Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1779-1790.doi: 10.3864/j.issn.0578-1752.2025.09.008

• PLANT PROTECTION • Previous Articles     Next Articles

Antibacterial Activity of Polyhexamethylene Guanidine Against Xanthomonas citri pv. citri

LIU Jie1,2(), HOU Rui1, ZHOU ZeHua1,2, YI TuYong1,2()   

  1. 1 College of Plant Protection, Hunan Agricultural University, Changsha 410128
    2 Hunan Provincial Key Laboratory for Biology and Control of Plant Pests and Diseases, Changsha 410128
  • Received:2025-01-20 Accepted:2025-03-09 Online:2025-05-01 Published:2025-05-08
  • Contact: YI TuYong

Abstract:

【Objective】 The objective of this study is to clarify the in vitro antibacterial activity of polyhexamethylene guanidine (PHMG) against Xanthomonas citri pv. citri (Xcc), a major agricultural pathogenic bacterium that causes citrus canker, and to evaluate the field control effect of PHMG on citrus canker.【Method】 When determining the in vitro antibacterial activity, the turbidity method was used to monitor the changes in the turbidity of the bacterial solution, so as to quantify the inhibitory degree of PHMG on the growth of Xcc. By inoculating the leaves to simulate the infection of citrus leaves by Xcc, whether PHMG could block the invasion of Xcc was observed and whether it had the effect of preventing and treating citrus canker was explored. The field experiment was carried out when the autumn new shoots were about to sprout, in an environment that was closest to the actual production problems, to test the actual effect of PHMG in preventing and treating citrus canker. Microscopic observation instruments such as scanning electron microscopy and fluorescence microscopy were used to show the surface and morphological changes of Xcc after the action of PHMG; PI staining was used to visualize the process of cell apoptosis; the crystal violet staining experiment was used to reveal the formation of biofilms of Xcc. Through these experiments, the effects of PHMG on the cells of Xcc were explored.【Result】 PHMG showed broad-spectrum antibacterial properties and had good in vitro inhibitory effects on five plant pathogenic bacteria, including Xcc. The EC50 values were approximately 0.5 μg·mL-1, indicating that a low concentration of PHMG could inhibit the growth of pathogenic bacteria. The EC50 values of PHMG against 51 strains of Xcc ranged from 0.19 to 0.69 μg·mL-1, and the in vitro antibacterial activity was relatively stable and reliable. The results of leaf inoculation showed that PHMG could protect citrus leaves from Xcc and had a therapeutic effect. The results of field trials showed that spraying PHMG (0.5 mg·mL-1) had a control effect of about 60% on citrus canker, which was slightly lower than that of the control fungicides, kasugamycin-thiodiazole-copper and kasugamycin-oxine-copper. Furthermore, PHMG not only caused depressions on the surface of Xcc and abnormal cell size, but also promoted the apoptosis of Xcc, inhibited the formation of cell biofilm, and reduced the motility of Xcc.【Conclusion】 PHMG has excellent in vitro antibacterial activity against Xcc, and can effectively reduce the occurrence of citrus canker in the field in practical applications. In addition, PHMG affected the cell morphology, cell apoptosis, biofilm formation and motility of Xcc. The results of this study will provide important theoretical guidance for the subsequent application of PHMG for citrus canker and its expansion to other bacterial diseases.

Key words: citrus canker, Xanthomonas citri pv. citri (Xcc), polyhexamethylene guanidine (PHMG), antibacterial activity, field control effect

Table 1

Inhibitory effects of PHMG against plant pathogenic bacteria (fungi)"

病原菌
Pathogen
回归方程
Regression equation (y=)
相关系数
r
EC50
(μg·mL-1)
MIC
(μg·mL-1)
MBC
(μg·mL-1)
柑橘溃疡病菌Xcc 6.08+5.81x 0.99 0.48 1.00 8.00
野油菜黄单胞菌X. campestris 6.87+6.44x 0.98 0.51 1.00 16.00
水稻黄单胞菌稻致病变种X. oryzae pv. oryzicola 10.94+6.42x 0.95 0.47 1.00 8.00
丁香假单胞菌猕猴桃致病变种P. syringae pv. actinidiae 7.17+7.35x 0.95 0.51 1.00 8.00
青枯雷尔氏菌R. solanacearum 4.15+4.58x 0.98 1.54 3.00 35.00
链格孢A. alternata 3.52+1.77x 0.95 6.89
玉米小斑病菌B. maydis 3.60+1.30x 0.97 12.13
稻瘟病菌M. oryzae 4.06+1.33x 0.98 5.08
柑橘间座壳菌D. citri 3.91+1.22x 0.98 7.86

