Simultaneously, the amylose content decreased while the protein content increased, resulting in a decline in taste value and eating quality. The content of 2-acetyl-1-pyrroline (2-AP), as the main component of aroma, also decreased with the delay in the period of panicle fertilizer application. The application of panicle fertilizer significantly increased the proline content and proline dehydrogenase activity in grains. Advancing the period of panicle fertilizer application had a significant promoting effect on proline accumulation during the rice filling stage, and proline dehydrogenase activity also increased, which was conducive to maintaining higher proline content and proline dehydrogenase activity in grains during the maturity stage, thereby promoting the synthesis of 2-AP in rice grains. Based on a comprehensive evaluation of the effects of panicle fertilizer application period using indicators, such as actual yield, milled rice rate, chalkiness degree, taste value, and grain 2-AP content, it was found that the treatment of applying fertilizer at the fourth leaf from the top had the highest comprehensive score. 【Conclusion】Under the experimental conditions of this study, the application of panicle fertilizer contributed to the synergistic improvement of yield and quality. On the basis of ensuring stable yield, the application of panicle fertilizer at the fourth leaf from the top achieved the best overall benefits in terms of yield, taste, and aroma.

Key words: nitrogen panicle fertilizer, fragrant japonica rice, yield, quality, aroma

Fig. 1

Average daily temperature, sunshine hours and precipitation during rice growing season at the experimental field"

Table 1

Nitrogen fertilizer dosage under different panicle treatments"

处理
Treatment
总施氮量
Total nitrogen
(kg·hm-2)
施氮量Nitrogen application 施穗肥倒数叶龄数Reciprocal leaf age of panicle fertilizer
基肥
Base fertilizer
(kg·hm-2)
分蘖肥
Tiller fertilizer
(kg·hm-2)
穗肥
Panicle fertilizer
(kg·hm-2)
氮素穗肥
Nitrogen panicle fertilizer
N0 0 0 0 0 -
N1 189 94.5 94.5 0 -
N2 270 94.5 94.5 81 4
穗肥施用时期
Panicle fertilizer application period
L6 270 94.5 94.5 81 6
L5 270 94.5 94.5 81 5
L4 270 94.5 94.5 81 4
L3 270 94.5 94.5 81 3
L2 270 94.5 94.5 81 2
L1 270 94.5 94.5 81 1

Fig. 2

Hierarchical model for comprehensive evaluation indicators of rice"

Table 2

Rice yield quality and aroma judgment matrix"

水稻产量品质香气综合评价指标
Comprehensive evaluation indexes of rice yield, quality and aroma (Z)
产量
Yield(C1)
品质
Quality(C2)
香气
Aroma(C3)
产量Yield(C1) 1 1 3
品质Quality(C2) 1 1 3
香气Aroma(C3) 1/3 1/3 1

Table 3

Rice quality indicator of judgment matrix"

品质 Quality(C2) 整精米率 Head rice rate(X2) 垩白度 Chalkiness degree(X3) 食味值 Taste value(X4)
整精米率Head rice rate(X2) 1 1/3 1/5
垩白度Chalkiness degree(X3) 3 1 1/3
食味值Taste value(X4) 5 3 1

Table 4

Weights of each layer in comprehensive evaluation indicators for rice"

层次C对最高层Z
Level C corresponds to the highest level Z
产量 Yield 品质 Quality 香气 Aroma
0.429 0.429 0.143
层次X对中间层C
Level X corresponds to the middle level C
实产
Yield
整精米率
Head rice rate
垩白度
Chalkiness degree
食味值
Taste value
2-AP含量
2-AP content
1.000 0.106 0.260 0.633 1.000
层次X对最高层Z
Level X corresponds to the highest level Z
0.429 0.045 0.111 0.272 0.143

Table 5

Differences in yield and component factors of rice under different panicle applications"

