Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1882-1899.doi: 10.3864/j.issn.0578-1752.2024.10.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Quantification of Row Orientation Effects on Radiation Distribution in Maize-Soybean Intercropping Based on Functional-Structural Plant Model

ZHOU YeYing1(), XIE ZiWen1, ZHONG PeiGe1, LI ShuangWei2(), MA YunTao1   

  1. 1 College of Land Science and Technology, China Agricultural University, Beijing 100193
    2 Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences/Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021
  • Received:2023-11-22 Accepted:2024-03-03 Online:2024-05-16 Published:2024-05-23
  • Contact: LI ShuangWei

Abstract:

【Objective】 The aim of this study was to develop functional-structural models of maize-soybean intercropping with different planting patterns and row orientations, so as to provide the support for analyzing the yield advantages, growth and developmental patterns, and the effects of planting patterns and row orientations on light interception, light distribution, and radiation use efficiency.【Method】 In this study, one year maize-soybean field experiment with two planting patterns (sole crop and 2:2 MS) and three row orientations (North-South orientation, East-West orientation and Control orientation (Lishu original planting orientation: south-west 40)) was conducted to analyze the effects of planting pattern and row orientation on the performance of biomass, yield and plant architecture. The three-dimensional functional-structural plant (FSP) model was used to simulate crop growth, development, structure and light interception in different planting patterns and row orientations, and to quantify the effects of planting patterns and row orientations on light interception and radiation use efficiency. Row orientation with high light interception was also explored using the FSP model.【Result】 The grain yield land equivalent ratio (LER) under 2:2 MS was the highest in NS orientation (1.20±0.07) and the lowest in EW orientation (1.16±0.09). The FSP model well simulated the growth and development of maize and soybean in different planting patterns and row orientations. Compared with the measured values in the maize field experiment and the simulated values, the root mean square error (RMSE) was 0.09-0.14 m for plant height, 0.04-0.08 m2·plant-1 for leaf area per plant and 0.07-0.12 for the fraction of light interception; for soybean, the RMSE was 0.07-0.09 m for plant height, 0.02-0.04 m2·plant-1 for leaf area per plant and 0.09-0.10 for the fraction of light interception. The accumulated light interception for 2:2 MS in Control orientation was the highest, which was (758.48±1.00) MJ·m-2. Compared with the Control orientation, the radiation use efficiency reduced 7.18% for NS orientation and 10.57% for EW orientation.【Conclusion】 Intercropping increased maize biomass and yield, but reduced soybean biomass and yield. Row orientation had a significant effect in maize-soybean intercropping system. Soybean adapted to the shading by changing morphological characteristics, such as leaf size, internode length, and petiole inclination, to increase the amount of light and optimize the photosynthetic efficiency, which was ultimately converted into an increase in yield. The planting row orientation had a great effect on the light interception, the radiation use efficiency and light interception of the intercropping system showed that the control orientation was better than NS orientation and EW orientation. The results of this study would help to optimize field management and provide the data and technical support for explaining the rational interception and distribution for maize-soybean intercropping in different row orientations.

Key words: maize-soybean intercropping, row orientation, functional-structural plant model, plant traits, radiation use efficiency

Fig. 1

The diagram for plots and strips in row orientations (unit: m)"

Table 1

Mean temperature, total precipitation and total PAR during the growing season in 2018"

月份 Month 5月 May 6月 June 7月 July 8月 August 9月 September
月平均温度
Monthly mean temperature (oC)
17.6 22.6 25.9 22.1 15.6
月总降雨量
Monthly total precipitation (mm)
35.8 63.2 138.8 190.0 37.2
光合有效辐射 PAR(MJ·m-2 206.3 206.6 205.2 163.7 154.1

Table 2

Parameters and significance of organ morphological parameterization"

