Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 2980-2992.doi: 10.3864/j.issn.0578-1752.2025.15.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Relationship Between Boll Morphological Characteristics and Fiber and Kernel Quality of Gossypium hirsutum L. and Gossypium barbadense L.

TANG ChaoYuan1(), LIU TaoFen1, WU YanQin1, ZHANG QiPeng1, LI ZiLiang1, CHEN YunRui1, LEI ZhangYing2, ZHANG YaLi1, ZHANG WangFeng1, DU MingWei3, YANG MingFeng4, TIAN JingShan1,*()   

  1. 1 College of Agronomy, Shihezi University/Key Laboratory of Oasis Eco-Agriculture, The Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    2 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    3 College of Agronomy and Biotechnology, China Agricultural University/Engineering Research Center of Plant Growth Regulator, Ministry of Education, Beijing 100193
    4 Wulanwusu Agro-Meteorological Experimental Station of Shihezi Meteorological Bureau, Shihezi 832003, Xinjiang
  • Received:2025-02-14 Accepted:2025-04-14 Online:2025-08-01 Published:2025-07-30
  • Contact: TIAN JingShan

Abstract:

【Objective】 The analysis of the differences and relationships of boll morphological characteristics, boll weight, fiber and kernel quality between G. hirsutum and G. barbadense were carried out in this study, so as to provide a theoretical basis for the breeding of new cotton varieties and the cultivation of high yield and quality. 【Method】 The experiment was carried out in Xinjiang Wulan Wusu Agricultural Meteorological Station from 2022 to 2023. 299 accessions of G. hirsutum and 274 accessions of G. barbadense were selected, and the effects of boll morphological characteristics on fiber and kernel quality of G. hirsutum and G. barbadense were determined by correlation, principal component analysis and grey correlation analysis. 【Result】 The boll length of G. barbadense varied from 3.79 to 6.20 cm, which was significantly higher than that of G. hirsutum, while the boll diameter, surface area and volume of G. hirsutum were higher than those of G. barbadense, and the boll diameter ranged from 2.81 to 4.27 cm, the surface area and volume were 21.86 to 37.42 cm2 and 14.76 to 33.58 cm3, respectively; the strength of G. hirsutum increased with the increase of boll diameter, and the fiber quality of G. barbadense increased with the increase of boll volume. The bur weight of G. barbadense was 0.97 g, which was significantly lower than that of G. hirsutum by 37.01%. The bur mass per area of G. hirsutum was significantly higher than that of G. barbadense, and its variation range was 2.24 to 9.88 g·dm-2. The upper half mean length and strength of G. hirsutum were significantly positively correlated with bur weight and bur mass per area; the upper half mean length of G. barbadense was significantly negatively correlated with bur weight and bur mass per area, and the strength was significantly positively correlated with bur weight. The increase of bur weight and bur mass per area were significantly positively correlated with the increase in boll weight. The fiber weight and seed weight of G. hirsutum ranged from 0.85 to 3.69 g and 1.85 to 6.16 g, which were 48.34% and 37.97% higher than those of G. barbadense, respectively. The upper half mean length and strength of G. hirsutum were significantly positively correlated with seed weight, while G. barbadense was significantly negatively correlated with fiber weight. The oil content of G. barbadense kernel was 35.04%, significantly higher than that of G. hirsutum by 1.75%, and the protein content of G. hirsutum kernel was 40.75%, significantly higher than that of G. barbadense by 2.86%. There was a significant negative correlation between fiber quality and kernel protein content. With the increase of protein content, the upper half mean length and strength decreased significantly. 【Conclusion】 Therefore, the difference in the distribution of photosynthetic products in fiber and kernel was the main reason for the difference in fiber quality between G. hirsutum and G. barbadense. Expanding the storage capacity of cotton boll could synergistically increase the boll weight and strength of G. hirsutum and G. barbadense.

