Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3418-3433.doi: 10.3864/j.issn.0578-1752.2025.17.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

High-Yield Technology Model of New Insect-Resistant Maize Varieties for Biological Breeding in the Xiliaohe Plain

ZHANG TingTing1,2(), ZHANG GuoQiang2(), LI ShaoKun2, WANG KeRu2, XIE RuiZhi2, XUE Jun2, FANG Liang2, LI XiaoHong2, FU JiaLe2, LI JiaKai2, LIANG Chen2, GE JunZhu1,*(), MING Bo2,*()   

  1. 1 College of Agronomy and Resources and Environment, Tianjin Agricultural University/Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/ State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
  • Received:2025-03-04 Accepted:2025-05-30 Online:2025-09-02 Published:2025-09-02
  • Contact: GE JunZhu, MING Bo

Abstract:

【Objective】This study aimed to explore the effects of combining new bio-breeding insect-resistant varieties with dense-planting precision-controlled high-yield technology on maize yield and economic benefits, and to propose the optimal cultivation mode suitable for new bio-breeding insect-resistant varieties, so as to provide the theoretical basis for optimizing the high-yield and high-efficiency cultivation system of spring maize in the Xiliaohe Plain.【Method】Through a field trial in Tongliao, Inner Mongolia from 2023 to 2024, the experiment was conducted in a split-zone design, with cultivation mode as the main zone, setting up two modes of local traditional farmer mode (FP) and dense planting precision regulation mode (DPDI); varieties as the sub-zone, four maize varieties were used, namely, Dongdan 1331 (DD1331), Dongdan 1331K (DD1331K), Youdi 919 (YD919), Youdi 919HZ (YD919HZ). Then, the impact of varietal insect resistance traits on maize yield and economic benefits under different technical models were analyzed.【Result】During a two-year trial, the insect pests in the fields of insect-resistant varieties occurred lightly, with the insect plant rate of 6.80%-9.87%; the fields of conventional varieties occurred moderately or heavily, with the insect plant rate of 22.27%-36.31%. In 2023 (insect plant rate>30%), compared with conventional varieties (DD1331, YD919), the new insect-resistant varieties (DD1331K, YD919HZ) significantly increased thousand kernel weight, thus improving maize yield (0.84%-9.31%) and economic benefits (0.3%-13.3%), whereas in 2024, when the insect plant rate was about 23%, there was no significant difference in the number of thousand kernels and the number of grains between insect-resistant varieties, and there were no significant differences in ear grain number, thousand kernel weight and yield between conventional varieties. With increasing planting density, maize yield reached its maximum at 9.0×104 or 10.5×104 plants/hm2, which was significantly higher than that at 6.0×104 plants/hm2 density, by 13.54%-19.94% and 7.48%-21.01%, respectively. The two-year average yields of the dense planting precision regulated model were significantly higher than those of the traditional farmers' model, with yield increases ranging from 13.50% to 19.19% in 2023 and from 7.03% to 14.42% in 2024. Compared with the traditional farmers' model, the economic benefits of the dense planting precision regulation model were generally improved by 0.19×104-1.02×104 yuan/hm2.【Conclusion】Insect-resistant varieties (DD1331K, YD919HZ) significantly improved yield (up to 9.31%) and economic efficiency (up to 40.3%) in years of severe insect infestation (>30% of insect plants), but did not differ significantly from conventional varieties under low insect pressure. Through optimized density (9.0×104-10.5×104 plants/hm2) and precise management of water and fertilizer, DPDI increased yields by an average of 22.18% in two years and improved economic benefits by 0.57×104 yuan/hm2 compared with the conventional mode (FP); the core principle of DPDI was that insect resistant varieties could reduce the threat of pests, decrease yield losses, reduce the use of insecticides, and lower production input costs. By increasing the production capacity of maize populations through reasonable planting density and combining drip irrigation with water and fertilizer integration for precise regulation, the yield and income of maize could be increased. The synergistic application of insect-resistant varieties and DPDI model could achieve technological superposition and further improve the ability of high and stable yield.

