Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (4): 648-655.doi: 10.3864/j.issn.0578-1752.2012.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Spatial Interpolation of Compositional Data Based on Log-Ratio Transformation

 LI  Chun-Xuan, LUO  Yi, BAO  An-Ming, ZHANG  Yan, YANG  Chuan-Jie, CUI  Lin-Lin   

  1. 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,乌鲁木齐 830011
    2.中国科学院地理科学与资源研究所/中国科学院生态系统网络观测与模拟重点实验室,北京 100101
    3.中国科学院研究生院,北京 100049
  • Received:2011-08-17 Online:2012-02-15 Published:2011-11-25

Abstract: 【Objective】Spatial interpolation of compositional data needs to meet the four requirements including non-negativity, constant sum, error minimization and unbiased estimation. Soil texture is one of the compositional data. Taking soil texture data of Manas River oasis in Xinjiang as an example, the paper studied the log-ratio transformation approaches on spatial interpolation of compositional data.【Method】First, soil particles content of the soil samples were transformed by using the additive, centered and isometric log-ratio transformation approaches, respectively, then the ordinary kriging method was employed to perform the spatial interpolation. A zero replacement method was introduced to avoid the log-transformation of zero in soil particle composition.【Result】The constant sum of soil particles conent did not change after zero replacement. The kriging based on log-ratio transformation fulfilled the four requirements of compositional data interpolation while the kriging to soil particles separately did not. The kriging based on isometric log-ratio achieved the best results among the three log-ratio approaches, while no obvious differences were found among these approaches.【Conclusion】Zero replacement avoided the log-transformation of zero on the premise of unchanging the requirement of constant sum. The non-negativity, constant sum, error minimization and unbiased estimation of the four requirements of compositional data interpolation could be satisfied by ordinary kriging based on log-ratio transformation.

Key words: compositional data, spatial interpolation, zero replacement, log-ratio transformation, isometric log-ratio, soil texture

[1]周  蒂. 成分数据的对数比统计方法简介. 地质科技情报, 1988, 7(2): 107-114.

Zhou D. Brief introduction to the log-ratio statistical methods of compositional data. Geological Science and Technology Information, 1988, 7(2): 107-114. (in Chinese)

[2]周  蒂. 地质成分数据统计分析—困难与探索. 地球科学—中国地质大学学报, 1998, 23(2): 147-152.

Zhou D. Geological compositional data analysis: difficulties and solutions. Earth Science — Journal of China University of Geosciences, 1998, 23(2): 147-152. (in Chinese)

[3]De Gruijter J J, Walvoort D J J, van Gaans P F M. Continuous soil maps — a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models. Geoderma, 1997, 77: 169-195.

[4]檀满枝, 陈  杰, 徐方明, 郑海龙, 张学雷. 基于模糊集理论的土壤重金属污染空间预测. 土壤学报, 2006, 43(3): 389-396.

Tan M Z, Chen J, Xu F M, Zheng H L, Zhang X L. Spatial prediction of soil heavy metal pollution based on fuzzy set theory. Acta Pedologica Sinica, 2006, 43(3): 389-396. (in Chinese)

[5]冯娜娜, 李廷轩, 张锡洲, 王永乐, 廖贵堂. 不同尺度下低山茶园土壤颗粒组成空间变异性特征. 水土保持学报, 2006, 20(3): 123-128.

Feng N N, Li T X, Zhang X Z, Wang Y L, Liao G T. Spatial variability of soil particle composition in hilly tea plantation soils with different sampling scales. Journal of Soil Water Conservation, 2006, 20(3): 123-128. (in Chinese)

[6]刘付程, 史学正, 潘贤章, 王洪杰. 苏南典型地区土颗粒的空间变异特征. 土壤通报, 2003, 34(4): 246-249.

Liu F C, Shi X Z, Pan X Z, Wang H J. Characteristics of spatial variability of soil granules in a typical area of Southern Jiangsu Province. Chinese Journal of Soil Science, 2003, 34(4): 246-249. (in Chinese)

[7]马黎春, 盛建东, 蒋平安, 汤庆峰. 克拉玛依干旱生态农业区土壤质地的空间异质性研究. 干旱区地理, 2006, 29(1): 109-114.

Ma L C, Sheng J D, Jiang P A, Tang Q F. Spatial variability of soil texture in Karamay arid zone. Arid Land Geography, 2006, 29(1): 109-114. (in Chinese)

[8]Liu T L, Juang K W, Lee D Y. Interpolating soil properties using kriging combined with categorical information of soil maps. Soil Science Society of America Journal, 2006, 70: 1200-1209.