性状
Characteristic
参数
Parameter
含义
Meaning
出叶间隔Leaf-out interval slope (℃d) 连续叶尖出现的热时间Thermal time of emergence of successive leaf tips
玉米、大豆叶长[32-34]
Maize and soybean leaf length
Lm (cm) 器官最终长度的最大值Maximum final length of the organ
b 尺度参数Scale parameter
rm 器官最终长度达到最大值时的节位Node position when the organ's final length reaches its maximum
大豆叶柄长[32-34]
Soybean petiole length
Li,m (cm) 器官最终长度的最大值Maximum final length of the organ
bp 尺度参数Scale parameter
ri,m 器官最终长度达到最大值时的节位Node position when the organ's final length reaches its maximum
玉米、大豆叶宽[33]
Maize and soybean leaf width
a1 线性模型的斜率Slope of the linear model
w0 线性模型的截距Intercept of the linear model
玉米、大豆节间长度[32-34]
Maize and soybean internode length
Im / II,m (cm) 节间最终长度最大值Maximum final length of the internode
r1 / bI 斜率系数Slope coefficient
K1 / rI,m 曲线位于转折点时的节位Node position when the curve is at the inflection point
玉米、大豆节间直径[33,35]
Maize and soybean internode diameter
Dm (mm) 植株基部节间直径的最大值Maximum diameter of the plant base internode
k2 斜率系数Slope coefficient
r2 曲线位于转折点时的节位Node position when the curve is at the inflection point
玉米、大豆倾角[33]
Maize and soybean declination angle
a2 (o) a2+c为r=0时的叶倾角Leaf tilt angle when r = 0, expressed as a2 + c
b2 水平范围Horizontal range
c 当r逐渐变大时的渐近线Asymptote as r increases

Table 3

The list of fitted parameter values for maize organ length/width in different planting patterns and row orientations"

参数
Parameter
传统行向 Control orientation 南北行向 NS orientation 东西行向 EW orientation
单作 Sole 间作Intercropping 单作Sole 间作Intercropping 单作Sole 间作Intercropping
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
slope (℃d) 50.10 1.10 50.10 1.10 50.10 1.1 50.10 1.10 50.10 1.10 50.10 1.10
Lm (cm) 94.74 0.92 94.74 0.92 94.74 0.92 94.74 0.92 94.74 0.92 94.74 0.92
b 5.83 0.09 5.83 0.09 5.83 0.09 5.83 0.09 5.83 0.09 5.83 0.09
rm 11.13 0.14 10.73 0.20 12.67 0.16 12.67 0.16 12.67 0.16 12.67 0.16
a1 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00
w0 0.64 0.06 0.64 0.06 0.64 0.06 0.64 0.06 0.64 0.06 0.64 0.06
Im (cm) 16.20 0.71 14.89 0.56 15.17 0.38 16.04 0.67 14.87 0.55 16.31 0.96
r1 5.09 0.26 4.35 0.45 5.97 0.14 5.98 0.25 5.41 0.20 5.43 0.32
K1 0.67 0.30 0.71 0.30 0.81 0.12 0.54 0.18 0.90 0.28 0.44 0.21
Dm (mm) 24.73 0.54 27.01 0.55 24.62 0.72 27.10 0.55 21.73 0.49 25.30 0.52
r2 13.64 0.27 13.64 0.27 13.64 0.27 13.64 0.27 13.64 0.27 13.64 0.27
K2 0.25 0.01 0.21 0.01 0.24 0.01 0.25 0.01 0.24 0.01 0.26 0.01
a2 (o) 37.85 4.98 37.85 4.98 37.85 4.98 37.85 4.98 37.85 4.98 37.85 4.98
b2 -0.35 0.05 -0.35 0.05 -0.35 0.05 -0.35 0.05 -0.35 0.05 -0.35 0.05
c 18.50 1.17 19.50 1.19 25.31 0.96 20.84 1.18 21.21 1.18 19.71 1.13

Table 4

The list of fitted parameter values for soybean organ length/width in different planting patterns and row orientations"