Fig. 1

The in vitro inhibitory effect of PHMG against Xcc"

Fig. 2

The effect of PHMG on pathogenicity of Xcc in laboratory Data are mean±SE in the figure, different lowercases on the bars indicate significant differences among different treatments (P<0.05). The same as below"

Table 2

Field control effect of PHMG and other agents against citrus canker"

处理
Treatment
相对防治效果
Relative control effect (%)
1 mg·mL-1 PHMG 74.72±1.12a
0.5 mg·mL-1 PHMG 61.86±2.26b
0.25 mg·mL-1 PHMG 54.35±1.10c
0.5 mg·mL-1春雷-噻菌铜
Kasugamycin-thiodiazole-copper
72.94±2.72a
0.5 mg·mL-1春雷-喹啉铜
Kasugamycin-oxine-copper
74.84±1.89a

Fig. 3

Effect of PHMG treatment on cell morphology of Xcc"

Fig. 4

Effect of PHMG treatment on apoptosis of Xcc (scale bar=100 μm)"

Fig. 5

Effects of PHMG on biofilm formation and motility of Xcc"

[1]
郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘. 果树学报, 2019, 36(10): 1264-1272.
GUO W W, YE J L, DENG X X. Fruit scientific research in New China in the past 70 years: Citrus. Journal of Fruit Science, 2019, 36(10): 1264-1272. (in Chinese)
[2]
LIU Y, HEYING E, TANUMIHARDJO S A. History, global distribution, and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(6): 530-545.
[3]
王兆昊, 郭兴茹, 张乐欢, 何永睿, 陈善春, 姚利晓. csi-miR399响应柑橘溃疡病菌侵染的表达模式及其抗病性分析. 中国农业科学, 2023, 56(8): 1484-1493. doi: 10.3864/j.issn.0578-1752.2023.08.005.
WANG Z H, GUO X R, ZHANG L H, HE Y R, CHEN S C, YAO L X. Expression pattern of csi-miR399 in response to Xanthomonas citri subsp. citri infection and its disease resistance analysis. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493. doi: 10.3864/j.issn.0578-1752.2023.08.005. (in Chinese)
[4]
黄光耀, 蒙麒元, 林林, 玉新爱. 几种药剂对柑橘溃疡病的田间防治效果. 广西植保, 2024, 37(1): 7-9.
HUANG G Y, MENG Q Y, LIN L, YU X A. Field control effect of several chemicals on citrus canker disease. Guangxi Plant Protection, 2024, 37(1): 7-9. (in Chinese)
[5]
张戈壁, 张素英. 常见几种铜制剂对沃柑溃疡病的药效对比. 南方园艺, 2023, 34(6): 29-33.
ZHANG G B, ZHANG S Y. Comparison of the efficacy of several common copper preparations against canker disease of Waukgan. Southern Horticulture, 2023, 34(6): 29-33. (in Chinese)
[6]
王志静, 吴黎明, 宋放, 何利刚, 王策, 蒋迎春. 柑橘溃疡病发生规律及综合防治技术. 湖北农业科学, 2020, 59(24): 122-123, 127.
WANG Z J, WU L M, SONG F, HE L G, WANG C, JIANG Y C. Occurrence regularity and integrated control technology of citrus canker. Hubei Agricultural Sciences, 2020, 59(24): 122-123, 127. (in Chinese)
[7]
SHAHBAZ E, ALI M, SHAFIQ M, ATIQ M, HUSSAIN M, BALAL R M, SARKHOSH A, ALFEREZ F, SADIQ S, SHAHID M A. Citrus canker pathogen, its mechanism of infection, eradication, and impacts. Plants, 2023, 12(1): 123.
[8]
杨正丽, 洪新宇. 聚六亚甲基胍毒性研究进展. 环境与职业医学, 2022, 39(1): 99-104.
YANG Z L, HONG X Y. Research progress on the toxicity of polyhexamethylene guanidine. Journal of Environmental and Occupational Medicine, 2022, 39(1): 99-104. (in Chinese)
[9]
侯德昌. 聚六亚甲基胍对中华绒螯蟹幼蟹的毒性效应和杀菌效果研究[D]. 扬州: 扬州大学, 2023.
HOU D C. Study on toxicity and germicidal effect of polyhexamethylene guanidine on Eriocheir sinensis[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[10]
PENG J, LIU P, PENG W, SUN J, DONG X H, MA Z Z, GAN D L, LIU P S, SHEN J. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. Journal of Hazardous Materials, 2021, 411: 125110.
[11]
WANG W Y, YIM S L, WONG C H, KAN C W. Study on the development of antiviral spandex fabric coated with poly (hexamethylene biguanide) hydrochloride (PHMB). Polymers, 2021, 13(13): 2122.
[12]
BRZEZINSKA M S, WALCZAK M, BURKOWSKA-BUT A, CHYLIŃSKA M, KALWASIŃSKA A, ŚWIĄTCZAK J. Antifungal activity of polyhexamethyleneguanidine derivatives introduced into biodegradable polymers. Journal of Polymers and the Environment, 2019, 27: 1760-1769.
[13]
潘夏艳. 水稻白叶枯病菌和水稻细菌性条斑病菌对申嗪霉素敏感性调控机制研究[D]. 南京: 南京农业大学, 2018.
PAN X Y. Sensitivity regulation mechanism of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to phenazine-1- carboxylic acid[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[14]
王海强, 周俞辛, 王景元, 刘西莉. 水稻稻瘟病菌不同发育阶段对7种QoI类杀菌剂的敏感性. 农药学学报, 2009, 11(4): 434-440.
WANG H Q, ZHOU Y X, WANG J Y, LIU X L. Sensitivity of Magnapothe grisea at different development stages to seven QoI fungicides. Chinese Journal of Pesticide Science, 2009, 11(4): 434-440. (in Chinese)
[15]
LIU S M, FU L Y, HAI F, JIANG J, CHE Z, TIAN Y, CHEN G Q. Sensitivity to boscalid in field isolates of Sclerotinia sclerotiorum from rapeseed in Henan Province, China. Journal of Phytopathology, 2018, 166(4): 227-232.
[16]
周明国. 杀菌剂毒力及其生物测定. 农药学学报, 2022, 24(5): 904-920.
ZHOU M G. Fungicide toxicity and its bioassy. Chinese Journal of Pesticide Science, 2022, 24(5): 904-920. (in Chinese)
[17]
杨玉文, 刘德华, 王成梁, 孟永红, 关巍, 赵廷昌. 瓜类细菌性果斑病拮抗菌ZY1的鉴定及其生物学特性. 中国生物防治学报, 2024, 40(6): 1430-1438.