[9]Hendricks Franssen H J W M, van Eijnsbergen A C, Stein A. Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants. Geoderma, 1997, 77: 243-262.

[10]Amini M, Afyuni M, Fathianpour N, Khademi H, Flühler H. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma, 2005, 124: 223-233.

[11]Odeh I O A, McBratney A B, Chittleborough D J. Fuzzy-c-means and kriging for mapping soil as a continuous system. Soil Science Society of America Journal, 1992, 56: 1848-1854.

[12]McBratney A B, De Gruijter J J, Brus D J. Spacial prediction and mapping of continuous soil classes. Geoderma, 1992, 54: 39-64.

[13]Lark R M, Bishop T F A. Cokriging particle size fractions of the soil. European Journal of Soil Science, 2007, 58: 763-774.

[14]Walvoort D J J, De Gruijter J J. Compositional kriging: A spatial interpolation method for compositional data. Mathematical Geology, 2001, 33(8): 951-966.

[15]檀满枝, 陈  杰. 土壤模糊隶属度不同数据转换方法及其对空间插值结果的影响. 生态学报, 2009, 29(6): 3147-3153.

Tan M Z, Chen J. Different transforms of fuzzy membership values of sampled soils and theirs influences on resulted interpolation prediction. Acta Ecologica Sinica, 2009, 29(6): 3147-3153. (in Chinese)

[16]檀满枝, 密术晓, 李开丽, 陈  杰. 不同插值方法对成分数据空间预测结果的影响―以土壤连续分类模糊隶属度值为例. 土壤, 2009, 41(6): 998-1003.

Tan M Z, Mi S X, Li K L Chen J. Influences of different interpolation methods on patial prediction of compositional data — A case of fuzzy membership values of soil continuous classification. Soils, 2009, 41(6): 998-1003. (in Chinese)

[17]张世文, 王胜涛, 刘  娜, 李囡囡, 黄元仿, 叶回春. 土壤质地空间预测方法比较. 农业工程学报, 2011, 27(1): 332-339.

Zhang S W, Wang S T, Liu N, Li N N, Huang Y F, Ye H C. Comparison of spatial prediction method for soil texture. Transactions of the CSAE, 2011, 27(1): 332-339. (in Chinese)

[18]Egozcue J J, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric logratio transformations for compositional data analysis. Mathmatical Geology, 2003, 35(3): 279-300.

[19]柳红东, 张凤华, 李玉义, 崔志霞. 新疆玛纳斯河流域棉田土壤有机碳含量时空分异规律. 干旱区资源与环境, 2007, 21(10): 156-160.

Liu H D, Zhang F H, Li Y Y, Cui Z X. Temporal-spatial variation of soil organic carbon content in typical cotton field of the Manas River Valley in Xinjiang. Journal of Arid Land Resources and Environment, 2007, 21(10): 156-160. (in Chinese)

[20]禹朴家, 徐海量, 乔  木, 周生斌, 刘世薇. 玛纳斯河流域土壤类型空间分布格局分析. 土壤学报, 2010, 47(6): 1050-1059.

Yu P J, Xu H L, Qiao M, Zhou S B, Liu S W. Spatial distribution pattern of soil types in Manas River Basin. Aata Pedologica Sinica, 2010, 47(6): 1050-1059. (in Chinese)

[21]劳家柽. 土壤农化分析手册. 北京: 中国农业出版社, 1988: 168-173.

Lao J C. Soil Analysis Handbook of Agriculture Chemical. Beijing: China Agriculture Press, 1988: 168-173. (in Chinese)

[22]黄昌勇. 土壤学. 北京: 中国农业出版社, 2000: 75.

Huang C Y. Soil Science. Beijing: China Agriculture Press, 2000: 75. (in Chinese)

[23]Marintín-Fernández J A, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 2003, 35(3): 253-277. 

[24]Tauber F. Spurious clusters in granulometric data caused by logratio transformation. Mathematical Geology, 1999, 31(5): 491-504.

[25]Filzmoser P, Hron K. Outlier detection for compositional data using robust methods. Mathematical Geoscience, 2008, 40: 233-248.

[26]Thió-Henestrosa S, Martín-Fernández J A. Dealing with compositional data: the freeware CoDaPack. Mathematical Geology, 2005, 37(7): 773-793.

[27]Filzmoser P, Hron K. Robust methods for compositional data. http://www.statistik.tuwien.ac.ct/public/filz/papers/2010Compstat.pdf.