年份
Year
处理
Treatment
穗数
Panicle number
(×104·hm-2)
每穗粒数
Grains per panicle
结实率
Filled grain percentage (%)
千粒重
1000-grain weight
(g)
产量
Yield
(t·hm-2)
2022 氮素穗肥
Nitrogen panicle fertilizer
N0 225.85±5.87c 105.16±0.23c 96.01±0.70a 26.83±0.04a 6.12±0.18c
N1 305.04±12.15b 109.21±0.29b 95.13±0.18b 25.78±0.04b 8.17±0.03b
N2 340.89±7.70a 137.06±4.08a 93.44±6.68c 25.08±0.31c 10.95±0.34a
穗肥施用时期
Panicle fertilizer application period
L6 344.94±5.79a 118.99±0.81e 92.54±0.58f 24.82±0.02e 9.43±0.33e
L5 342.65±1.83b 120.08±1.09d 93.08±1.08e 24.98±0.04d 9.57±0.53d
L4 340.89±7.70a 137.06±4.08a 93.44±6.68c 25.08±0.31c 10.95±0.34a
L3 338.95±2.84c 132.27±3.56b 94.03±3.56c 25.38±0.22b 10.70±0.16b
L2 329.89±7.90d 126.33±1.82c 94.49±1.81b 25.43±0.39b 10.01±0.68c
L1 319.41±11.86e 125.98±7.94c 95.06±0.79a 25.51±0.65a 9.76±0.45d
2023 氮素穗肥
Nitrogen panicle fertilizer
N0 215.29±5.89c 112.67±3.77b 94.73±0.06a 26.31±0.01a 5.46±0.14c
N1 290.29±1.96b 120.08±2.24a 92.69±0.38a 26.09±0.01a 8.17±0.07b
N2 328.54±6.62a 146.4±1.7a 91.78±0.05b 24.58±0.07b 10.59±0.02a
穗肥施用时期
Panicle fertilizer application period
L6 343.65±0.98a 125.91±0.64d 91.65±0.66a 23.67±0.13f 9.3±0.03d
L5 339.08±0.29b 128.00±1.09d 91.90±0.95a 23.77±0.06e 9.59±0.01c
L4 328.54±6.62b 146.40±1.70a 91.78±0.05a 24.58±0.07d 10.59±0.02a
L3 317.70±4.82c 141.43±2.16b 92.02±0.08a 24.71±0.06c 10.18±0.02b
L2 306.86±2.43d 134.92±0.67c 92.35±0.20a 25.29±0.06b 9.66±0.02c
L1 305.29±0.54d 128.64±1.29d 92.49±0.63a 25.40±0.03a 8.97±0.18e
方差分析
ANOVA
产量 Yield ** ** ** ** **
处理Treatment ** ** ** ** **
产量×处理
Yield×Treatment
** * * ** **

Table 6

Differences in processing and appearance quality of rice under different panicle applications"

年份 Year 处理 Treatment 整精米率 Head rice rate (%) 垩白度 Chalkiness degree (%)
2022 氮素穗肥
Nitrogen panicle fertilizer
N0 57.99±0.04a 18.70±0.05a
N1 58.13±0.03a 18.40±0.17a
N2 62.31±0.03b 15.07±0.13b
穗肥施用时期
Panicle fertilizer application period
L6 59.57±0.02a 13.94±0.09d
L5 61.33±0.04a 14.37±0.16d
L4 62.31±0.03a 15.07±0.13c
L3 62.46±0.01a 16.56±0.59b
L2 63.11±0.04a 17.20±0.05b
L1 64.86±0.01a 18.18±0.23a
2023 氮素穗肥
Nitrogen panicle fertilizer
N0 54.37±0.33c 10.96±0.36a
N1 55.72±0.54b 10.31±0.76a
N2 58.76±2.07a 7.98±0.16b
穗肥施用时期
Panicle fertilizer application period
L6 57.50±0.55b 7.06±0.70c
L5 58.30±0.51ab 7.85±0.21b
L4 58.76±2.07ab 7.98±0.16b
L3 59.14±0.46ab 8.50±0.15b
L2 59.88±0.20ab 9.26±0.31a
L1 60.59±0.36a 9.8±0.20a
方差分析
ANOVA
产量 Yield ** **
处理Treatment ** **
产量×处理 Yield×Treatment ns **