doi: 10.16409/j.cnki.2095-039x.2024.02.064
YANG Y W, LIU D H, WANG C L, MENG Y H, GUAN W, ZHAO T C. Identification and biological characteristics of Bacillus velezensis ZY1 against bacterial fruit blotch. Chinese Journal of Biological Control, 2024, 40(6): 1430-1438. (in Chinese)
[18]
杨枫, 陈传武, 范七君, 石春梅, 谢宗周, 郭大勇, 刘继红. 温度和多胺对柑橘溃疡病发生的影响及作用机制. 中国农业科学, 2018, 51(10): 1899-1907. doi: 10.3864/j.issn.0578-1752.2018.10.009.
YANG F, CHEN C W, FAN Q J, SHI C M, XIE Z Z, GUO D Y, LIU J H. Influence of temperature and polyamines on occurrence of citrus canker disease and underlying mechanisms. Scientia Agricultura Sinica, 2018, 51(10): 1899-1907. doi: 10.3864/j.issn.0578-1752.2018.10.009. (in Chinese)
[19]
向世林, 田家顺, 王昆. 7种杀菌剂防治柑橘溃疡病的田间药效试验. 湖南农业科学, 2023(8): 54-57.
XIANG S L, TIAN J S, WANG K. Field efficacy test of seven bactericides against citrus canker. Hunan Agricultural Sciences, 2023(8): 54-57. (in Chinese)
[20]
CROWLEY L C, SCOTT A P, MARFELL B J, BOUGHABA J A, CHOJNOWSKI G, WATERHOUSE N J. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harbor Protocols, 2016, 2016(7): pdb.prot087163.
[21]
REN D, MADSEN J S, DE LA CRUZ-PERERA C I, BERGMARK L, SORENSEN S J, BURMOLLE M. High-throughput screening of multispecies biofilm formation and quantitative PCR-based assessment of individual species proportions, useful for exploring interspecific bacterial interactions. Microbial Ecology, 2014, 68(1): 146-154.

doi: 10.1007/s00248-013-0315-z pmid: 24337804
[22]
马嘉冰, 杨明明, 赵颖嘉, 谭云晓, 常邦帅, 王娜娜, 黄丽丽. 猕猴桃溃疡病菌中PilZ结构域类蛋白在致病力和运动性上的功能研究. 植物病理学报, 2024, 54(4): 756-768.