[28]雷志栋, 杨诗秀, 谢森传. 土壤水动力学. 北京: 清华大学出版社,1988: 326.

Lei Z D, Yang S X, Xie S C. Soil Water Dynamics. Beijing: Tsinghua University Press, 1988: 326. (in Chinese)

[29]McGrath D, Zhang C S, Carton O T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 2004, 127: 239-248.

[30]王政权. 地统计学及其在生态学中的应用. 北京: 科学出版社, 1999: 100-101.

Wang Z Q. Geostatistics and Its Application in Ecology. Beijing: Science Press, 1999: 100-101. (in Chinese)

[31]Cambardella C A, Moorman T B, Novak J M, Parkin T B, Karlen D L, Turco R F, Konopka A E. Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 1994, 58: 1501-1511.

[32]Willomtt C J. Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 1982, 63(11): 1309-1313.

[33]姚荣江, 杨劲松, 刘光明, 邹  平. 黄河三角洲典型地块土壤盐分空间变异特征研究. 农业工程学报, 2006, 22(6): 61-66.

Rao R J, Yang J S, Liu G M, Zou P. Spatial variability of soil salinity in characteristic field of the Yellow River delta. Transactions of the CSAE, 2006, 22(6): 61-66. (in Chinese)

[34]刘付程, 史学正, 于东升, 潘贤章. 基于地统计学和GIS的太湖典型地区土壤属性制图研究—以土壤全氮制图为例. 土壤学报, 2004, 41(1): 20-27.

Liu F C, Shi X Z, Yu D S, Pan X Z. Mapping soil properties of the typical area of Taihu Lake watershed by geostatistics and geographic information systems — A case study of total Nitrogen in topsoil. Acta Pedologica Sinica, 2004, 41(1): 20-27. (in Chinese)

[35]Pozdnyakova L, Zhang R D. Geostatistical analyses of soil salinity in a large field. Precision Agriculture, 1999, 1: 153-165.
[1] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[2] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[3] XIN XiaoPing,DING Lei,CHENG Wei,ZHU XiaoYu,CHEN BaoRui,LIU ZhongLing,HE GuangLi,QING GeLe,YANG GuiXia,TANG HuaJun. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China [J]. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768.
[4] SHENG YueFan,WANG HaiYan,QIAO HongYuan,WANG Mei,CHEN XueSen,SHEN Xiang,YIN ChengMiao,MAO ZhiQuan. Effects of Different Soil Textures on the Degree of Replanted Disease of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2019, 52(4): 715-724.
[5] CHEN YanQing, CAO YongSheng, CHEN LiNa, FANG Wei . A Spatial Partition Statistical Analysis for Quality and Agronomic Traits of Foxtail Millet Germplasm Resources [J]. Scientia Agricultura Sinica, 2017, 50(14): 2658-2669.
[6] XIAO Jing, XU Hu, CAI AnDong, HUANG Min, ZHANG Qi, SUN Nan, ZHANG WenJu, XU MingGang. A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield [J]. Scientia Agricultura Sinica, 2017, 50(10): 1827-1837.
[7] WU Huan-Huan-12, 吕Jia-Long-2 , DUAN Ying-Hua-1, ZHANG Wen-Ju-1, XU Ming-Gang-1. Establishment and Validation of Model of Soil Particle Size Distribution of Main Soils in China by Laser Diffraction Method [J]. Scientia Agricultura Sinica, 2013, 46(20): 4293-4300.
[8] DI Qing-Yun, ZHANG Juan-Juan, XIONG Shu-Ping, LIU Juan, YANG Yang, MA Xin-Ming. Research on Hyperspectral Differences and Monitoring Model of Leaf Nitrogen Content in Wheat Based on Different Soil Textures [J]. Scientia Agricultura Sinica, 2013, 46(13): 2655-2667.
[9] . The Spatial Variability and Factor Analyses of Top Soil Texture on a County Scale
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1154-1164 .
[10] . Effects of Soil Texture on Activities of Key Enzymes of Starch Synthesis in Kernel of Winter Wheat Cultivars with Different Gluten Content [J]. Scientia Agricultura Sinica, 2005, 38(01): 191-196 .
[11] ,,. Study on the Soil Erodibility Based on the Soil Particle-size [J]. Scientia Agricultura Sinica, 2004, 37(11): 1647-1653 .
[12] ,,. Effect of Different Textural Soils on Root Dynamic Growth in Corn [J]. Scientia Agricultura Sinica, 2004, 37(09): 1334-1340 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!