Key words: cotton, boll morphological, characteristics, fiber quality, kernel quality

Table 1

Basic information of tested G. hirsutum and G. barbadense germplasm resources"

指标
Index
陆地棉 G. hirsutum 海岛棉 G. barbadense
I式果枝 Fruit branch I II式果枝 Fruit branch II 零式果枝 Fruit branch 0 II式果枝 Fruit branch II
生育期 Growth period (d) 126—140 128—140 125—139 134—148
单铃重 Boll weight (g) 5.4—6.1 5.3—6.4 3.6—4.1 3.5—4.0
衣分 Lint percentage (%) 38.7—41.9 38.0—43.0 37.4—39.9 36.9—39.4
长度 Upper half mean length (mm) 28.2—30.2 28.1—30.8 34.6—38.1 34.4—37.3
断裂比强度 Strength (cN/tex) 29.5—31.7 29.5—32.1 35.0—41.5 34.2—37.2
马克隆值 Micronaire 4.1—4.4 4.0—4.6 3.8—4.4 3.9—4.4
材料个数 Number 55 244 140 134

Table 2

Variation of phenotypic traits in cotton boll"

指标
Index
平均值±标准差 Mean±standard deviation 变化范围 Variation range
陆地棉 G. hirsutum 海岛棉 G. barbadense 陆地棉 G. hirsutum 海岛棉 G. barbadense
铃长Boll length (cm) 4.75±0.39b 4.81±0.40a 3.80—5.98 3.79—6.20
铃直径Boll diameter (cm) 3.57±0.24a 2.91±0.21b 2.81—4.27 2.34—3.87
铃长宽比Aspect ratio (cm/cm) 1.33±0.11b 1.66±0.14a 1.08—1.67 1.17—2.15
铃表面积Boll surface area (cm²) 29.19±2.68a 25.04±2.17b 21.86—37.42 19.57—32.89
铃体积Boll volume (cm3) 23.62±3.24a 14.94±2.51b 14.76—33.58 8.62—23.99
单铃重Boll weight (g) 5.50±0.77a 3.88±0.46b 2.70—8.43 2.37—6.64
单铃纤维重Fiber weight (g) 2.24±0.39a 1.51±0.19b 0.85—3.69 1.04—2.94
单铃棉籽重Seed weight (g) 3.27±0.51a 2.37±0.30b 1.85—6.16 1.32—3.87
衣分Lint percentage (%) 40.62±4.20a 38.92±2.38b 21.77—49.58 26.75—54.03
铃壳重Bur weight (g) 1.54±0.26a 0.97±0.24b 0.76—2.75 0.50—2.74
比壳重Bur mass per area (g·dm-2) 5.32±0.89a 3.90±0.95b 2.24—9.88 2.14—9.94
铃壳率Bur rate (%) 21.97±2.55a 19.91±3.26b 12.64—32.18 12.86—42.11

Fig. 1

Differences and frequency distribution of fiber quality between G. hirsutum and G. barbadense The thick line in the left figure indicates the average value of this group of data, the error line is the standard deviation of this group of values, ** is expressed as difference levels of 0.01"

Fig. 2

Difference and frequency distribution of oil and protein content in kernels between G. hirsutum and G. barbadense The X-axis of the right figure is the percentage (%) of oil and protein content of different grades to the total number of samples, and the Y-axis is the grade of oil and protein content"

Fig. 3

Correlation coefficient between fiber quality and boll phenotypic traits, kernel oil and protein content"

Table 3

Principal component of boll phenotypic traits, fiber and kernel quality of G. hirsutum"

指标 Index 第1主成分 Component 1 第2主成分 Component 2 第3主成分 Component 3
铃长 Boll length 0.175 0.021 -0.005
铃直径 Boll diameter 0.283 -0.028 -0.017
铃长宽比 Aspect ratio -0.058 0.042 0.009
铃表面积 Boll surface area 0.276 -0.021 -0.009
铃体积 Boll volume 0.276 -0.021 -0.009
单铃重 Boll weight 0.026 0.07 0.045
单铃纤维重 Fiber weight -0.003 0.081 -0.001
单铃棉籽重 Seed weight 0.043 0.047 0.069
衣分 Lint percentage -0.045 0.046 -0.068
铃壳重 Bur weight 0.042 -0.018 0.348
比壳重 Bur mass per area -0.098 -0.003 0.350
铃壳率 Bur rate 0.022 -0.080 0.363
纤维长度 Upper half mean length -0.035 0.395 -0.044
断裂比强度 Strength -0.021 0.392 -0.031
马克隆值 Micronaire -0.036 -0.249 0.034
油脂含量 Oil content -0.008 -0.202 -0.047
蛋白质含量 Protein content 0.070 -0.079 0.076