Key words: biological breeding, insect-resistant maize, cultivation mode, precise regulation, yield, economic benefits

Fig. 1

Changes of precipitation and temperature during maize growing season in the experimental area in 2023 and 2024"

Fig. 2

Fertilizer management model in maize growing period"

Table 1

The description of maize pest damage and the criteria for distinguishing the degree of occurrence"

发生指标
Occurrence index
轻发生(1级)
Mild occurrence (Grade 1)
偏轻发生(2级)
Slightly occurrence (Grade 2)
中等发生(3级)
Moderate occurrence (Grade 3)
偏重发生(4级)
Severe occurrence (Grade 4)
大发生(5级)
Major occurrence (Grade 5)
其他代
Other generations
虫株率
Strain rate (X,%)
1≤X≤5 5<X≤10 10<X≤30 30<X≤50 X>50

Fig. 3

Plant rate and occurrence grade of maize plant pests at different growth stages"

Fig. 4

Changes of maize yield under different treatments in 2023 and 2024"

Table 2

Changes of yield components of different treatments from 2023 to 2024"

处理
Treatment
收获穗数 Ear number(×104·hm-2) 穗粒数 Kernel number 千粒重 1000-Kernel weight (g)
2023 2024 2023 2024 2023 2024
DD1331-FP 5.9c 5.9c 554.9bcde 588.1a 398.1d 363.3b
DD1331-D6 5.9c 5.9c 588.1ab 590.7a 453.8b 410.6a
DD1331-D9 8.9b 8.9b 535.9de 561.1ab 379.3f 348.0c
DD1331-D10.5 10.4a 10.4a 519.7e 510.3b 351.1h 322.7d
DD1331K-FP 5.9c 5.9c 584.9abc 593.3a 430.5c 362.9b
DD1331K-D6 5.9c 5.9c 596.2a 594.0a 471.7a 409.9a
DD1331K-D9 8.9b 8.9b 569.7abcd 563.9ab 388.2e 347.3c
DD1331K-D10.5 10.4a 10.4a 546.0cde 530.0b 366.2g 321.8d
YD919-FP 5.9c 5.9c 546.7cd 561.6a 389.5d 372..4b
YD919-D6 5.9c 5.9c 584.0ab 578.1a 433.2b 411.7a
YD919-D9 8.9b 8.9b 519.2e 546.9a 371.4f 340.7c
YD919-D10.5 10.5a 10.5a 457.5f 456.5b 357.0g 312.7d
919HZ-FP 5.9c 5.9c 561.7bc 568.4a 420.7c 373.1b
919HZ-D6 5.9c 5.9c 591.1a 582.7a 448.3a 412.2a
919HZ-D9 8.9b 8.9b 534.3de 548.9a 383.7e 342.3c
919HZ-D10.5 10.4a 10.4a 461.0f 457.5b 367.2f 314.1d
方差分析ANOVA
V ns ** **
D ** ** **
M ns ns **
Y ns ns **
V×D ns ns **
V×M ns ns **
V×Y ns ns **
D×M ns ns ns
D×Y ns ns **
M×Y ns ns ns
V×D×M ns ns ns
V×D×Y ns ns **
V×M×Y ns ns **
D×M×Y ns ns ns
V×D×M×Y ns ns ns

Fig. 5

Changes in total production inputs and benefits under different treatments from 2023 to 2024"

Fig. 6

Proportion of cost inputs for different agricultural production processes in 2023 to 2024"

Table 3

Operation link and cost of maize under different treatments from 2023 to 2024"

