Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3946-3958.doi: 10.3864/j.issn.0578-1752.2025.19.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Carbon Footprint Assessment for the Production Cycle of Value- Added Diammonium Phosphate Containing Humic Acid

LIU RuoChen1,2(), ZHANG ShuiQin2, XU Meng2, XU JiuKai2, YUAN Liang2, GAO Qiang1, LI YanTing2(), ZHAO BingQiang2()   

  1. 1 College of Resources and Environment, Jilin Agricultural University, Changchun 130118
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arable Land in China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2024-11-01 Accepted:2025-02-21 Online:2025-10-01 Published:2025-10-10
  • Contact: LI YanTing, ZHAO BingQiang

Abstract:

【Objective】In this paper, the carbon footprint of value-added diammonium phosphate containing humic acid (DAPH) were analyzed, calculated, and evaluated in order to provide a scientific basis and theoretical support for the study on the carbon footprint of value-added fertilizers.【Method】The industrial production process of product (from "cradle" to "gate") was defined as the production cycle of product in this study, and the carbon footprint of diammonium phosphate (DAP) and DAPH products was calculated and evaluated referring to the life cycle assessment and PAS 2050 standard.【Result】(1) In terms of phosphorus nutrients (P2O5), the carbon footprint of DAP and DAPH production cycle was 3 636.73 kg CO2-eq·t-1 P2O5 and 3 653.16 kg CO2-eq·t-1 P2O5, respectively. The carbon footprint (in terms of P2O5) of DAPH was only increased by 0.45% compared with DAP. In terms of physical quantity (1 t fertilizer product), the carbon footprint of DAP and DAPH production cycle was 1 672.90 kg CO2-eq·t-1 and 1 660.38 kg CO2-eq·t-1, respectively, and the carbon footprint of DAPH (in terms of physical quantity) decreased by 0.75% compared with that of DAP. The difference of carbon footprint between DAP and DAPH was attributed to the addition amounts of humic acid synergist (HAS). (2) The carbon footprint of synthetic ammonia accounted for 67.87% and 67.57% of the carbon footprint of DAP and DAPH production cycle, respectively, which was the largest contributor for the carbon footprint of DAP and DAPH during the production cycle. However, the carbon footprint increased by adding HAS only accounted for 0.45% of the carbon footprint of DAPH.【Conclusion】Adding HAS had little effect on the carbon emissions during the DAP production, while synthetic ammonia was the biggest factor affecting the carbon footprint of DAP production cycle.

Key words: value-added diammonium phosphate containing humic acid, production cycle, carbon footprint, humic acid synergist, synthetic ammonia

Fig. 1

System boundary division of the production carbon footprint of DAP and DAPH products"

Table 1

Transport distance of raw materials (km)"

原料类型
Type of raw materials
运输距离 Transport distance 参考来源
Reference
公路 Highway 铁路 Railway 海运 Ocean
磷矿 Phosphate ore 150 陈舜等[8] CHEN S, et al [8]
硫铁矿 Pyrite 600 陈舜等[8] CHEN S, et al [8]
烟气硫酸 Flue-process sulfuric acid 200 - 陈舜等[8] CHEN S, et al [8]
进口硫磺 Imported sulfur 9200 750 陈舜等[8] CHEN S, et al [8]
国产硫磺 Domestic sulfur 200 陈舜等[8] CHEN S, et al [8]
腐殖酸 Humic acid 4501) 企业生产调研 Enterprise production survey
腐殖酸增效剂Humic acid synergist, HAS 15442) 172 企业生产调研 Enterprise production survey

Table 2

Carbon emissions factors involved in the production of DAP and DAPH"

项目Item 数值Value 单位Unit 参考来源Reference
合成氨生产的碳排放系数EFa 6.13 t CO2-eq·t-1N 陈舜等[8] CHEN S, et al [8]
原煤采选的碳排放系数EFcm1) 0.2348 t CO2-eq·t-1 崔夏瑜[28] CUI X Y [28]
电力的单位tce碳排放系数TCEFe 2.38 t CE/tce 陈舜等[8] CHEN S, et al [8]
非电力能源的单位tce碳排放系数TCEFue 0.81 t CE/tce 陈舜等[8] CHEN S, et al [8]
蒸汽的单位tce碳排放系数TCEFs 0.80 t CE/tce 陈舜等[8] CHEN S, et al [8]
公路运输的碳排放系数UDEh 0.092 kg CO2-eq·t-1·km-1 吴雪妍等[29] WU X Y, et al [29]
铁路运输的碳排放系数UDEr 0.046 kg CO2-eq·t-1·km-1 陈舜等[8] CHEN S, et al [8]
海运的碳排放系数UDEo 2.365 g CO2-eq·t-1·km-1 陈舜等[8] CHEN S, et al [8]