Table 4

Principal component of boll phenotypic traits, fiber and kernel quality of G. barbadense"

指标 Index 第1主成分 Component 1 第2主成分 Component 2 第3主成分 Component 3
铃长 Boll length 0.204 -0.012 0.005
铃直径 Boll diameter 0.290 -0.003 0.023
铃长宽比 Aspect ratio -0.051 -0.010 -0.014
铃表面积 Boll surface area 0.299 -0.022 0.023
铃体积 Boll volume 0.299 -0.022 0.023
单铃重 Boll weight -0.021 0.361 -0.057
单铃纤维重 Fiber weight 0.014 0.309 -0.057
单铃棉籽重 Seed weight -0.037 0.342 -0.049
衣分 Lint percentage 0.063 -0.078 -0.002
铃壳重 Bur weight 0.043 0.021 0.335
比壳重 Bur mass per area -0.049 0.024 0.311
铃壳率 Bur rate 0.061 -0.161 0.415
纤维长度 Upper half mean length -0.023 0.010 0.047
断裂比强度 Strength 0.078 -0.159 0.125
马克隆值 Micronaire 0.040 0.003 -0.057
油脂含量 Oil content -0.011 0.044 -0.089
蛋白质含量 Protein content 0.024 0.022 0.028

Fig. 4

Grey correlation analysis of boll phenotypic traits, kernel quality and fiber quality"

Table 5

Correlation between fiber quality and boll morphological characteristics of G. hirsutum and G. barbadense"

指标
Index
长度 Upper half mean length 断裂比强度 Strength 马克隆值 Micronaire
陆地棉
G. hirsutum
海岛棉
G. barbadense
陆地棉
G. hirsutum
海岛棉
G. barbadense
陆地棉
G. hirsutum
海岛棉
G. barbadense
铃长Boll length ns + ns ns ns ns
铃直径Boll diameter ns + + ns ns -
铃体积Boll volume ns + ns ns ns -
单铃纤维重Fiber weight + - + ns + +
单铃棉籽重Seed weight + ns + ns ns ns
衣分Lint percentage + - ns - + +
铃壳重Bur weight + - + + ns +
比壳重Bur mass per area + - + ns ns +
油脂含量Oil content - ns - ns ns +
蛋白质含量Protein content - - - - + +
[1]
MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.

doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[2]
WU M, PEI W F, WEDEGAERTNER T, ZHANG J F, YU J W. Genetics, breeding and genetic engineering to improve cottonseed oil and protein: A review. Frontiers in Plant Science, 2022, 13: 864850.
[3]
United States Department of Agriculture Foreign Agricultural Service. Oilseeds: world markets and trade, 2025.
[4]
HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.
[5]
WANG N, LI Y X, MENG Q Y, CHEN M L, WU M, ZHANG R T, XU Z Y, SUN J, ZHANG X L, NIE X H, YUAN D J, LIN Z X. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. Journal of Advanced Research, 2023, 54: 15-27.
[6]
AVCI U, PATTATHIL S, SINGH B, BROWN V L, HAHN M G, HAIGLER C H. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS ONE, 2013, 8(2): e56315.
[7]
ALAGARSAMY M. Assessing genetic variation in Gossypium barbadense L. germplasm based on fibre characters. Journal of Cotton Research, 2023, 6(1): 15.
[8]
PENG S B, KHUSH G S, VIRK P, TANG Q Y, ZOU Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108(1): 32-38.
[9]
BRUNNER S, WEICHERT H, MEISSLE M, ROMEIS J, WEBER H. Field trials reveal trade-offs between grain size and grain number in wheat ectopically expressing a barley sucrose transporter. Field Crops Research, 2024, 316: 109506.
[10]
陈源, 王永慧, 肖健, 栾娜, 张祥, 陈德华. 高品质陆地棉棉铃发育特点. 作物学报, 2010, 36(8): 1371-1376.
CHEN Y, WANG Y H, XIAO J, LUAN N, ZHANG X, CHEN D H. Boll development characteristics for high-quality upland cotton cultivars. Acta Agronomica Sinica, 2010, 36(8): 1371-1376. (in Chinese)
[11]
AHMAD I, ZHOU G S, ZHU G L, AHMAD Z, SONG X D, JAMAL Y, IBRAHIM M E H, NIMIR N E A. Response of boll development to macronutrients application in different cotton genotypes. Agronomy, 2019, 9(6): 322.
[12]
曹新川, 胡守林, 韩秀锋, 何良荣, 郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系. 作物学报, 2020, 46(2): 300-306.
CAO X C, HU S L, HAN X F, HE L R, GUO W F. Relationship of stage development of cotton bolls with yield and quality in island cotton. Acta Agronomica Sinica, 2020, 46(2): 300-306. (in Chinese)
[13]
CHEN Y, LI Y B, ZHOU M Y, RUI Q Z, CAI Z Z, ZHANG X, CHEN Y, CHEN D H. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Frontiers in Plant Science, 2018, 9: 51.