年份
Year
处理
Treatment
农业生产投入 Input in agricultural production(×104 yuan/hm2)
土地
Land
肥料
Fertilizer
机械作业
Mechanical operation
人工
Labor
农药
Pesticide
种子
Seed
灌溉
Irrigation
2023 DD1331-D6 FP 1.29 0.36 0.31 0.11 0.05 0.09 0.08
DD1331K-D6 1.29 0.36 0.31 0.11 0.03 0.11 0.08
YD919-D6 1.29 0.36 0.31 0.11 0.05 0.09 0.08
YD919HZ-D6 1.29 0.36 0.31 0.11 0.03 0.11 0.08
DD1331-D6 DPDI 1.29 0.36 0.31 0.05 0.08 0.09 0.17
DD1331-D9 1.29 0.36 0.31 0.05 0.08 0.14 0.17
DD1331-D10.5 1.29 0.36 0.31 0.05 0.08 0.16 0.17
DD1331K-D6 1.29 0.36 0.31 0.05 0.04 0.11 0.17
DD1331K-D9 1.29 0.36 0.31 0.05 0.04 0.16 0.17
DD1331K-D10.5 1.29 0.36 0.31 0.05 0.04 0.18 0.17
YD919-D6 1.29 0.36 0.31 0.05 0.08 0.09 0.17
YD919-D9 1.29 0.36 0.31 0.05 0.08 0.14 0.17
YD919-D10.5 1.29 0.36 0.31 0.05 0.08 0.16 0.17
YD919HZ-D6 1.29 0.36 0.31 0.05 0.04 0.11 0.17
YD919HZ-D9 1.29 0.36 0.31 0.05 0.04 0.16 0.17
YD919HZ-D10.5 1.29 0.36 0.31 0.05 0.04 0.18 0.17
2024 DD1331-D6 FP 1.29 0.36 0.31 0.11 0.05 0.09 0.08
DD1331K-D6 1.29 0.36 0.31 0.11 0.03 0.11 0.08
YD919-D6 1.29 0.36 0.31 0.11 0.05 0.09 0.08
YD919HZ-D6 1.29 0.36 0.31 0.11 0.03 0.11 0.08
DD1331-D6 DPDI 1.29 0.36 0.31 0.05 0.08 0.09 0.17
DD1331-D9 1.29 0.36 0.31 0.05 0.08 0.14 0.17
DD1331-D10.5 1.29 0.36 0.31 0.05 0.08 0.16 0.17
DD1331K-D6 1.29 0.36 0.31 0.05 0.04 0.11 0.17
DD1331K-D9 1.29 0.36 0.31 0.05 0.04 0.16 0.17
DD1331K-D10.5 1.29 0.36 0.31 0.05 0.04 0.18 0.17
YD919-D6 1.29 0.36 0.31 0.05 0.08 0.09 0.17
YD919-D9 1.29 0.36 0.31 0.05 0.08 0.14 0.17
YD919-D10.5 1.29 0.36 0.31 0.05 0.08 0.16 0.17
YD919HZ-D6 1.29 0.36 0.31 0.05 0.04 0.11 0.17
YD919HZ-D9 1.29 0.36 0.31 0.05 0.04 0.16 0.17
YD919HZ-D10.5 1.29 0.36 0.31 0.05 0.04 0.18 0.17
[1]
YIN F, SUN Z L, YOU L Z, MÜLLER D. Determinants of changes in harvested area and yields of major crops in China. Food Security, 2024, 16(2): 339-351.
[2]
LUO N, MENG Q F, FENG P Y, QU Z R, YU Y H, LIU D L, MÜLLER C, WANG P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 2023, 14: 2637.

doi: 10.1038/s41467-023-38355-2 pmid: 37149677
[3]
BORDINI J G, ONO M A, GARCIA G T, VIZONI É, AMADOR I R, HIROZAWA M T, ONO E Y S. Transgenic versus conventional corn: fate of fumonisins during industrial dry milling. Mycotoxin Research, 2019, 35(2): 169-176.

doi: 10.1007/s12550-019-00343-1 pmid: 30706435
[4]
刘世梦倪, 宋敏. 品种改良对玉米单产的贡献率分析. 河南农业大学学报, 2021, 55(2): 364-371.
LIU S M N, SONG M. Analysis on the contribution rate of variety improvement to corn yield. Journal of Henan Agricultural University, 2021, 55(2): 364-371. (in Chinese)
[5]
尹祥佳, 翁建峰, 谢传晓, 郝转芳, 王汉宁, 张世煌, 李新海. 玉米转基因技术研究及其应用. 作物杂志, 2010(6): 1-9.
YIN X J, WENG J F, XIE C X, HAO Z F, WANG H N, ZHANG S H, LI X H. The maize genetic transformation technology, current status and applications. Crops, 2010(6): 1-9. (in Chinese)
[6]
宋苗, 汪海, 张杰, 何康来, 梁革梅, 朱莉, 黄大昉, 郎志宏. 转Bt cry1Ah基因抗虫玉米对亚洲玉米螟、棉铃虫和黏虫的抗性评价. 生物技术通报, 2016, 32(6): 69-75.

doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.011
SONG M, WANG H, ZHANG J, HE K L, LIANG G M, ZHU L, HUANG D F, LANG Z H. Resistance evaluation of Bt cry1Ah-transgenic maize to Asian corn borer, cotton bollworm and oriental armyworm. Biotechnology Bulletin, 2016, 32(6): 69-75. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.011
[7]
刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1-9, 46.
LIU W C, LIU Z D, HUANG C, LU M H, LIU J, YANG Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Protection, 2016, 42(5): 1-9, 46. (in Chinese)
[8]
郭井菲, 张永军, 王振营. 中国应对草地贪夜蛾入侵研究的主要进展. 植物保护, 2022, 48(4): 79-87.
GUO J F, ZHANG Y J, WANG Z Y. Research progress in managing the invasive fall armyworm, Spodoptera frugiperda, in China. Plant Protection, 2022, 48(4): 79-87. (in Chinese)
[9]
CHALIVENDRA S, HUANG F N, BUSMAN M, WILLIAMS W P, HAM J H. Low aflatoxin levels in Aspergillus flavus-resistant maize are correlated with increased corn earworm damage and enhanced seed fumonisin. Frontiers in Plant Science, 2020, 11: 565323.
[10]
袁英, 李晓辉, 孔祥梅, 董英山, 姜志磊, 林春晶, 李葱葱, 武树香, 刘红军, 刘芳, 刘德璞. Bt基因转化玉米培育抗玉米螟自交系. 分子植物育种, 2007, (4): 572-576.
YUAN Y, LI X H, KONG X M, DONG Y S, JIANG Z L, LIN C J, LI C C, WU S X, LIU H J, LIU F, LIU D P. Developing Bt maize inbred line through transforming Bt cryIA gene. Molecular Plant Breeding, 2007, (4): 572-576. (in Chinese)
[11]
崔征. 农田土壤中六六六和滴滴涕农药残留的含量分布研究. 中国农业信息, 2012, 24(23): 86-87.
CUI Z. Study on content distribution of BHC and DDT pesticide residues in farmland soil. China Agricultural Information, 2012, 24(23): 86-87. (in Chinese)
[12]
康领生, 姜志磊, 刘洋, 王玉民, 徐惠风. 转基因玉米SW12-859的抗螟性及农艺性状评价. 玉米科学, 2017, 25(5): 45-48.
KANG L S, JIANG Z L, LIU Y, WANG Y M, XU H F. Evaluation of resistance to corn borer and agronomic traits of transgenic corn SW12-859. Journal of Maize Sciences, 2017, 25(5): 45-48. (in Chinese)
[13]
XIE W, ALI T, CUI Q, HUANG J K. Economic impacts of commercializing insect-resistant GM maize in China. China Agricultural Economic Review, 2017, 9(3): 340-354.
[14]
程兴茹, 康宇立, 孟子云, 李楠, 唐巧玲, 王友华. 基于全球专利的Bt抗虫基因研发态势分析与展望. 农业图书情报学报, 2022, 34(11): 81-91.

doi: 10.13998/j.cnki.issn1002-1248.22-0368
CHENG X R, KANG Y L, MENG Z Y, LI N, TANG Q L, WANG Y H. Progress analysis and prospects of bt gene research and development based on global patents. Journal of Library and Information Science in Agriculture, 2022, 34(11): 81-91. (in Chinese)