参数
Parameter
传统行向 Control orientation 南北行向 NS orientation 东西行向 EW orientation
单作 Sole 间作Intercropping 单作Sole 间作Intercropping 单作 Sole 间作Intercropping
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
平均值
Mean
标准误差
SE
slope (℃d) 52.40 1.40 52.40 1.40 52.40 1.40 52.40 1.40 52.40 1.40 52.40 1.40
Lm (cm) 13.64 0.10 13.64 0.10 13.64 0.10 13.64 0.10 13.64 0.10 13.64 0.10
b 9.43 0.32 9.12 0.42 10.15 0.42 11.04 0.43 10.15 0.42 11.04 0.43
rm 14.73 0.21 12.94 0.29 15.41 0.29 14.30 0.28 15.41 0.29 14.30 0.28
a1 0.73 0.04 0.68 0.02 0.73 0.04 0.68 0.02 0.73 0.04 0.68 0.02
w0 0.57 0.47 0.95 0.16 0.57 0.47 0.95 0.16 0.57 0.47 0.95 0.16
Li,m (cm) 35.08 0.43 35.08 0.43 35.08 0.43 35.08 0.43 35.08 0.43 35.08 0.43
bp 7.66 0.23 7.66 0.23 7.66 0.23 7.66 0.23 7.66 0.23 7.66 0.23
ri,m 14.80 0.27 14.04 0.36 15.47 0.34 15.47 0.34 14.95 0.33 14.95 0.33
II,m (cm) 6.58 0.39 10.69 0.81 6.77 0.47 10.15 0.62 6.77 0.47 10.15 0.62
bI 9.17 1.00 6.05 1.10 8.62 1.14 5.85 1.04 8.62 1.14 5.85 1.04
rI,m 15.04 0.75 13.77 0.83 16.99 0.93 15.26 0.80 16.99 0.93 15.26 0.80
Dm (mm) 11.30 2.80 9.19 2.81 15.50 2.77 9.81 2.82 10.54 2.80 12.47 3.05
r2 18.48 4.92 15.86 4.94 15.91 4.90 17.70 4.95 20.76 4.93 15.00 5.22
K2 0.20 0.03 0.20 0.04 0.08 0.02 0.18 0.04 0.17 0.03 0.12 0.03
a2 (o) 134.62 18.87 134.62 18.87 134.62 18.87 134.62 18.87 134.62 18.87 134.62 18.87
b2 -0.86 0.08 -0.86 0.08 -0.86 0.08 -0.86 0.08 -0.86 0.08 -0.86 0.08
c 29.98 0.43 27.91 0.93 29.98 0.43 29.98 0.43 29.98 0.43 29.98 0.43

Table 5

Biomass and grain yield (t·hm-2), and corresponding LERs for maize and soybean in different planting patterns and row orientations"

行向
Orientation
系统
System
生物量
Biomass (t·hm-2) a
生物量 LER
Biomass LER
籽粒产量
Grain yield (t·hm-2) b
籽粒产量 LER
Grain yield LER
玉米
Maize
大豆
Soybean
LERm LERs LER 玉米
Maize
大豆
Soybean
LERm LERs LER
传统
Control
单作Sole 20.4±1.3 14.4±1.5 11.9±0.9 4.2±0.5
间作Intercrop 15.1±0.9 4.5±0.2 0.74±0.05 0.32±0.05 1.06±0.03 9.5±0.2 1.6±0.1 0.81±0.09 0.38±0.02 1.19±0.07
南北
NS
单作Sole 21.8±2.1 13.8±2.1 11.3±1.1 4.5±0.3
间作Intercrop 15.1±1.2 3.2±0.6 0.72±0.13 0.25±0.07 0.97±0.14 9.9±0.2 1.4±0.1 0.89±0.13 0.31±0.01 1.20±0.07
东西
EW
单作Sole 20.3±3.3 11.4±0.9 10.6±1.0 4.2±1.1
间作Intercrop 11.9±0.7 3.2±0.7 0.62±0.10 0.28±0.05 0.89±0.13 7.6±0.4 1.4±0.2 0.78±0.08 0.35±0.07 1.16±0.19
行向Orientation LSD (0.05) 5.8 6.9 2.9 2.2
系统System LSD (0.05) 3.0 2.1 0.35 0.19 0.32 1.8 0.6 0.31 0.14 0.38
行向 Orientation ANOVA NS NS NS NS
系统 System ANOVA *** *** NS NS NS ** *** NS NS NS
行向×系统Orientation×System NS NS NS NS

Fig. 2

Final leaf length for maize and soybean in different planting patterns and row orientations"

Fig. 3

Relationship between leaf length and width for maize and soybean in different planting patterns and row orientations"

Fig. 4

Final petiole length for soybean in different planting patterns and row orientations"

Fig. 5

Final internode length for maize and soybean in different planting patterns and row orientations"

Fig. 6

Final internode diameter for maize and soybean in different planting patterns and row orientations"

Fig. 7

Declination angle for maize leaf and soybean petiole in different planting patterns and row orientations"

Fig. 8

Visual outputs of simulated maize-soybean intercropping plots in 35, 65, 75, and 95 days after emergence"

Fig. 9

Model evaluation of leaf area per plant for maize and soybean in different planting patterns and row orientations"

Fig. 10

Model evaluation of plant height for maize and soybean in different planting patterns and row orientations"

Fig. 11

Model evaluation of fraction of light interception for maize and soybean in different planting patterns and row orientations"