Table 7

Differences in cooking and eating quality of rice under different panicle applications"

年份 Year 处理 Treatment 食味值 Taste value 直链淀粉含量 AC (%) 蛋白质含量PC (%)
2022 氮素穗肥
Nitrogen panicle fertilizer
N0 86.7±1.29a 10.62±0.13a 6.29±0.12c
N1 85.3±0.85a 10.42±0.17ab 6.43±0.01b
N2 82.7±1.07b 9.78±0.55b 6.86±0.29a
穗肥施用时期
Panicle fertilizer application period
L6 84.4±0.15a 10.00±0.75a 6.48±0.07e
L5 84.3±1.32a 9.84±0.69a 6.68±0.39d
L4 82.7±1.07ab 9.78±0.55a 6.86±0.02c
L3 79.8±0.12bc 9.64±0.24a 7.10±0.13b
L2 78.3±0.38c 9.44±0.13a 7.22±0.07ab
L1 74.1±4.20d 9.36±0.17a 7.29±0.23a
2023 氮素穗肥
Nitrogen panicle fertilizer
N0 86.1±0.28a 10.66±0.13a 6.45±0.04e
N1 85.6±0.35b 10.43±0.07b 6.76±0.01de
N2 80.2±0.42c 9.83±0.14c 7.34±0.14bc
穗肥施用时期
Panicle fertilizer application period
L6 82.3±0.42a 10.15±0.08a 7.06±0.13f
L5 81.0±0.21b 9.96±0.10ab 7.12±0.10e
L4 80.2±0.42c 9.83±0.14b 7.34±0.14d
L3 78.2±0.71d 9.76±0.24bc 7.52±0.11c
L2 76.8±0.49e 9.53±0.25cd 7.77±0.09b
L1 75.4±0.57f 9.41±0.06d 7.86±0.11a
方差分析
ANOVA
产量 Yield ** ns **
处理Treatment ** ** **
产量×处理 Yield×Treatment * ns *

Fig. 3

Differences of 2-AP content in rice grains under different nitrogen applications and different panicle fertilizer application periods"

Table 8

Differences of 2-AP synthetic precursors in rice grains under different panicle applications"

处理
Treatment
脯氨酸含量
Pro (μg·g-1 FW)
脯氨酸脱氢酶活性
ProDH (U·g-1 FW)
谷氨酸含量
Glu (μg·g-1 FW)
吡咯啉-5-羧酸合成酶活性
P5CS (μmol·h-1·g-1 FW)
鸟氨酸转氨酶活性
OAT (nmol·min-1·g-1 FW)
氮素穗肥
Nitrogen panicle fertilizer
N0 26.18±0.34b 300.04±1.41b 2137.19±6.68b 69.48±2.95b 148.96±3.56b
N1 26.40±0.55b 305.31±9.33b 2161.54±9.03ab 77.30±6.58b 161.56±4.65ab
N2 27.61±0.07a 345.18±2.25a 2201.07±2.84a 87.76±3.15a 172.30±1.57a
穗肥施用时期
Panicle fertilizer application period
L6 28.91±0.53a 370.71±1.66a 2183.09±3.65a 80.00±3.62b 164.78±1.38c
L5 28.08±0.7ab 355.76±2.99ab 2199.68±7.29a 83.43±1.68ab 167.69±1.91bc
L4 27.61±0.07b 345.18±2.25abc 2201.07±2.84a 87.76±3.15a 172.30±1.57abc
L3 27.44±0.51b 336.50±1.33abc 2198.65±3.63a 86.84±2.81a 179.96±2.01abc
L2 27.02±0.96b 328.81±4.40bc 2186.50±7.78a 82.47±3.26ab 185.86±5.28ab
L1 26.91±0.6b 314.06±2.88c 2185.97±1.05a 80.00±4.55b 187.55±9.94a