Table 3

Interpretation of each code in equations (1) - (10)"

代码 Code 释义 Interpretation
CFDAP 普通磷酸二铵生产周期的碳足迹Carbon footprint of the production cycle of DAP
UPsa 硫酸的上游排放量Upstream emissions of sulfuric acid
UPpo 磷矿石的上游排放量Upstream emissions of phosphate ore
UPa 合成氨的上游排放量Upstream emissions of synthetic ammonia
CBpo 磷矿石分解释放的CO2 Released CO2 by decomposition of phosphate rock
PEDAP 普通磷酸二铵生产工序产生的碳排放Carbon emissions of DAP production process
CFDAPH 含腐殖酸增值磷酸二铵生产周期的碳足迹Carbon footprint of the production cycle of DAPH
UPHAS 腐殖酸增效剂的上游碳排放量Upstream emissions of HAS
PEDAPH 含腐殖酸增值磷酸二铵生产工序的碳排放Carbon emissions of DAPH production process
MPsa 硫酸的消耗量Sulfuric acid consumption
PEsa 硫酸制造工序的碳排放量Carbon emissions of sulfuric acid manufacturing process
MPpy 硫铁矿的加权用量Weighted consumption of pyrite
PEpy 1 t硫铁矿的采选工序碳排放量Carbon emissions per ton pyrite mining process
TRpy 硫铁矿运输过程的碳排放Carbon emissions of pyrite during the transportation
MPg 烟气硫酸的加权用量Weighted consumption of sulfuric acid in flue gas
98% 硫酸浓度Sulfuric acid concentration
TRg 烟气硫酸运输过程的碳排放Carbon emissions of sulfuric acid in flue gas during the transportation
MPsu 硫磺的加权用量Weighted consumption of sulfur
TRsu 硫磺运输过程的碳排放Carbon emissions of sulfur during the transportation
MPpo 生产1 t 普通磷酸二铵或含腐殖酸增值磷酸二铵的磷矿消耗量Phosphate ore consumption per ton DAP or DAPH production
PEpo 1 t磷矿石采选工序的碳排放Carbon emissions per ton phosphate ore mining process
TRpo 1 t磷标矿运输的碳排放量Carbon emissions of phosphate ore during the transportation
MPa 生产1 t 普通磷酸二铵或含腐殖酸增值磷酸二铵的合成氨消耗量Synthetic ammonia consumption per ton DAP or DAPH production
EFa 合成氨生产的碳排放系数Carbon emissions factor of synthetic ammonia production
5% 磷矿石自身CO2含量CO2 content of phosphate ore
QuotaDAP 普通磷酸二铵生产工序的能耗限额Limit value of energy consumption of DAP production process
EDAP 普通磷酸二铵生产工序中电耗在综合能耗中所占的比例
The proportion of electricity consumption in the comprehensive energy consumption during the DAP production process
TCEFe 电力的单位tce碳排放系数Carbon emissions factor per unit tce of electricity
TCEFne 非电力能源的单位tce碳排放系数Carbon emissions factor per unit tce of non-electric energy
MPHAS 生产1 t含腐殖酸增值磷酸二铵的腐殖酸增效剂用量HAS consumption per ton DAPH production
MPc 生产1 t腐殖酸的煤炭用量Coal consumption per ton HA production
EFcm 原煤采选的碳排放系数Carbon emissions factor of coal mining process
PEHA 腐殖酸生产工序的碳排放量Carbon emissions of HA production process
TRHA 腐殖酸运输过程的碳排放量Carbon emissions of HA during the transportation
MPHA 生产1 t含腐殖酸增效剂消耗的腐殖酸用量HA consumption per ton HAS production
PEHAS 腐殖酸增效剂生产工序的碳排放量Carbon emissions of HAS production process
TRHAS 腐殖酸增效剂运输过程的碳排放量Carbon emissions of HAS during the transportation
PEa-s 腐殖酸增效剂添加工序的碳排放Carbon emissions of HAS addition process
Di 各材料运输距离Transport distance of each material
UDEi 该运输方式的碳排放系数Carbon emissions factor of this transport mode