Fig. 12

Light interception for maize and soybean intercropping in different planting row orientations"

Fig. 13

Radiation use efficiency for maize and soybean in different planting row orientations"

Fig. 14

Simulation results for accumulated light interception in maize-soybean intercropping with different row orientations"

[1]
ESKANDARI H, GHANBARI-BONJAR A, GALAVI M, SALARI M. Forage quality of cow pea (Vigna sinensis) intercropped with corn (Zea mays) as affected by nutrient uptake and light interception. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2009, 37(1): 171-174.
[2]
PIERIK R, DE WIT M. Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. Journal of Experimental Botany, 2014, 65(11): 2815-2824.

doi: 10.1093/jxb/ert389 pmid: 24323503
[3]
蔡倩, 孙占祥, 郑家明, 王文斌, 白伟, 冯良山, 杨宁, 向午燕, 张哲, 冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54(5): 909-920. doi: 10.3864/j.issn.0578-1752.2021.05.004.
CAI Q, SUN Z X, ZHENG J M, WANG W B, BAI W, FENG L S, YANG N, XIANG W Y, ZHANG Z, FENG C. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning Province. Scientia Agricultura Sinica, 2021, 54(5): 909-920. doi: 10.3864/j.issn.0578-1752.2021.05.004. (in Chinese)
[4]
武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56(23): 4648-4659. doi: 10.3864/j.issn.0578-1752.2021.05.004.
WU J, CHEN M, WANG Z H, YANG J Z, LI Y L, WU Y S, YANG W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659. doi: 10.3864/j.issn.0578-1752.2021.05.004. (in Chinese)
[5]
YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Research, 2014, 155: 245-253.
[6]
TIAN C, HAN J C, LI J, ZHEN G, LIU Y Y, LU Y J, WANG Y K, WANG Y. Effects of row direction and row spacing on maize leaf senescence. PLoS ONE, 2019, 14(4): e0215330.
[7]
TIMLIN D J, FLEISHER D H, KEMANIAN A R, REDDY V R. Plant density and leaf area index effects on the distribution of light transmittance to the soil surface in maize. Agronomy Journal, 2014, 106(5): 1828-1837.
[8]
WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern corn belt. Agronomy Journal, 2002, 94(5): 1020-1023.
[9]
KAUL K, GREER E C, KASPERBAUER M J, MAHL C. Row orientation affects fruit yield in field-grown okra. Journal of sustainable Agriculture, 2001, 17(2/3): 169-174.
[10]
LIU S Q, GU Y, WANG X B, LI X N, WANG Y. Husk leaf senescence characteristics of spring maize (Zea mays L.) cultivated in two row directions and three plant spacings in Northeast China. Agronomy, 2020, 10(8): 1216.
[11]
YADAV R K, KUMAR S, DAWSON J. Effect of light interception, row orientation, row spacing and weed management on economics of wheat (Triticum aestivum L.). Plant Archives, 2008, 8(1): 389-391.
[12]
BORGER C D, HASHEM A, POWLES S B. Manipulating crop row orientation and crop density to suppress Lolium rigidum. Weed Research, 2016, 56(1): 22-30.
[13]
TSUBO M, WALKER S. Shade effects on Phaseolus vulgaris L. intercropped with Zea mays L. under well-watered conditions. Journal of Agronomy and Crop Science, 2004, 190(3): 168-176.
[14]
ZHU B L, LIU F S, XIE Z W, GUO Y, LI B G, MA Y T. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season. Annals of Botany, 2020, 126(4): 701-712.

doi: 10.1093/aob/mcaa046 pmid: 32179920
[15]
SARLIKIOTI V, DE VISSER P H B, MARCELIS L F M. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Annals of Botany, 2011, 107(5): 875-883.

doi: 10.1093/aob/mcr006 pmid: 21355008
[16]
VAN DER MEER M, DE VISSER P H B, HEUVELINK E, MARCELIS L F M. Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops. In Silico Plants, 2021, 3(2): diab025.
[17]
EVERS J B, VAN DER WERF W, STOMPH T J, BASTIAANS L, ANTEN N P R. Understanding and optimizing species mixtures using functional-structural plant modelling. Journal of Experimental Botany, 2019, 70(9): 2381-2388.