Fig. 4

Differences of proline content in rice grains after anthesis under different nitrogen applications and different panicle fertilizer application periods"

Fig. 5

Differences of proline dehydrogenase activity of rice grains after anthesis under different nitrogen applications and different panicle fertilizer application periods"

Table 9

Comprehensive score of rice yield, quality and aroma"

年份 Year 处理 Treatment 综合评分 Score (%)
2022 氮素穗肥
Nitrogen panicle fertilizer
N0 71.55c
N1 79.58b
N2 95.66a
穗肥施用时期
Panicle fertilizer application period
L6 93.14b
L5 92.58c
L4 95.66a
L3 92.01c
L2 86.24d
L1 82.99e
2023 氮素穗肥
Nitrogen panicle fertilizer
N0 69.78c
N1 80.12b
N2 94.44a
穗肥施用时期
Panicle fertilizer application period
L6 92.84b
L5 91.65c
L4 94.44a
L3 89.85d
L2 84.10e
L1 80.93f
[1]
HU X Q, LU L, GUO Z L, ZHU Z W. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends in Food Science & Technology, 2020, 97: 136-146.
[2]
刘国栋, 何隆鑫, 陈梦涛, 许方甫, 刘少强, 王睿智, 张洪程, 魏海燕. 南方香粳稻挥发性物质的指纹图谱分析. 中国粮油学报, 2021, 36(11): 157-161.
LIU G D, HE L X, CHEN M T, XU F F, LIU S Q, WANG R Z, ZHANG H C, WEI H Y. Fingerprint spectra analysis of volatile organic compounds in fragrant Japonica rice from Southern China. Journal of the Chinese Cereals and Oils Association, 2021, 36(11): 157-161. (in Chinese)
[3]
GUAN B B, ZHAO J W, JIN H J, LIN H. Determination of rice storage time with colorimetric sensor array. Food Analytical Methods, 2017, 10(4): 1054-1062.
[4]
MO Z W, ASHRAF U, TANG Y J, LI W, PAN S G, DUAN M Y, TIAN H, TANG X R. Nitrogen application at the booting stage affects 2-acetyl-1-pyrroline, proline, and total nitrogen contents in aromatic rice. Chilean Journal of Agricultural Research, 2018, 78(2): 165-172.
[5]
朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征. 中国农业科学, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002.
ZHU D W, ZHANG L P, CHEN M X, FANG C Y, YU Y H, ZHENG X L, SHAO Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002. (in Chinese)
[6]
阳树英, 邹应斌, 夏冰, 吴朝晖, 周婷, 陈逸. 中国传统地方香稻品种资源的多样性及其在特殊生境成香机理的探讨. 中国稻米, 2015, 21(3): 1-7.

doi: 10.3969/j.issn.1006-8082.2015.03.001
YANG S Y, ZOU Y B, XIA B, WU Z H, ZHOU T, CHEN Y. Advances on biodiversity of Chinese traditional regional aromatic rice cultivars and the mechanism of aroma production by the special habitats. China Rice, 2015, 21(3): 1-7. (in Chinese)
[7]
LI Y H, MO Z W, LI Y Z, NIE J, KONG L L, ASHRAF U, PAN S G, DUAN M Y, TIAN H, TANG X R. Additional nitrogen application under different water regimes at tillering stage enhanced rice yield and 2-acetyl-1-pyrroline (2AP) content in fragrant rice. Journal of Plant Growth Regulation, 2022, 41(3): 954-964.
[8]
MO Z W, LI Y H, NIE J, HE L X, PAN S G, DUAN M Y, TIAN H, XIAO L Z, ZHONG K Y, TANG X R. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. Rice, 2019, 12(1): 74.