doi: 10.3389/fpls.2018.00051 pmid: 29441082
[14]
赵新华, 王友华, 束红梅, 周治国. 棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响. 中国农业科学, 2010, 43(22): 4605-4613. doi: 10.3864/j.issn.0578-1752.2010.22.007.
ZHAO X H, WANG Y H, SHU H M, ZHOU Z G. Effect of plant physiological age on biomass and nitrogen accumulation in cotton boll. Scientia Agricultura Sinica, 2010, 43(22): 4605-4613. doi: 10.3864/j. issn.0578-1752.2010.22.007. (in Chinese)
[15]
GAO H Y, LI N N, LI J H, KHAN A, AHMAD I, WANG Y Y, WANG F Y, LUO H H. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems. Industrial Crops and Products, 2021, 161: 113214.
[16]
HU Y Y, ZHANG Y L, LUO H H, LI W, OGUCHI R, FAN D Y, CHOW W S, ZHANG W F. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235(2): 325-336.
[17]
占东霞, 张超, 张亚黎, 罗宏海, 勾玲, 张旺锋. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献. 作物学报, 2015, 41(12): 1880-1887.

doi: 10.3724/SP.J.1006.2015.01880
ZHAN D X, ZHANG C, ZHANG Y L, LUO H H, GOU L, ZHANG W F. Photosynthetic characteristics after flowering and contribution of non-leaf green organs of cotton to yield under mulching-drip irrigation with water deficiency. Acta Agronomica Sinica, 2015, 41(12): 1880-1887. (in Chinese)
[18]
ZHANG Q P, LUO D, SUN Y Y, LI P S, XIANG D, ZHANG Y L, YANG M F, GOU L, TIAN J S, ZHANG W F. Cotton harvest aids promote the translocation of bur-stored photoassimilates to enhance single boll weight. Industrial Crops and Products, 2023, 195: 116375.
[19]
RUAN Y L. Boosting seed development as a new strategy to increase cotton fiber yield and quality. Journal of Integrative Plant Biology, 2013, 55(7): 572-575.
[20]
KIM H J, TRIPLETT B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology, 2001, 127(4): 1361-1366.
[21]
TANG F Y, WANG T, ZHU J M. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Research, 2014, 164: 98-106.
[22]
SUN L Y, WANG Z, XIONG C, GU J J, ZHENG Y F, JU F Y, WANG S S, HU W, ZHAO W Q, ZHOU Z G, CHEN B L. Improving the soil K+/Na+ ratio under moderate salt stress synergistically increases the yield and quality of cotton fiber and cottonseed. Industrial Crops and Products, 2024, 213: 118441.
[23]
祝令晓, 刘连涛, 张永江, 孙红春, 张科, 白志英, 董合忠, 李存东. 化学封顶对棉花株型的调控及评价指标筛选. 中国农业科学, 2020, 53(20): 4152-4163. doi: 10.3864/j.issn.0578-1752.2020.20.005.
ZHU L X, LIU L T, ZHANG Y J, SUN H C, ZHANG K, BAI Z Y, DONG H Z, LI C D. The regulation and evaluation indexes screening of chemical topping on cotton’s plant architecture. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163. doi: 10.3864/j.issn.0578-1752.2020.20.005. (in Chinese)
[24]
刘建平, 梅拥军, 张利莉, 胡守林, 郭伟锋, 熊仁次. 零式果枝海岛棉铃部性状和纤维品质的遗传及相关分析. 作物学报, 2005, 31(8): 1069-1073.
LIU J P, MEI Y J, ZHANG L L, HU S L, GUO W F, XIONG R C. Analyses of heredity and correlation between boll traits and fiber quality traits in “ 0 ” plant type island cotton. Acta Agronomica Sinica, 2005, 31(8): 1069-1073. (in Chinese)
[25]
TANG F Y, XIAO W J. Genetic association of within-boll yield components and boll morphological traits with fibre properties in upland cotton (Gossypium hirsutum L.). Plant Breeding, 2014, 133(4): 521-529.
[26]
谢志霞, 李存东, 孙红春, 朱继杰. 不同铃重类型棉花品种的源库特性与产量形成. 棉花学报, 2007, 19(3): 189-193.
XIE Z X, LI C D, SUN H C, ZHU J J. Relationship between yield formation and source-sink of cotton cultivars with different boll weight. Cotton Science, 2007, 19(3): 189-193. (in Chinese)
[27]
田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定. 作物学报, 2020, 46(9): 1388-1397.