doi: 10.1093/jxb/ery288 pmid: 30165416
[18]
郑邦友, 石利娟, 马韫韬, 邓启云, 李保国, 郭焱. 水稻冠层的田间原位三维数字化及虚拟层切法研究. 中国农业科学, 2009, 042(004): 1181-1189. doi: 10.3864/j.issn.0578-1752.2009.04.008.
ZHENG B Y, SHI L J, MA Y T, DENG Q Y, LI B G, GUO Y. Three-dimensional digitization in situ of rice canopies and virtual stratified-clipping method. Scientia Agricultura Sinica, 2009, 42(4): 1181-1189. doi: 10.3864/j.issn.0578-1752.2009.04.008. (in Chinese)
[19]
BARILLOT R, ESCOBAR-GUTIÉRREZ A J, FOURNIER C, HUYNH P, COMBES D. Assessing the effects of architectural variations on light partitioning within virtual wheat-pea mixtures. Annals of Botany, 2014, 114(4): 725-737.

pmid: 24907314
[20]
ZHU J Q, VAN DER WERF W, ANTEN N P R, VOS J, EVERS J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. The New Phytologist, 2015, 207(4): 1213-1222.
[21]
LI S W, VAN DER WERF W, ZHU J Q, GUO Y, LI B G, MA Y T, EVERS J B. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping. Journal of Experimental Botany, 2021, 72(10): 3630-3646.

doi: 10.1093/jxb/erab077 pmid: 33608704
[22]
MAO L L, ZHANG L Z, EVERS J B, HENKE M, VAN DER WERF W, LIU S D, ZHANG S P, ZHAO X H, WANG B M, LI Z H. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Field Crops Research, 2016, 187: 1-11.
[23]
HEMMERLING R, KNIEMEYER O, LANWERT D, KURTH W, BUCK-SORLIN G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology, 2008, 35(10): 739-750.

doi: 10.1071/FP08052 pmid: 32688828
[24]
RITCHIE J T, NESMITH D S. Temperature and crop development. HANKS J, RITCHIE J T, eds. Agronomy Monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015: 5-29.
[25]
TENORIO F M, SPECHT J E, ARKEBAUER T J, ESKRIDGE K M, GRAEF G L, GRASSINI P. Co-ordination between primordium formation and leaf appearance in soybean (Glycine max) as influenced by temperature. Field Crops Research, 2017, 210: 197-206.
[26]
HUSSEN A. Effect of nitrogen supply and plant density on leaf area, radiation use and biomass accumulation in maize (Zea mays L.). MSc. Thesis, Wageningen Agricultural University, 1995.
[27]
FOURNIER C, DURAND J L, LJUTOVAC S, SCHÄUFELE R, GASTAL F, ANDRIEU B. A functional-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytologist, 2005, 166(3): 881-894.

pmid: 15869649
[28]
李双伟, 朱俊奇, Jochem B.EVERS, Wopke VAN DER WERF, 郭焱, 李保国, 马韫韬. 基于植物功能-结构模型的玉米-大豆条带间作光截获行间差异研究. 智慧农业(中英文), 2022, 4(1):97-109.
LI S W, ZHU J Q, EVERS J, WERF W, GUO Y, LI B G, MA Y T. Estimating the differences of light capture between rows based on functional-structural plant model in simultaneous maize-soybean strip intercropping. Smart Agriculture, 2022, 4(1): 97-109. (in Chinese)
[29]
EVERS J B, VOS J, YIN X, ROMERO P, VAN DER PUTTEN P E L, STRUIK P C. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. Journal of Experimental Botany, 2010, 61(8): 2203-2216.

doi: 10.1093/jxb/erq025 pmid: 20231326
[30]
ZHOU J, WU Y Z, YAN G. Estimation of daily diffuse solar radiation in China. Renewable Energy, 2004, 29(9): 1537-1548.
[31]
KASPERBAUER M J. Far-red light reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiology, 1987, 85(2): 350-354.

doi: 10.1104/pp.85.2.350 pmid: 16665700
[32]
BUCK-SORLIN G. L-system model of the vegetative growth of winter barley. Fifth German workshop on artificial life, 2002: 53-64.
[33]
LI S W, EVERS J B, VAN DER WERF W, WANG R L, XU Z L, GUO Y, LI B G, MA Y T. Plant architectural responses in simultaneous maize/soybean strip intercropping do not lead to a yield advantage. Annals of Applied Biology, 2020, 177(2): 195-210.
[34]
EVERS J B, VOS J, FOURNIER C, ANDRIEU B, CHELLE M, STRUIK P C. Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). The New Phytologist, 2005, 166(3): 801-812.
[35]
GU S H, EVERS J B, ZHANG L Z, MAO L L, ZHANG S P, ZHAO X H, LIU S D, VAN DER WERF W, LI Z H. Modelling the structural response of cotton plants to mepiquat chloride and population density. Annals of Botany, 2014, 114(4): 877-887.