Table 4

List of input items of DAP and DAPH production cycle"

项目Item 普通磷酸二铵 DAP (t P2O5) 含腐殖酸增值磷酸二铵 DAPH (t P2O5)
合成氨 Synthetic ammonia (t) 0.40 0.40
磷矿 Phosphate ore (t) 3.60 3.60
硫磺 Sulfur (t) 0.46 0.46
硫铁矿 Pyrite (t) 1.13 1.13
冶炼烟气 Flue-process sulfuric acid (t) 0.52 0.52
能耗 Energy consumption (tce) 0.25 0.25
电力 Electricity (kWh) 223.76 228.42
风化煤 Coal (kg) 27.08

Table 5

Carbon footprint and its composition of DAP production cycle"

生产阶段
Production phase
矿石采选
Mining of ores
原料/产品制造Manufacturing of raw materials/products 运输
Transportation
磷矿酸解
Phosphate ore decomposed with sulfuric acid
总计
Total
占比
Percent (%)
kg CO2-eq·t-1P2O5
磷矿石开采运输
Mining and transportation of phosphate ores
176.06 49.68 225.74 6.21
硫酸生产
Production of sulfuric acid
206.41 -528.71 109.94 -212.361) -5.84
合成氨生产
Production of synthesis ammonia
2468.292) 2468.29 67.87
磷酸二铵制造工序
Production process of DAP
975.06 180.00 1155.06 31.76
总计 Total 382.47 2914.64 159.62 180.00 3636.73 100.00
占比 Percent (%) 10.52 80.14 4.39 4.95 100.00

Table 6

Carbon footprint and its composition of HAS production cycle"

生产阶段
Production phase
矿石采选
Mining of coal
原料/产品制造Manufacturing of raw materials/products 运输
Transportation
总计
Total
占比
Percent (%)
kg CO2-eq·t-1
腐殖酸生产运输
Production and transportation of humic acid
243.72 29.15 12.42 285.29 99.06
腐殖酸增效剂生产工序
Production process of HAS
2.70 2.70 0.94
总计 Total 243.72 31.85 12.42 288.00 100.00
占比 Percent (%) 84.63 11.06 4.31 100.00

Table 7

Carbon footprint and its composition of DAPH production cycle"

生产阶段
Production phase
矿石采选
Mining of ores
原料/产品制造
Manufacturing of raw materials/products
运输
Transportation
磷矿酸解
Phosphate ore decomposed with sulfuric acid
总计
Total
占比
Percent (%)
kg CO2-eq·t-1P2O5
磷矿石开采运输
Mining and transportation of phosphate ores
176.06 49.68 225.74 6.18
硫酸生产
Production of sulfuric acid
206.41 -528.71 109.94 -212.36 -5.81
合成氨生产
Production of synthesis ammonia
2468.29 2468.29 67.57
腐殖酸增效剂生产运输
Production and transportation of HAS
7.12 0.07 4.24 11.43 0.31
含腐殖酸增值磷酸二铵制造工序
Production process of DAPH
980.06 180.00 1160.06 31.76
总计 Total 389.59 2919.72 163.86 180.00 3653.16 100.00
占比Percent (%) 10.66 79.92 4.49 4.93 100

Table 8

Comparison of carbon footprints of DAP and DAPH production cycle"

计量方法
Measurement method
磷酸二铵
DAP
含腐殖酸增值
磷酸二铵
DAPH
DAPH较DAP增排
DAPH increased the emissions compared with DAP
增排比例
Increase proportion
(%)
kg CO2-eq
以单位纯养分(P2O5)量计
Measured in unit of pure nutrient (P2O5) (t P2O5)
3636.73 3653.16 16.43 0.45
以单位实物量计
Measured in unit of physical quantity (t)
1672.90 1660.38 -12.52 -0.75

Table 9

Comparison of carbon emissions factors of DAP production"