doi: 10.3724/SP.J.1006.2020.94196
TIAN J S, ZHANG X Y, WANG W M, YANG Y L, SUI L L, ZHANG P P, ZHANG Y L, ZHANG W F, GOU L. A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton. Acta Agronomica Sinica, 2020, 46(9): 1388-1397. (in Chinese)
[28]
杜明伟, 罗宏海, 张亚黎, 姚炎帝, 张旺锋, 夏东利, 马丽, 朱波. 新疆超高产杂交棉的光合生产特征研究. 中国农业科学, 2009, 42(6): 1952-1962. doi: 10.3864/j.issn.0578-1752.2009.06.010.
DU M W, LUO H H, ZHANG Y L, YAO Y D, ZHANG W F, XIA D L, MA L, ZHU B. Photosynthesis characteristics of super-high-yield hybrid cotton in Xinjiang. Scientia Agricultura Sinica, 2009, 42(6): 1952-1962. doi: 10.3864/j.issn.0578-1752.2009.06.010. (in Chinese)
[29]
PETTIGREW W T. Source-to-sink manipulation effects on cotton lint yield and yield components. Agronomy Journal, 1994, 86(4): 731-735.
[30]
ZOU J, HU W, LOKA D A, SNIDER J L, ZHU H H, LI Y X, HE J Q, WANG Y H, ZHOU Z G. Carbon assimilation and distribution in cotton photosynthetic organs is a limiting factor affecting boll weight formation under drought. Frontiers in Plant Science, 2022, 13: 1001940.
[31]
LUO H H, CHEN G, SHAO D Y, GAO X, YUAN C K, PENG J J, TANG F Y. Genotypic differences in sucrose metabolism with cotton bolls in relation to lint percentage. Field Crops Research, 2019, 236: 33-41.
[32]
PETTIGREW W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Science, 2001, 41(4): 1108-1113.
[33]
ZHANG M L, SONG X L, JI H, WANG Z L, SUN X Z. Carbon partitioning in the boll plays an important role in fiber quality in colored cotton. Cellulose, 2017, 24(2): 1087-1097.
[34]
RUAN Y L. Recent advances in understanding cotton fibre and seed development. Seed Science Research, 2005, 15(4): 269-280.
[35]
LEISNER C P, YENDREK C R, AINSWORTH E A. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biology, 2017, 17(1): 242.
[36]
ZHU H H, HU W, LI Y X, ZOU J, HE J Q, WANG Y H, MENG Y L, CHEN B L, ZHAO W Q, WANG S S, ZHOU Z G. Drought decreases cotton fiber strength by altering sucrose flow route. Journal of Experimental Botany, 2024, 75(11): 3579-3595.
[37]
CHEN G, LUO H H, GAO X, YUAN C K, PENG J J, TANG F Y. Effects of late planting on fiber quality and within-boll yield components as mediated by sucrose metabolism in cotton bolls. Archives of Agronomy and Soil Science, 2020, 66(10): 1319-133
[38]
赵新华, 束红梅, 王友华, 陈兵林, 周治国. 播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系. 作物学报, 2010, 36(10): 1707-1714.