doi: 10.13998/j.cnki.issn1002-1248.22-0368
[15]
李彬, 妥德宝, 程满金, 郭富强, 赵沛义. 水肥一体化条件下内蒙古优势作物水肥利用效率及产量分析. 水资源与水工程学报, 2015, 26(4): 216-222.
LI B, TUO D B, CHENG M J, GUO F Q, ZHAO P Y. Analysis of use efficiency of water and fertilizer and yield for maincrops in Inner Mongolia under integration condition of water and fertilizer. Journal of Water Resources and Water Engineering, 2015, 26(4): 216-222. (in Chinese)
[16]
李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华. 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016(4): 1-6.
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016(4): 1-6. (in Chinese)
[17]
张明达, 张国强, 王克如, 谢瑞芝, 侯鹏, 明博, 薛军, 李少昆. 种植密度和灌溉量对西辽河平原春玉米产量及水分利用效率的影响. 玉米科学, 2023, 31(1): 116-125.
ZHANG M D, ZHANG G Q, WANG K R, XIE R Z, HOU P, MING B, XUE J, LI S K. Effects of planting density and irrigation amount on yield and water use efficiency of spring maize in the west Liaohe plain. Journal of Maize Sciences, 2023, 31(1): 116-125. (in Chinese)
[18]
郭晓旭, 杨恒山, 邰继承, 李锐, 张明伟. 作物浅埋滴灌技术研究进展. 内蒙古民族大学学报(自然科学版), 2020, 35(1): 80-84.
GUO X X, YANG H S, TAI J C, LI R, ZHANG M W. Advances in crop shallow buried drip irrigation technology. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2020, 35(1): 80-84. (in Chinese)
[19]
郭金路, 谷健, 尹光华, 李雪. 辽西半干旱区浅埋式滴灌对春玉米耗水特性及产量的影响. 生态学杂志, 2017, 36(9): 2514-2520.
GUO J L, GU J, YIN G H, LI X. Effect of shallow-buried drip irrigation on water consumption characteristics and yield of spring maize in semi-arid region of western Liaoning. Chinese Journal of Ecology, 2017, 36(9): 2514-2520. (in Chinese)
[20]
GRASSINI P, YANG H S, IRMAK S, THORBURN J, BURR C, CASSMAN K G. High-yield irrigated maize in the western U.S. corn belt: II. irrigation management and crop water productivity. Field Crops Research, 2011, 120(1): 133-141.
[21]
曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012, 18(6): 1343-1353.
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343-1353. (in Chinese)
[22]
WEI J G, CHAI Q, YIN W, FAN H, GUO Y, HU F L, FAN Z L, WANG Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture, 2024, 23(1): 122-140.