doi: 10.13926/j.cnki.apps.000882
MA J B, YANG M M, ZHAO Y J, TAN Y X, CHANG B S, WANG N N, HUANG L L. Identification and characterization of PilZ domain- containing proteins in pathogenicity and motility of Pseudomonas syringae pv. actinidiae. Acta Phytopathologica Sinica, 2024, 54(4): 756-768. (in Chinese)
[23]
陈苗苗, 陈列忠. 植物细菌性病害及其防治措施. 浙江农业科学, 2022, 63(8): 1798-1804, 1808.

doi: 10.16178/j.issn.0528-9017.20220517
CHEN M M, CHEN L Z. Study on plant bacterial diseases and its prevention and control measures. Journal of Zhejiang Agricultural Sciences, 2022, 63(8): 1798-1804, 1808. (in Chinese)
[24]
陈胜男, 王洪洋. 马铃薯主要细菌性病害及防治方法研究进展. 中国马铃薯, 2023, 37(5): 452-459.
CHEN S N, WANG H Y. Research progress in main potato bacterial diseases and their control methods. Chinese Potato Journal, 2023, 37(5): 452-459. (in Chinese)
[25]
刘文德, 代玉立, 邵小龙, 张昊, 陈华民, 靳怀冰, 刘文文, 彭焕, 张丹丹, 李智强, 钱国良, 刘太国, 陈捷胤. 我国主要农作物病害灾变机制与综合防控研究进展: 2018年-2022年. 植物保护, 2023, 49(5): 1-31.
LIU W D, DAI Y L, SHAO X L, ZHANG H, CHEN H M, JIN H B, LIU W W, PENG H, ZHANG D D, LI Z Q, QIANG G L, LIU T G, CHEN J Y. Research progresses on the disaster mechanism and integrated management of major crop diseases in China: 2018-2022. Plant Protection, 2023, 49(5): 1-31. (in Chinese)
[26]
YOUNG M, OZCAN A, MYERS M E, JOHNSOM E G, GRAHAM J H, SANTRA S. Multimodal generally recognized as safe ZnO/ nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. Journal of Agricultural and Food Chemistry, 2018, 66: 6604-6608.
[27]
BEHLAU F, CANTEROS B I, MINSAVAGE G V, JONES J B, GRAHAM J H. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 2011, 77: 4089-4096.
[28]
BEHLAU F, HONG J C, JONES J B, GRAHAM J H. Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology, 2013, 103: 409-418.

doi: 10.1094/PHYTO-06-12-0134-R pmid: 23252970
[29]
WEI Q Y, LIN Q H, ZHANG Z Z, WU L L, ZHANG C C. Construction of a stable and superhydrophilic PHMG/TA/Fe(III) composite coating-modified membrane for oil-water separation. Materials Research Bulletin, 2023, 157: 112023.
[30]
OULE M K, AZINWI R, BERNIER A M, KABLAN T, MAUPERTUIS A M, MAULER S, NEVRY R K, DEMBELE K, FORBES L, DIOP L. Polyhexamethylene guanidine hydrochloride- based disinfectant: A novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. Journal of Medical Microbiology, 2008, 57: 1523-1528.
[31]
SOWLATI-HASHJIN S, CARBONE P, KARTTUNEN M. Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A molecular dynamics study. The Journal of Physical Chemistry B, 2020, 124: 4487-4497.
[32]
CHINDERA K, MAHATO M, SHARMA A K, HORSLEY H, KLOC- MUNIAK K, KAMARUZZAMAN N F, KUMAR S, MCFARLANE A, STACH J, BENTIN T, GOOD L. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific Reports, 2016, 6: 23121.