排放系数 Emissions factors(kg CO2-eq·t-1 P2O5) 国家/地区 Country/region 参考来源 Reference
3636.73 中国China 本文核算结果The accounting results of this article
985 中国China 徐晨等[13] XU C, et al[13]
2891 中国China BRENTRUP, et al[17]
4066 中国China 陈舜等[8] CHEN S, et al[8]
8978 中国China ZHANG F F, et al[12]
1391 欧洲Europe BRENTRUP, et al[17]
1587 美国America BRENTRUP, et al[17]
1761 俄罗斯Russia BRENTRUP, et al[17]
[1]
赵秉强, 袁亮, 李燕婷, 张水勤. 增值肥料概论. 北京: 中国农业科学技术出版社, 2020.
ZHAO B Q, YUAN L, LI Y T, ZHANG S Q. Overview of Value-added Fertilizer. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[2]
赵秉强, 袁亮. 我国绿色高效化肥产品创新与产业发展. 植物营养与肥料学报, 2023, 29(11): 2143-2149.
ZHAO B Q, YUAN L. Innovation and industrial development of green efficiency fertilizers in China. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 2143-2149. (in Chinese)
[3]
李志坚, 林治安, 赵秉强, 袁亮, 李燕婷, 温延臣. 增效磷肥对冬小麦产量和磷素利用率的影响. 植物营养与肥料学报, 2013, 19(6): 1329-1336.
LI Z J, LIN Z A, ZHAO B Q, YUAN L, LI Y T, WEN Y C. Effects of value-added phosphate fertilizers on yield and phosphorus utilization of winter wheat. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1329-1336. (in Chinese)
[4]
李伟, 袁亮, 张水勤, 林治安, 李燕婷, 赵秉强. 中低分子量腐殖酸提高冬小麦磷吸收和产量的机理. 植物营养与肥料学报, 2020, 26(11): 2043-2050.
LI W, YUAN L, ZHANG S Q, LIN Z A, LI Y T, ZHAO B Q. Mechanism of middle and low molecular weight humic acids in promoting phosphorus fertilizer uptake efficiency and yield of winter wheat. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2043-2050. (in Chinese)
[5]
李军. 腐植酸对氮、磷肥增效减量效应研究[D]. 北京: 中国农业科学院, 2017.
LI J. Effect of humic acid on increasing efficiency and reducing quantity of nitrogen and phosphorus fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[6]
周黔川, 刘敏敏, 张龙, 肖远航, 王春华, 任可帅, 林炜. “双碳” 目标下皮革产品碳足迹核算的研究与实践. 皮革科学与工程, 2024, 34(6): 40-46.
ZHOU Q C, LIU M M, ZHANG L, XIAO Y H, WANG C H, REN K S, LIN W. Research and practice on carbon footprint accounting of leather products for carbon peaking and carbon neutrality. Leather Science and Engineering, 2024, 34(6): 40-46. (in Chinese)
[7]
ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LU Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375-8380.
[8]
陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19): 6371-6383.
CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers. Acta Ecologica Sinica, 2015, 35(19): 6371-6383. (in Chinese)
[9]
CHEN W, GENG Y, HONG J L, YANG D L, MA X T. Life cycle assessment of potash fertilizer production in China. Resources, Conservation and Recycling, 2018, 138: 238-245.
[10]
LIU M Y, LI Y, YUAN X L, XU Y, QIAO L, WANG Q S, MA Q. Life cycle environmental impact assessment of sulfur-based compound fertilizers: A case study in China. ACS Sustainable Chemistry & Engineering, 2022, 10(7): 2308-2317.
[11]
江敬安, 陈丽, 沈兵, 张卫峰. 世界肥料产业发展趋势及展望. 现代化工, 2023, 43(1): 13-20.