doi: 10.1186/s12284-019-0328-4 pmid: 31583492
[9]
REN Y. Irrigation and nitrogen management practices affect grain yield and 2-acetyl-1-pyrroline content in aromatic rice. Applied Ecology and Environmental Research, 2017, 15(4): 1447-1460.
[10]
JIANG S C, OKPALA N E, ZHANG L H, TANG X R, DU B. Higher nitrogen application during rice growth increased yield and the biosynthesis of 2-acetyl-1-pyrroline under low light conditions. Field Crops Research, 2023, 293: 108846.
[11]
XIE H J, XIE W J, PAN S G, LIU X W, TIAN H, DUAN M Y, WANG S L, TANG X R, MO Z W. Effects of light quality treatments during the grain filling period on yield, quality, and fragrance in fragrant rice. Agronomy, 2021, 11(3): 531.
[12]
李诚, 严小兵, 王安乐, 李洁, 王少希. 施氮量与氮肥运筹模式对和两优55产量及稻米品质的影响. 杂交水稻, 2023, 38(4): 128-133.
LI C, YAN X B, WANG A L, LI J, WANG S X. Effects of nitrogen rate and nitrogen application regime on yield and grain quality of heliangyou 55. Hybrid Rice, 2023, 38(4): 128-133. (in Chinese)
[13]
胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017, 43(3): 420-431.
HU Q, XIA M, ZHANG H C, CAO L Q, GUO B W, WEI H Y, CHEN H C, HAN B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality. Acta Agronomica Sinica, 2017, 43(3): 420-431. (in Chinese)
[14]
余锋, 刘洋, 何小娥, 李超, 李强, 罗玲, 张玉烛. 穗肥施用时期对杂交水稻稻米品质的影响. 杂交水稻, 2018, 33(5): 35-39.
YU F, LIU Y, HE X E, LI C, LI Q, LUO L, ZHANG Y Z. Effects of applying time of panicle fertilizer on grain quality of hybrid rice. Hybrid Rice, 2018, 33(5): 35-39. (in Chinese)
[15]
XI M, WU W G, XU Y Z, ZHOU Y J, CHEN G, JI Y L, SUN X Y. Grain chalkiness traits is affected by the synthesis and dynamic accumulation of the storage protein in rice. Journal of the Science of Food and Agriculture, 2021, 101(14): 6125-6133.
[16]
HUANG S J, ZHAO C F, ZHU Z, ZHOU L H, ZHENG Q H, WANG C L. Characterization of eating quality and starch properties of two Wx alleles Japonica rice cultivars under different nitrogen treatments. Journal of Integrative Agriculture, 2020, 19(4): 988-998.
[17]
YANG L X, WANG Y L, DONG G C, GU H, HUANG J Y, ZHU J G, YANG H J, LIU G, HAN Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 2007, 102(2): 128-140.
[18]
ZHANG G Y, SAKAI H, TOKIDA T, USUI Y, ZHU C W, NAKAMURA H, YOSHIMOTO M, FUKUOKA M, KOBAYASHI K, HASEGAWA T. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 2013, 64(11): 3179-3188.
[19]
ZHOU Z K, ROBARDS K, HELLIWELL S, BLANCHARD C. Composition and functional properties of rice. International Journal of Food Science and Technology, 2002, 37(8): 849-868.
[20]
张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003, 36(7): 800-806. doi: 10.3864/j.issn.0578-1752.030712.
ZHANG H C, WANG X Q, DAI Q G, HUO Z Y, XU K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety liangyoupeijiu. Scientia Agricultura Sinica, 2003, 36(7): 800-806. doi: 10.3864/j.issn.0578-1752.030712. (in Chinese)
[21]
刘少强, 王睿智, 钱相铃, 王一航, 陈梦涛, 张洪程, 魏海燕, 刘国栋. 不同生育类型南方香型粳稻品种产量与品质特征分析. 扬州大学学报(农业与生命科学版), 2024, 45(1): 10-17.
LIU S Q, WANG R Z, QIAN X L, WANG Y H, CHEN M T, ZHANG H C, WEI H Y, LIU G D. Yield and quality analysis of different southern fragrant Japonica rice varieties with different growth types. Journal of Yangzhou University (Agricultural and Life Science Edition), 2024, 45(1): 10-17. (in Chinese)
[22]
BUTTERY R G, LING L C, JULIANO B O, TURNBAUGH J G. Cooked rice aroma and 2-acetyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 1983, 31(4): 823-826.
[23]
YOSHIHASHI T. Quantitative analysis on 2-acetyl-1-pyrroline of an aromatic rice by stable isotope dilution method and model studies on its formation during cooking. Journal of Food Science, 2002, 67(2): 619-622.
[24]
YOSHIHASHI T, HUONG N T T, INATOMI H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. Journal of Agricultural and Food Chemistry, 2002, 50(7): 2001-2004.