doi: 10.1038/srep23121 pmid: 26996206
[33]
刘仁, 李德全, 何月娥, 安兰州. 聚六亚甲基胍杀菌洗涤剂复配研究. 山东化工, 2021, 50(9): 25-27.
LIU R, LI D Q, HE Y E, AN L Z. Study on the compounding of PHMG germicidal detergent. Shandong Chemical Industry, 2021, 50(9): 25-27. (in Chinese)
[34]
赵亮, 邹益东, 胡鲲, 杨先乐, 黄保华. 聚六亚甲基胍对异育银鲫鳃出血病药效的初步研究. 淡水渔业, 2017, 47(2): 96-100.
ZHAO L, ZOU Y D, HU K, YANG X L, HUANG B H. A pilot study of the effect of polyhexamethylene guanide on Carassius auratus gibelio hematopoietic necrosis. Freshwater Fisheries, 2017, 47(2): 96-100. (in Chinese)
[35]
中国科学院华南植物园: 柑橘保鲜技术获美国专利. 中国食品学报, 2016, 16(1): 25.
South China Botanical Garden of Chinese Academy of Sciences: Citrus preservation technology was patented in the United States. Journal of Chinese Institute of Food Science and Technology, 2016, 16(1): 25. (in Chinese)
[36]
BALLANTYNE B, MYERS R C, BLASZCAK D L. Influence of alkalinization of glutaraldehyde biocidal solutions on acute toxicity, primary irritancy, and skin sensitization. Veterinary and Human Toxicology, 1997, 39(6): 340-346.

pmid: 9397502
[37]
黄奇然. 聚六亚甲基胍的合成与应用研究[D]. 广州: 华南理工大学, 2010.
HUANG Q R. Synthesis and application research of polyhexamethylene guanidine[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)
[38]
李双双, 潘忠成, 张心心, 潘子瑜, 郑鹏飞, 李金峰. 中生菌素及其复配对柑桔溃疡病菌室内活性试验研究. 四川农业科技, 2023(4): 63-66.
LI S S, PAN Z C, ZHANG X X, PAN Z Y, ZHENG P F, LI J F. Study on the activity of zhongshengmycin and its compound against citrus bacterial canker in laboratory. Sichuan Agricultural Science and Technology, 2023(4): 63-66. (in Chinese)
[39]
宋晓兵, 彭埃天, 崔一平, 陈霞, 程保平, 凌金锋. 6种杀菌剂对柑橘溃疡病的室内毒力测定及田间防治效果评价. 中国热带农业, 2020(2): 26-30.
SONG X B, PENG A T, CUI Y P, CHEN X, CHENG B P, LING J F. Toxicity determination and field control effect of six fungicides against citrus canker disease. China Tropical Agriculture, 2020(2): 26-30. (in Chinese)
[1] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[2] YAN PeiHan, LUO JianMing, HAO ChenXing, SUN ZiQing, YE RongChun, LI Yi, LIU Lian, SHENG Ling, MA XianFeng, DENG ZiNiu. Identification of the Transcription Factor WRKY75 of CmPR4A in Citron C-05 and Its Function Analysis in Resistance to Citrus Canker Disease [J]. Scientia Agricultura Sinica, 2023, 56(21): 4304-4317.
[3] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[4] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[5] ZOU XiuPing,LONG JunHong,PENG AiHong,CHEN Min,LONG Qin,CHEN ShanChun. Overexpression of CsGH3.6 Enhanced Resistance to Citrus Canker Disease by Inhibiting Auxin Signaling Transduction [J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818.
[6] JIA RuiRui, ZHOU PengFei, BAI XiaoJing, CHEN ShanChun, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, CHEN Min, HE YongRui, LI Qiang. Gene Cloning and Expression Analysis of Canker-Related Transcription Factor CsBZIP40 in Citrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2488-2497.
[7] ZHANG Ke-Xin, ZHANG Ming-Yue, XIN Sheng-Nan, HAN Zong-Xi, SHAO Yu-Hao, LIU Sheng-Wang, MA De-Ying. Isolation, Characterization and Mechanism of Anti-viral Activity of Duck Avian Beta-defensin 16 [J]. Scientia Agricultura Sinica, 2012, 45(18): 3873-3882.
[8] GUO Na, XIAO Xiang-Hong, XU Yi-Gang, CHAI Long-Hui, ZHANG Jing-Yu. Expression, Purification and Antibacterial Activity Analysis of Rana dybowskii Antimicrobial Peptide Dybowskin-1ST [J]. Scientia Agricultura Sinica, 2011, 44(15): 3246-3251.
[9] WU Jian-ming,WANG Chang-fa,HE Hong-bin,HU Gui-xue,YANG Hong-jun,YANG Shao-hua,GAO Yun-dong,ZHONG Ji-feng
. Cloning and Expression of cDNA of Bovine Neutrophil β-defensin12 from Holstein Cow and Its Antibacterial Activity
[J]. Scientia Agricultura Sinica, 2010, 43(2): 396-403 .
[10] . Preparation of Monoclonal Antibody Against PthA-NLS and Construction of the Relative ScFv Gene
[J]. Scientia Agricultura Sinica, 2009, 42(3): 884-890 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!