doi: 10.16606/j.cnki.issn0253-4320.2023.01.002
JIANG J A, CHEN L, SHEN B, ZHANG W F. Development trend and prospect of world fertilizer industry. Modern Chemical Industry, 2023, 43(1): 13-20. (in Chinese)
[12]
ZHANG F F, WANG Q S, HONG J L, CHEN W, QI C C, YE L P. Life cycle assessment of diammonium- and monoammonium- phosphate fertilizer production in China. Journal of Cleaner Production, 2017, 141: 1087-1094.
[13]
徐晨, 张玲. 我国磷肥生产施用的全生命周期环境影响分析: 以磷酸二铵为例. 资源开发与市场, 2018, 34(9): 1262-1270.
XU C, ZHANG L. Life cycle environmental impact analysis of phosphate fertilizer production in China: A case study of diammonium phosphate. Resource Development & Market, 2018, 34(9): 1262-1270. (in Chinese)
[14]
郑秀兴, 白海丹, 冯尚善, 崔荣政, 王臣, 高永峰. 磷复肥产业碳排放现状及低碳绿色发展路径. 磷肥与复肥, 2022, 37(10): 1-7.
ZHENG X X, BAI H D, FENG S S, CUI R Z, WANG C, GAO Y F. Carbon emission status of phosphate and compound fertilizer industry and low carbon green development path. Phosphate & Compound Fertilizer, 2022, 37(10): 1-7. (in Chinese)
[15]
王莹, 方俊文, 高鹏. 2023年我国磷复肥行业运行情况及发展趋势. 生态产业科学与磷氟工程, 2024, 39(7): 1-8.
WANG Y, FANG J W, GAO P. Production and development trends of phosphate and compound fertilizer industry in China in 2023. Eco-industry Science & Phosphorus Fluorine Engineering, 2024, 39(7): 1-8. (in Chinese)
[16]
龚海青. 基于粮食作物磷需求的全链条磷高效利用途径探索[D]. 北京: 中国农业大学, 2022.
GONG H Q. Exploration of efficient phosphorus use pathways in the whole supply chain based on crop phosphorus demand[D]. Beijing: China Agricultural University, 2022. (in Chinese)
[17]
BRENTRUP F, HOXHA A, CHRISTENSEN B. Carbon footprint analysis of mineral fertilizer production in Europe and other world regions. The 10th International Conference on Life Cycle Assessment of Food (LCA Food 2016), 2016.
[18]
刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率(续). 中国农业资源与区划, 2014, 35(1): 1-7.
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(1): 1-7. (in Chinese)
[19]
王微, 林剑艺, 崔胜辉, 吝涛. 碳足迹分析方法研究综述. 环境科学与技术, 2010, 33(7): 71-78.
WANG W, LIN J Y, CUI S H, LIN T. An overview of carbon footprint analysis. Environmental Science & Technology, 2010, 33(7): 71-78. (in Chinese)
[20]
石敏俊, 王妍, 张卓颖, 周新. 中国各省区碳足迹与碳排放空间转移. 地理学报, 2012, 67(10): 1327-1338.
SHI M J, WANG Y, ZHANG Z Y, ZHOU X. Regional carbon footprint and interregional transfer of carbon emissions in China. Acta Geographica Sinica, 2012, 67(10): 1327-1338. (in Chinese)