doi: 10.1093/aob/mct309 pmid: 24489020
[36]
IHAKA R, GENTLEMAN R. R: a language for data analysis and graphics. Journal of computational and graphical statistics, 1996, 5(3): 299-314.
[37]
WICKHAM H. ggplot2:Elegant Graphics for Data Analysis. New York, NY: Springer New York, 2009.
[38]
BOLKER B M. Ecological models and data in R. Princeton, NJ: Princeton University Press, 2008.
[39]
NAGASUGA K, UCHIDA S, KAJI H, HAYAKAWA Y, KADOWAKI M, FUKUNAGA A, NOSE S, UMEZAKI T. Water condition controls inclination angles of leaflets and petioles of soybean (Glycine max L.). Environmental Control in Biology, 2013, 51(2): 79-84.
[40]
王庆燕, 叶德练, 张钰石, 李建民, 张明才, 李召虎. 种植行向对玉米茎叶形态建成与产量的调控效应. 作物学报, 2015, 41(9): 1384-1392.
WANG Q Y, YE D L, ZHANG Y S, LI J M, ZHANG M C, LI Z H. Effects of row orientation on leaf and stalk morphogenesis and grain yield in maize. Acta Agronomica Sinica, 2015, 41(9): 1384-1392. (in Chinese)
[41]
LIU X, RAHMAN T, SONG C, SU B Y, YANG F, YONG T W, WU Y S, ZHANG C Y, YANG W Y. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 2017, 200: 38-46.
[42]
WANG Q, SUN Z, BAI W, ZHANG D, ZHANG Y, WANG R, VAN DER WERF W, EVERS J B, STOMPH T J, GUO J. Light perception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.

doi: 10.15302/J-FASE-2021403
[43]
程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Ali RAZA, 张熠, Irshan AHMAD, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
CHENG B, LIN W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
[44]
KARANJA S M S M, KIBE A M, KAROGO P N, MWANGI M. Effects of intercrop population density and row orientation on growth and yields of Sorghum - cowpea cropping systems in semi arid rongai, Kenya. Journal of Agricultural Science, 2014, 6(5): 34-43.
[45]
GAO Y, DUAN A W, QIU X Q, SUN J S, ZHANG J P, LIU H, WANG H Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149-1157.
[46]
ALCORTA M, FIDELIBUS M W, STEENWERTH K L, SHRESTHA A. Effect of vineyard row orientation on growth and phenology of glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis). Weed Science, 2011, 59(1): 55-60.
[47]
KHALID M H B, RAZA M A, YU H Q, SUN F A, ZHANG Y Y, LU F Z, SI L, IQBAL N, KHAN I, FU F L, LI W C. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (glycine max L. merr.). Applied Ecology and Environmental Research, 2019, 17(2): 2551-2569.
[48]
SINGH J, SINGH S P, KINGRA P K. Influence of sowing time and planting geometry on yield and radiation use efficiency of various rapeseed-mustard cultivars. Journal of Agrometeorology, 2018, 20(3): 246-248.
[49]
刘景双, 齐晓宁, 王洋, 宋风斌. 玉米改变垄向和扩大垄距的耕作方法: CN200410011192.2. 2004-11-02.
LIU J S, QI X N, WANG Y, SONG F B. Tillage practices for changing ridge orientation and widening ridge spacing in maize: CN200410011192.2. 2004-11-02. (in Chinese)
[1] REN JunBo, YANG XueLi, CHEN Ping, DU Qing, PENG XiHong, ZHENG BenChuan, YONG TaiWen, YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[2] BAI YanWen,ZHANG HongJun,ZHU YaLi,ZHENG XueHui,YANG Mei,LI CongFeng,ZHANG RenHe. Responses of Canopy Radiation and Nitrogen Distribution, Leaf Senescence and Radiation Use Efficiency on Increased Planting Density of Different Variety Types of Maize [J]. Scientia Agricultura Sinica, 2020, 53(15): 3059-3070.
[3] . A 3D model simulating development and growth of wheat root system and its evaluation [J]. Scientia Agricultura Sinica, 2006, 39(11): 2261-2269 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!