pmid: 11902947
[25]
黄忠林, 唐湘如, 王玉良, 陈慕娇, 赵正琨, 段美洋, 潘圣刚. 增香栽培对香稻香气和产量的影响及其相关生理机制. 中国农业科学, 2012, 45(6): 1054-1065. doi: 10.3864/j.issn.0578-1752.2012.06.003.
HUANG Z L, TANG X R, WANG Y L, CHEN M J, ZHAO Z K, DUAN M Y, PAN S G. Effects of increasing aroma cultivation on aroma and grain yield of aromatic rice and their mechanism. Scientia Agricultura Sinica, 2012, 45(6): 1054-1065. doi: 10.3864/j.issn.0578-1752.2012.06.003. (in Chinese)
[26]
魏晓东, 张亚东, 赵凌, 路凯, 宋雪梅, 王才林. 稻米香味物质2-乙酰-1-吡咯啉的形成及其影响因素. 中国水稻科学, 2022, 36(2): 131-138.

doi: 10.16819/j.1001-7216.2022.201214
WEI X D, ZHANG Y D, ZHAO L, LU K, SONG X M, WANG C L. Research progress in biosynthesis and influencing factors of 2-acetyl-1-pyrroline in fragrant rice. Chinese Journal of Rice Science, 2022, 36(2): 131-138. (in Chinese)

doi: 10.16819/j.1001-7216.2022.201214
[27]
DENG Q Q, ASHRAF U, CHENG S R, SABIR S R, MO Z W, PAN S G, TIAN H, DUAN M Y, TANG X R. Mild drought in interaction with additional nitrogen dose at grain filling stage modulates 2acetyl-1-pyrroline biosynthesis and grain yield in fragrant rice. Applied Ecology and Environmental Research, 2018, 16(6): 7741-7758.
[28]
陈梦涛, 刘少强, 刘国栋, 魏海燕, 张洪程, 胡群, 许方甫, 李光彦, 邢志鹏. 氮锌肥配施对南方香粳稻产量和品质的影响. 植物营养与肥料学报, 2023, 29(4): 591-601.
CHEN M T, LIU S Q, LIU G D, WEI H Y, ZHANG H C, HU Q, XU F F, LI G Y, XING Z P. Combined application of nitrogen and zinc fertilizer affects the yield and quality of fragrant southern Japonica rice. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 591-601. (in Chinese)
[29]
邱园园. 氮肥和外源物质对优质食味水稻品质和2-AP含量的影响[D]. 扬州: 扬州大学, 2022.
QIU Y Y. Effect of nitrogen fertilizer and exogenous chemicals on grain quality and 2-AP content in good taste rice cultivars[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[30]
田华, 潘圣刚, 莫钊文, 段美洋, 唐湘如. 不同水分和粒肥处理对香稻香气、品质和产量的影响. 灌溉排水学报, 2018, 37(6): 36-41.
TIAN H, PAN S G, MO Z W, DUAN M Y, TANG X R. Effects of soil moisture and fertilization on fragrance, quality and yield of fragrant rice. Journal of Irrigation and Drainage Engineering, 2018, 37(6): 36-41. (in Chinese)
[31]
YANG S, ZHU Y, ZHANG R, LIU G D, WEI H Y, ZHANG H C, ZHANG H P. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Field Crops Research, 2022, 287: 108667.
[32]
陈心怡, 朱盈, 马中涛, 张明月, 魏海燕, 张洪程, 刘国栋, 胡群, 李光彦, 许方甫. 光强和氮肥互作对南方软米粳稻灌浆结实期碳氮代谢影响及其与产量品质间关系. 作物学报, 2023, 49(11): 3042-3062.