doi: 10.1016/j.jia.2023.05.006
[23]
DONG G, GUO J X, CHEN J Q, SUN G, GAO S, HU L J, WANG Y L. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China. Ecohydrology, 2011, 4(2): 211-224.
[24]
毛圆圆, 薛军, 翟娟, 张园梦, 张国强, 明博, 谢瑞芝, 王克如, 侯鹏, 李召锋, 李少昆. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报, 2022, 28(12): 2227-2238.
MAO Y Y, XUE J, ZHAI J, ZHANG Y M, ZHANG G Q, MING B, XIE R Z, WANG K R, HOU P, LI Z F, LI S K. Optimum times of nitrogen topdressing in high-yield maize under high plant density and fertigation. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2227-2238. (in Chinese)
[25]
杨恒山, 张明伟, 张瑞富, 邰继承, 李维敏, 张雨珊, 马日亮, 白斌. 滴灌灌溉量、施氮量和种植密度对春玉米产量的影响. 灌溉排水学报, 2021, 40(5): 16-22.
YANG H S, ZHANG M W, ZHANG R F, TAI J C, LI W M, ZHANG Y S, MA R L, BAI B. The combined impact of planting density and amount of water and nitrogen application on yield of spring maize. Journal of Irrigation and Drainage, 2021, 40(5): 16-22. (in Chinese)
[26]
张西超, 邹洪涛, 张玉龙, 范庆锋, 张玉玲, 虞娜. 灌溉方法对设施土壤理化性质及番茄生长状况的影响. 水土保持学报, 2015, 29(6): 143-147, 153.
ZHANG X C, ZOU H T, ZHANG Y L, FAN Q F, ZHANG Y L, YU N. Effects of irrigation methods on physical and chemical properties of soil and tomato growth. Journal of Soil and Water Conservation, 2015, 29(6): 143-147, 153. (in Chinese)
[27]
ZHOU Z J, ANDERSEN M N, PLAUBORG F. Radiation interception and radiation use efficiency of potato affected by different N fertigation and irrigation regimes. European Journal of Agronomy, 2016, 81: 129-137.
[28]
董喆, 郑伟, 边丽梅, 张丽妍, 霍剑锋, 孟繁盛, 慈艳华, 郝春雷, 张昊. 赤峰地区玉米穗期害虫发生为害特点与防治措施. 中国植保导刊, 2015, 35(2): 33-37.
DONG Z, ZHENG W, BIAN L M, ZHANG L Y, HUO J F, MENG F S, CI Y H, HAO C L, ZHANG H. Occurrence and damage characteristics and control measures of corn pests at ear stage in Chifeng area. China Plant Protection, 2015, 35(2): 33-37. (in Chinese)
[29]
陈立涛, 王梅娟, 潘玉雷, 郝玉娟, 王永芳, 马继芳, 董志平, 张大鹏, 郝延堂. 不同夏玉米品种穗部主要害虫发生现状调查. 中国植保导刊, 2019, 39(8): 38-42.
CHEN L T, WANG M J, PAN Y L, HAO Y J, WANG Y F, MA J F, DONG Z P, ZHANG D P, HAO Y T. Investigation on the occurrence status of main pests in ear of different summer maize varieties. China Plant Protection, 2019, 39(8): 38-42. (in Chinese)
[30]
玉米螟测报技术规范: NY/T 1611—2017[S].
Technical Specifications for Corn Borer Forecasting: NY/T 1611— 2017[S]. (in Chinese)
[31]
郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27(6): 862-868.
ZHENG H J, DONG S T, WANG K J, GUO Y Q, HU C H, ZHANG J W. Effects of ecological factors on maize (Zea mays L.)yield of different vari eties and corresponding regulative measure. Acta Agronomica Sinica, 2001, 27(6): 862-868. (in Chinese)
[32]
HE K, WANG Z, WEN L, BAI S, MA X, YAO Z. Determination of baseline susceptibility to Cry1Ab protein for Asian corn borer (Lep., Crambidae). Journal of Applied Entomology, 2005, 129(8): 407-412.
[33]
HUANG J K, HU R F, FAN C H, PRAY C E, ROZELLE S. Bt cotton benefits, costs, and impacts in China. AgBioForum, 2002, 5(4): 153-166.
[34]
江洋. 转Bt基因水稻氮素利用特征及其抗性表达研究[D]. 武汉: 华中农业大学, 2016.
JIANG Y. Characteristics of transgenic bt rice in nitrogen utilization and resistance expression[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[35]
LASERNA M P, MADDONNI G A, LÓPEZ C G. Phenotypic variations between non-transgenic and transgenic maize hybrids. Field Crops Research, 2012, 134: 175-184.