doi: 10.3724/SP.J.1006.2010.01707
ZHAO X H, SHU H M, WANG Y H, CHEN B L, ZHOU Z G. Effects of sowing date on accumulation and distribution of biomass and nitrogen in cotton bolls. Acta Agronomica Sinica, 2010, 36(10): 1707-1714. (in Chinese)
[39]
HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.
[40]
CLEMENT J D, CONSTABLE G A, LIU S M. Increasing cotton seed fibre density as a breeding strategy to improve fibre fineness. Field Crops Research, 2014, 160: 81-89.
[41]
HAN L B, LI Y B, WANG H Y, WU X M, LI C L, LUO M, WU S J, KONG Z S, PEI Y, JIAO G L, XIA G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 2013, 25(11): 4421-4438.
[42]
CAMPBELL B T, CHAPMAN K D, STURTEVANT D, KENNEDY C, HORN P, CHEE P W, LUBBERS E, MEREDITH W R Jr, JOHNSON J, FRASER D, JONES D C. Genetic analysis of cottonseed protein and oil in a diverse cotton germplasm. Crop Science, 2016, 56(5): 2457-2464.
[43]
HU Y, HAN Z G, SHEN W J, JIA Y H, HE L, SI Z F, WANG Q, FANG L, DU X M, ZHANG T Z. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis. Plant Journal, 2022, 112(3): 800-811.
[44]
CHAPMAN K D, NEOGI P B, HAKE K D, STAWSKA A A, SPEED T R, COTTER M Q, GARRETT D C, KERBY T, RICHARDSON C D, AYRE B G, GHOSH S, KINNEY A J. Reduced oil accumulation in cottonseeds transformed with aBrassicaNonfunctional allele of a delta-12 fatty acid desaturase (FAD2). Crop Science, 2008, 48(4): 1470-1481.
[45]
DAI Y J, CHEN B L, MENG Y L, ZHAO W Q, ZHOU Z G, OOSTERHUIS D M, WANG Y H. Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Functional Plant Biology, 2015, 42(9): 909-919.

doi: 10.1071/FP14361 pmid: 32480733
[46]
CHU Q Q, FU X X, ZHAO J, LI Y X, LIU L N, ZHANG L Q, ZHANG Y J, GUO Y F, PEI Y, ZHANG M. Simultaneous improvement of fiber yield and quality in upland cotton (Gossypium hirsutum L.) by integration of auxin transport and synthesis. Molecular Breeding, 2024, 44(10): 64.
[1] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[2] WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui. Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton [J]. Scientia Agricultura Sinica, 2025, 58(8): 1479-1493.
[3] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[4] ZHAO YuXuan, MIAO JiYuan, HU Wei, ZHOU ZhiGuo. Effects of Low Temperature at Seedling Stage on Cotton Floral Bud Differentiation and Cotton Plant Yield [J]. Scientia Agricultura Sinica, 2025, 58(7): 1311-1320.
[5] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[6] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[7] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[8] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[9] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[10] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[11] WU LiDong, LIN ShuTing, QIU YinHui, LIU YaTing, ZHANG Rui, LI YongQing, SHANG Wei, ZHONG LiuQing. Variation of Different Drying Methods on the Quality of Capsicum annuum L. [J]. Scientia Agricultura Sinica, 2025, 58(3): 582-599.
[12] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[13] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[14] XU JiaXin, HUA Nan, WANG YongQiang, XU Hao, LIU Zhen, ZHAO XiaoRui, LI Yue, CHEN QiWei, YE Lin. Response Surface Methodology Optimization of Water, Fertilizer, and Pesticide Coupling on Chili Pepper Growth, Photosynthetic Characteristics, and Root Rot [J]. Scientia Agricultura Sinica, 2025, 58(14): 2869-2884.
[15] LIANG Na, WANG JiangTao, WANG YingChao, ZHENG Bin, WANG XiaoXiao, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Effects of Co-Ridge Planting on the Distribution Characteristics of Soil Available Phosphorus and the Absorption and Utilization of Phosphorus by Crops in Maize||Peanut [J]. Scientia Agricultura Sinica, 2025, 58(13): 2564-2577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!