doi: 10.3724/SP.J.1006.2023.22054
CHEN X Y, ZHU Y, MA Z T, ZHANG M Y, WEI H Y, ZHANG H C, LIU G D, HU Q, LI G Y, XU F F. Effects of light intensity and nitrogen fertilizer interaction on carbon and nitrogen metabolism at grain-filling stage and its relationship with yield and quality of southern soft Japonica rice. Acta Agronomica Sinica, 2023, 49(11): 3042-3062. (in Chinese)
[33]
马会珍, 陈心怡, 王志杰, 朱盈, 蒋伟勤, 任高磊, 马中涛, 魏海燕, 张洪程, 刘国栋. 中国部分优质粳稻外观及蒸煮食味品质特征比较. 中国农业科学, 2021, 54(7): 1338-1353. doi: 10.3864/j.issn.0578-1752.2021.07.003.
MA H Z, CHEN X Y, WANG Z J, ZHU Y, JIANG W Q, REN G L, MA Z T, WEI H Y, ZHANG H C, LIU G D. Analysis on appearance and cooking taste quality characteristics of some high quality Japonica rice in China. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353. doi: 10.3864/j.issn.0578-1752.2021.07.003. (in Chinese)
[34]
朱盈. 长三角地区软米粳稻品质特征及优质丰产氮高效协同的碳氮代谢机理[D]. 扬州: 扬州大学, 2022.
ZHU Y. Quality characteristics and carbon and nitrogen metabolism mechanism of good quality, high yield and high nitrogen efficiency of soft Japonica rice in Yangtze River Delta[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[35]
陈心怡. 不同光氮条件下南方软米粳稻碳氮代谢差异及其对产量和品质的影响[D]. 扬州: 扬州大学, 2023.
CHEN X Y. Differences of carbon and nitrogen metbolism in soft japonica rice in southern China under different light and nitrogen conditions and their effects on yield and quality[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[36]
张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004. (in Chinese)
[37]
蒋岩. 氮素穗肥对粳稻产量及强弱势粒品质、淀粉特性和结构的影响[D]. 扬州: 扬州大学, 2023.
JIANG Y. Effects of panicle nitrogen fertilizer on yield and superior and inferior grains quality, strach property and structure of japonica rice[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[38]
习敏, 许有尊, 孙雪原, 吴文革, 周永进. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系. 中国农业科技导报, 2021, 23(9): 144-151.
XI M, XU Y Z, SUN X Y, WU W G, ZHOU Y J. Effects of nitrogen fertilizer topdressing on grain filling and milling quality of the rice with high grain chalkiness. Journal of Agricultural Science and Technology, 2021, 23(9): 144-151. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0118
[39]
张艳霞, 丁艳锋, 王强盛, 李刚华, 李福春, 王绍华. 氮素穗肥对不同品种稻米品质性状的影响. 植物营养与肥料学报, 2007, 13(6): 1080-1085.
ZHANG Y X, DING Y F, WANG Q S, LI G H, LI F C, WANG S H. Effect of panicle nitrogen fertilizer on quality properties of different rice varieties. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1080-1085. (in Chinese)
[40]
钟群, 唐湘如. 氮肥施用对香稻香气含量的影响及其机理. 广东农业科学, 2014, 41(4): 85-87.
ZHONG Q, TANG X R. Effects of nitrogen application on aroma of aromatic rice and their mechanism. Guangdong Agricultural Sciences, 2014, 41(4): 85-87. (in Chinese)
[41]
包格根. 结实期干湿交替灌溉和氮锌肥促进香稻香气形成的分子机理[D]. 广州: 华南农业大学, 2019.
BAO G G. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternate wetting and drying and nutrition management in fragrant rice[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese)
[42]
佟天一, 蔡健旋, 张集胜, 李林, 马林, 何柔静, 唐湘如. 香稻专用肥料类型对香稻产量、品质和香气的影响. 作物杂志, 2021(4): 152-158.
TONG T Y, CAI J X, ZHANG J S, LI L, MA L, HE R J, TANG X R. Effects of fertilizer types on yield, quality and aroma of fragrant rice. Crops, 2021(4): 152-158. (in Chinese)
[43]
HU Q, LIU Q Y, JIANG W Q, QIU S, WEI H Y, ZHANG H C, LIU G D, XING Z P, HU Y J, GUO B W, GAO H. Effects of mid-stage nitrogen application timing on the morphological structure and physicochemical properties of Japonica rice starch. Journal of the Science of Food and Agriculture, 2021, 101(6): 2463-2471.
[44]
ZHANG Z J, CHU G, LIU L J, WANG Z Q, WANG X M, ZHANG H, YANG J C, ZHANG J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013, 150: 9-18.
[45]
丁艳锋, 赵长华, 王强盛, 王绍华, 黄丕生. 穗肥施用时期对水稻籽粒中胚乳蛋白积累的影响. 作物学报, 2003, 29(4): 606-609.
DING Y F, ZHAO C H, WANG Q S, WANG S H, HUANG P S. Effect of application time of panicle fertilizer on accumulation of endosperm protein in rice kernels. Acta Agronomica Sinica, 2003, 29(4): 606-609. (in Chinese)
[46]
杨硕. 氮肥运筹及氮锌肥配施对粳型香稻2-AP含量与产量品质的影响[D]. 扬州: 扬州大学, 2023.
YANG S. Effects of nitrogen application and combined application of nitrogen and zinc fertilizers on 2-AP content, yield and quality of japonica fragrant rice[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[47]
李艳红, 唐湘如, 潘圣刚, 杨晓娟, 陈抒婷, 陈春桦, 戴显红, 梅俊豪, 陈益培. 分蘖期水氮互作对香稻香气、产量及稻米品质的影响. 华北农学报, 2014, 29(1): 159-164.