[36]
DASTAN S, GHAREYAZIE B, TEIXEIRA DA SILVA J A, Selection of ideotype to increase yield potential of GM and non-GM rice cultivars. Plant Science, 2020, 297: 110519.
[37]
司奉泰, 黄善斌. 二代玉米螟发生规律与气象条件关系. 气象与环境科学, 1998, (4): 26-27.
SI F T, HUANG S B. Relationship between occurrence regularity of the second generation corn borer and meteorological conditions. Meteorological and Environmental Sciences, 1998, (4): 26-27. (in Chinese)
[38]
李卓. 气候变化下固氮菌调控Bt玉米生长及其靶标害虫粘虫发育与营养利用研究[D]. 南京: 南京农业大学, 2018.
LI Z. Effects of elevated CO2 and temperature on the growth of transgenic Cry1ie maize infected by Azotobacter, and the development and nutritional utilization of the target pest, Mythimna separata[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[39]
JIANG Y, LING L, ZHANG L L, WANG K X, CAI M L, ZHAN M, LI C F, WANG J P, CHEN X, LIN Y J, CAO C G. Transgenic Bt (Cry1Ab/Ac) rice lines with different genetic backgrounds exhibit superior field performance under pesticide-free environment. Field Crops Research, 2016, 193: 117-122.
[40]
杜建中, 孙毅, 曹秋芬, 郝曜山, 刘龙龙, 贺健. 转基因油菜后代的农艺性状表现及其抗虫性研究. 生物技术通报, 2008, (3): 148-152, 165.
DU J Z, SUN Y, CAO Q F, HAO Y S, LIU L L, HE J. Performance of agronomic characters of transgenic oilseed and their insect resistant activity. Biotechnology Bulletin, 2008, (3): 148-152, 165. (in Chinese)
[41]
白雪君. 转基因抗虫早粳稻HD3品系外源基因的整合、表达及其农艺性状[D]. 哈尔滨: 黑龙江大学, 2019.
BAI X J. Integration, expression and agronomic traits of exogenous genes of transgenic insect-resistant early Japonica rice HD3 line[D]. Harbin: Helongjiang University, 2019. (in Chinese)
[42]
康岭生, 王玉民, 姜昱, 李葱葱, 邢珍娟, 张明. 转Bt基因玉米的抗螟性及产量分析. 玉米科学, 2009, 17(1): 62-64, 70.
KANG L S, WANG Y M, JIANG Y, LI C C, XING Z J, ZHANG M. Resistance to borer of bt maize and yield analysis. Journal of Maize Sciences, 2009, 17(1): 62-64, 70. (in Chinese)
[43]
戴军, 李秀影, 朱莉, 汪海, 张杰, 何康来, 郎志宏, 黄大昉. 转Bt cry1Ah基因抗虫玉米的分子检测及农艺性状分析. 生物技术通报, 2014, 30(5): 62-68.
DAI J, LI X Y, ZHU L, WANG H, ZHANG J, HE K L, LANG Z H, HUANG D F. Molecular detection and agronomic traits analysis of insect-resistant transgenic maize harboring bt cry1Ah gene. Biotechnology Bulletin, 2014, 30(5): 62-68. (in Chinese)
[44]
TANG W, CHEN H, XU C G, LI X H, LIN Y J, ZHANG Q F. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Molecular Breeding, 2006, 18(1): 1-10.
[45]
李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析. 生物技术通报, 2023, 39(1): 40-47.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-1227
LI P C, ZHANG M J, WANG Y X, LI X Y, LI S Y, LANG Z H. Insect resistance identification and agronomy traits analysis of transgenic maize HGK60 with different genetic backgrounds. Biotechnology Bulletin, 2023, 39(1): 40-47. (in Chinese)
[46]
TIAN J G, WANG C L, CHEN F Y, QIN W C, YANG H, ZHAO S H, XIA J L, DU X, ZHU Y F, WU L S, et al. Maize smart-canopy architecture enhances yield at high densities. Nature, 2024, 632(8025): 576-584.
[47]
唐建华, 张卫建, 王延波, 于吉琳, 宋振伟, 刘荣, 王大为, 刘颖, 齐华. 密度对耐密性不同玉米品种群体冠层结构的影响. 作物杂志, 2013(2): 126-130.
TANG J H, ZHANG W J, WANG Y B, YU J L, SONG Z W, LIU R, WANG D W, LIU Y, QI H. Effects of density on different varieties of maize population canopy structure. Crops, 2013(2): 126-130. (in Chinese)
[48]
吴贻波, 龚政, 常喜玲, 孙建强, 李阳阳, 刘惠惠, 宋有洪. 增密对玉米花期冠层光合特性与粒库建成的影响特征. 华北农学报, 2022, 37(S1): 96-102.