doi: 10.11821/xb201210004
[21]
方恺. 足迹家族: 概念、类型、理论框架与整合模式. 生态学报, 2015, 35(6): 1647-1659.
FANG K. Footprint family: Concept, classification, theoretical framework and integrated pattern. Acta Ecologica Sinica, 2015, 35(6): 1647-1659. (in Chinese)
[22]
童庆蒙, 沈雪, 张露, 张俊飚. 基于生命周期评价法的碳足迹核算体系: 国际标准与实践. 华中农业大学学报(社会科学版), 2018(1): 46-57, 158.
TONG Q M, SHEN X, ZHANG L, ZHANG J B. Standard system of accounting footprint based on life cycle assessment method: international standards and practices. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018(1): 46-57, 158. (in Chinese)
[23]
赵薇, 孙一桢, 张文宇, 梁赛. 基于生命周期方法的生活垃圾资源化利用系统生态效率分析. 生态学报, 2016, 36(22): 7208-7216.
ZHAO W, SUN Y Z, ZHANG W Y, LIANG S. Eco-efficiency analysis of municipal solid waste recycling systems by using life cycle approaches. Acta Ecologica Sinica, 2016, 36(22): 7208-7216. (in Chinese)
[24]
闫明. 农业生产碳足迹及氮肥去向的计量研究[D]. 南京: 南京农业大学, 2015.
YAN M. Quantitative study on carbon footprint of agricultural production and destination of nitrogen fertilizer[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[25]
BSI. PAS 2050:2008. Specification for the Assessment of Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards Institute, London, UK, 2008.
[26]
廖康程, 杨曼. 2021年我国硫酸行业生产运行情况及发展趋势. 磷肥与复肥, 2022, 37(7): 1-8.
LIAO K C, YANG M. Operation situation of China’s sulfuric acid industry in 2021 and development trend. Phosphate & Compound Fertilizer, 2022, 37(7): 1-8. (in Chinese)
[27]
连文璞. 硫磺及下游行业发展趋势分析. 硫酸工业, 2009(4): 1-7.
LIAN W P. Analysis of development trend of sulphur and sulphur-related industries. Sulphuric Acid Industry, 2009(4): 1-7. (in Chinese)
[28]
崔夏瑜. 中国煤炭产业碳排放量测算. 能源与节能, 2022(5): 33-35, 73.
CUI X Y. Carbon emission calculation of China’s coal industry. Energy and Energy Conservation, 2022(5): 33-35, 73. (in Chinese)
[29]
吴雪妍, 毛保华, 周琪, 黄俊生, 童瑞咏. 交通运输业不同方式碳排放因子水平比较研究. 华东交通大学学报, 2022, 39(4): 41-47.
WU X Y, MAO B H, ZHOU Q, HUANG J S, TONG R Y. Comparative of carbon emission factor levels in different modes of transportation industry. Journal of East China Jiaotong University, 2022, 39(4): 41-47. (in Chinese)
[30]
LI D, LIU R, CHEN L, GAO Y, GU X, SHI Y, LIU J, ZHANG W. Proposed innovation reform model for the mineral nitrogen fertilizer industry in China to reduce greenhouse gas emissions. Frontiers of Agricultural Science and Engineering, 2023, 10(2): 234-247.

doi: 10.15302/J-FASE-2022468
[31]
张晓彤. 基于生命周期评价的腐植酸增值尿素碳足迹研究[D]. 北京: 中国农业科学院, 2024.
ZHANG X T. Carbon footprint of humic acid-enhanced urea based on life cycle assessment[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese)
[32]
ZHANG L, LIANG Z Y, HU Y C, SCHMIDHALTER U, ZHANG W S, RUAN S Y, CHEN X P. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. Journal of Cleaner Production, 2021, 287: 125572.
[33]
马明坤, 袁亮, 李燕婷, 高强, 赵秉强. 不同磺化腐殖酸磷肥提高冬小麦产量和磷素吸收利用的效应研究. 植物营养与肥料学报, 2019, 25(3): 362-369.
MA M K, YUAN L, LI Y T, GAO Q, ZHAO B Q. The effect of sulfonated humus acid phosphate fertilizer on enhancing grain yield and phosphorus uptake and utilization in winter wheat. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 362-369. (in Chinese)
[34]
袁亮, 赵秉强, 林治安, 温延臣, 李燕婷. 增值尿素对小麦产量、氮肥利用率及肥料氮在土壤剖面中分布的影响. 植物营养与肥料学报, 2014, 20(3): 620-628.
YUAN L, ZHAO B Q, LIN Z A, WEN Y C, LI Y T. Effects of value-added urea on wheat yield and N use efficiency and the distribution of residual N in soil profiles. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 620-628. (in Chinese)
[1] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[2] WANG ChuFan, NIU Jun. Water and Carbon Footprint and Layout Optimization of Major Grain Crops in the Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(6): 1137-1152.
[3] ZHOU YuanQing, DONG HongMin, ZHU ZhiPing, WANG Yue, LI NanXi. Review on Carbon Footprint Assessment of Pig Farming System [J]. Scientia Agricultura Sinica, 2024, 57(2): 379-389.
[4] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[5] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[6] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[7] LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565.
[8] HUANG Wen-qiang, DONG Hong-min, ZHU Zhi-ping, LIU Chong, TAO Xiu-ping, WANG Yue. Research Progress and Analysis of Carbon Footprint of Livestock Products [J]. Scientia Agricultura Sinica, 2015, 48(1): 93-111.
[9] WANG Zhan-biao, WANG Meng, CHEN Fu. Carbon Footprint Analysis of Crop Production in North China Plain [J]. Scientia Agricultura Sinica, 2015, 48(1): 83-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!