doi: 10.7668/hbnxb.2014.01.029
LI Y H, TANG X R, PAN S G, YANG X J, CHEN S T, CHEN C H, DAI X H, MEI J H, CHEN Y P. Effect of water-nitrogen interaction at tillering stage on aroma, grain yield and quality of aromatic rice. Acta Agriculturae Boreali-Sinica, 2014, 29(1): 159-164. (in Chinese)
[48]
邓权权. 结实期水氮处理对香稻香气2-乙酰-1-吡咯啉形成积累的影响[D]. 广州: 华南农业大学, 2019.
DENG Q Q. Effects of water and nitrogen and their interactions at grain filling stage on aroma formation in aromatic rice[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese)
[49]
夏海威, 吴娟, 黄敏, 施国新, 乔绪强, 陈霖, 姜岩, 汪鹏合. 外源鸟氨酸对菹草(Potamogeton crispus L.)抗镉胁迫能力的影响. 湖泊科学, 2014, 26(2): 288-296.
XIA H W, WU J, HUANG M, SHI G X, QIAO X Q, CHEN L, JIANG Y, WANG P H. Effects of exogenous ornithine on resistance of Potamogeton crispus L. to cadmium stress. Journal of Lake Sciences, 2014, 26(2): 288-296. (in Chinese)
[50]
成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展. 作物杂志, 2022, (2): 22-27.
CHENG D Y, LIU K, GAO J, ZHANG X Y, GU X, LIU L J. Research progress on the effects of nutrient and water management on rice fragrance. Crops, 2022, (2): 22-27. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] JI ShengYang, LU BaiYi, LI PeiWu. Some Reflections on Modern Science of Agricultural Product Quality [J]. Scientia Agricultura Sinica, 2025, 58(9): 1830-1844.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[9] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[10] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[11] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[12] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[13] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[14] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[15] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!