doi: 10.7668/hbnxb.20193320
WU Y B, GONG Z, CHANG X L, SUN J Q, LI Y Y, LIU H H, SONG Y H. Effects of increasing plant density on photosynthetic characteristics of canopy and establishment of grain sink at anthesis in maize. Acta Agriculturae Boreali-Sinica, 2022, 37(S1): 96-102. (in Chinese)

doi: 10.7668/hbnxb.20193320
[49]
唐心龙, 刘莹, 秦喜彤, 张雨寒, 王腾, 李博, 薛瑞锋, 李济, 李昊, 石武良, 等. 玉米光能利用率和产量对密度、施氮量及其互作的响应. 植物营养与肥料学报, 2021, 27(10): 1864-1873.
TANG X L, LIU Y, QIN X T, ZHANG Y H, WANG T, LI B, XUE R F, LI J, LI H, SHI W L, et al. Response of light use efficiency and grain yield of maize to planting density and nitrogen application rate. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1864-1873. (in Chinese)
[50]
李嘉航, 王绍新, 许洛, 李中建, 王宝宝, 冯健英. 玉米种植密度与产量研究现状与趋势. 农学学报, 2023, 13(11): 1-11.

doi: 10.11923/j.issn.2095-4050.cjas2022-0157
LI J H, WANG S X, XU L, LI Z J, WANG B B, FENG J Y. Research status and trend of maize planting density and yield. Journal of Agriculture, 2023, 13(11): 1-11. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2022-0157
[51]
WANG Z, GUO Y N, WANG K R, ZHANG G Q, MING B, SHEN D P, FANG L, ZHOU L L, SUN L R, LIU H, et al. Effects of planting density on test weight and related indexes of maize. Crop Science, 2023, 63(6): 3470-3481.
[52]
LIU Y Q, GU J, MA N N, LI X, YIN G H, SUN S J. Optimizing spring maize growth and yield through balanced irrigation and nitrogen application: A TOPSIS method approach. Agronomy, 2024, 14(8): 1825.
[53]
FANG L, ZHANG G Q, MING B, SHEN D P, WANG Z, ZHOU L L, ZHANG T T, LIANG Z Y, XUE J, XIE R Z, et al. Dense planting and nitrogen fertilizer management improve drip-irrigated spring maize yield and nitrogen use efficiency in Northeast China. Journal of Integrative Agriculture, 2024, https://doi.org/10.1016/j.jia.2024.09.032.
[54]
PABLO R G, O’NEILL M K, MCCASLIN B D, REMMENGA M D, KEENAN J G, ONKEN B M. Evaluation of corn grain yield and water use efficiency using subsurface drip irrigation. Journal of Sustainable Agriculture, 2007, 30(1): 153-172.
[55]
ZHAI J, ZHANG Y M, ZHANG G Q, XU W Q, XIE R Z, MING B, HOU P, WANG K R, XUE J, LI S K. Nitrogen application and dense planting to obtain high yields from maize. Agronomy, 2022, 12(6): 1308.
[56]
SHEN D P, WANG K R, ZHOU L L, FANG L, WANG Z, FU J L, ZHANG T T, LIANG Z Y, XIE R Z, MING B, et al. Increasing planting density and optimizing irrigation to improve maize yield and water-use efficiency in Northeast China. Agronomy, 2024, 14(2): 400.
[57]
ZHANG G Q, SHEN D P, XIE R Z, MING B, HOU P, XUE J, LI R F, CHEN J L, WANG K R, LI S K. Optimizing planting density to improve nitrogen use of super high-yield maize. Agronomy Journal, 2020, 112(5): 4147-4158.
[58]
ZHANG G Q, MING B, SHEN D P, XIE R Z, HOU P, XUE J, WANG K R, LI S K. Optimizing grain yield and water use efficiency based on the relationship between leaf area index and evapotranspiration. Agriculture, 2021, 11(4): 313.
[59]
BROOKES G. Twenty-one years of using insect resistant (GM) maize in Spain and Portugal: Farm-level economic and environmental contributions. GM Crops & Food, 2019, 10(2): 90-101.
[60]
MÉNDEZ K A, CHAPARRO GIRALDO A, MORENO G R, CASTRO C S. Production cost analysis and use of pesticides in the transgenic and conventional corn crop [Zea mays (L.)] in the valley of San Juan, Tolima. GM Crops, 2011, 2(3): 163-168.
[61]
XIA H, CHEN L Y, WANG F, LU B R. Yield benefit and underlying cost of insect-resistance transgenic rice: Implication in breeding and deploying transgenic crops. Field Crops Research, 2010, 118(3): 215-220.
[62]
ZALLER J G. Pesticide impacts on the environment and humans. Daily Poison:Pesticides-an underestimated danger. Cham: Springer International Publishing, 2020: 127-221.
[63]
XU R, KUANG R P, PAY E, DOU H, DE SNOO G R. Factors contributing to overuse of pesticides in western China. Environmental Sciences, 2008, 5(4): 235-249.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!