Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1057-1066.doi: 10.3864/j.issn.0578-1752.2017.06.007

• PLANT PROTECTION • Previous Articles     Next Articles

Eukaryotic Expression, Affinity Purification and Enzyme Activity of Chitin Deacetylase in Locusta migratoria

ZHAO Pan1, 2, ZHANG XueYao1, LIU XiaoJian1, ZHAO XiaoMing1, YU RongRong1, 2, DONG Wei1MA EnBo1, ZHANG JianZhen1, ZHANG Min1   

  1. 1Research Institute of Applied Biology, Shanxi University, Taiyuan 030006; 2College of Life Science, Shanxi University, Taiyuan 030006
  • Received:2016-10-04 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】 The objective of this study is to investigate the eukaryotic expression and enzyme activity of chitin deacetylase 1 and 2 (LmCDA1 and LmCDA2) in Locusta migratoria. The results will provide an experimental basis to further clarify the physiological function of LmCDA1 and LmCDA2 in chitin degradation pathway and the development of new green pesticides.【Method】The domains of LmCDA1, LmCDA2a and LmCDA2b were predicted using BLASTP and SMART softwares. The full-length sequences of LmCDA1, LmCDA2a and LmCDA2b were obtained by PCR. Recombinant plasmids of pFastBac-LmCDAs were constructed, the recombinant Bacmid plasmids were obtained by transformation, and then transfected into Sf9 insect cells to express target proteins in vitro. Target proteins were detected by Western blot technology, and then purified by Ni-NTA affinity chromatography column and anion exchange chromatography column (Q-Sepharose). The purity of proteins was detected by 12% SDS-PAGE, and the enzymes activity was detected by spectrophotometric method with p-nitroacetylaniline as substrate. The method of T test was used to analyze the difference of enzyme activity of LmCDA2a and LmCDA2b. 【Result】 The results by using BLASTP and SMART softwares showed LmCDA1, LmCDA2a and LmCDA2b contained four structural domains, that are signal peptide, chitin binding peritrophin-A (ChBD), low-density lipoprotein receptor class A (LDLa) and catalytic domain (CDA). Three genes contained six conserved cysteines in ChBD. The spacing and amino acid composition between cysteines 3 and 4 (67-84 aa) and the sequence between cysteines 4 and 6 (84-106 aa) differed between LmCDA2a and LmCDA2b, the rest were identical. Western blot result showed that the protein molecular weight of LmCDA1, LmCDA2a and LmCDA2b was about 61 kD, consistent with the prediction, which suggested that the recombinant Bacmid plasmids were expressed successfully in Sf9 insect cells. The purity of purified proteins was detected by 12% SDS-PAGE electrophoresis. Most impurities could be removed by Ni-NTA affinity chromatography, and the proteins were further purified by Q-Sepharose exchange chromatography. Enzyme activity determination showed that LmCDA1, LmCDA2a and LmCDA2b had chitin deacetylase activity of 0.268, 0.354 and 0.228 U·μL-1, respectively, and the activity of LmCDA2a and LmCDA2b showed significant differences. 【Conclusion】Eukaryotic expression in vitro and enzyme activity determination of LmCDA1, LmCDA2a and LmCDA2b revealed that these three enzymes have chitin deacetylase activity, and LmCDA2a and LmCDA2b enzyme activity has a significant difference. It was speculated that the reasons of different phenotypes of L. migratoria when LmCDA2a and LmCDA2b were silenced might be that LmCDA2a and LmCDA2b enzyme activity had a significant difference.

Key words: Locusta migratoria, chitin deacetylase, eukaryotic expression, protein purification, activity detection

[1]    Zhang J Z, Liu X J, Zhang J Q, Li D Q, Sun Y, Guo Y P, Ma E B, Zhu K Y. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochemistry and Molecular Biology,2010, 40(11): 824-833.
[2]    杨红军, 王东升, 张立顺, 谢建军. 东亚飞蝗对马拉硫磷抗性研究初报. 植保技术与推广, 2002, 22(8): 11-12.
Yang H J, Wang D S, Zhang L S, Xie J J. Preliminary study on the resistance of Locusta migratoria manilensis to malathion. Plant Protection Technology and Extension, 2002, 22(8): 11-12. (in Chinese)
[3]    Yang M L, Zhang J Z, Zhu K Y, Xuan T, Liu X J, Guo Y P, Ma E B. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemistry and Physiology, 2009, 71(1): 3-15.
[4]    Peneff C, Mengin-Lecreulx D, Bourne Y. The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. The Journal of Biological Chemistry, 2001, 276(19): 16328-16334.
[5]    李大琪, 杜建中, 张建琴, 郝耀山, 刘晓健, 王亦学, 马恩波, 张建珍, 孙毅. 东亚飞蝗几丁质酶家族基因的表达特性与功能研究. 中国农业科学, 2011, 44(3): 485-492.
Li D Q, Du J Z, Zhang J Q, Hao Y S, Liu X J, Wang Y X, Ma E B, Zhang J Z, Sun Y. Study on expression characteristics and functions of chitinase family genes from Locusta migratoria manilensis (Meyen). Scientia Agricultura Sinica, 2011, 44(3): 485-492. (in Chinese)
[6]    Araki Y, Ito E. A pathway of chitosan formation in Mucor rourii: enzymatic deacetylation of chitin. European journal of biochemistry, 1975, 55(1): 71-78.
[7]    Guo W, Li G X, Pang Y, Wang P. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochemistry and Molecular Biology, 2005, 35(11): 1224-1234.
[8]    Luschnig S, Batz T, Armbruster K, Krasnow M A. Serpentine and vermiform encode matrix proteins with chitin-binding and deacetylation domains that limit tracheal tube length in Drosophila. Current biology, 2006, 16(2): 186-194.
[9]    Dixit R, Arakane Y, Specht C A, Richard C, Kramer K J, Beeman R W, Muthukrishnan S. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum andthree other species of insects. Insect Biochemistry and Molecular Biology, 2008, 38(4): 440-451.
[10]   Toprak U, Baldwin D, Erlandson M, Gillott C, Hou X, Coutu C, Hegedus D D. A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix. Insect Molecular Biology, 2008, 17(5): 573-585.
[11]   Campbell P M, Cao A T, Hines E R, East P D, Gordon K H. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2008, 38(10): 950-958.
[12]   郝威, 何旭玲, 徐豫松. 家蚕几丁质脱乙酰基酶基因结构及mRNA选择性剪切与表达差异的研究. 蚕业科学, 2010, 36(6): 921-929.
Hao W, He X L, Xu Y S. Gene structure, mRNA alternative splicing and expression pattern of chitin deacetylases in silkworm, Bombyx mori. Science of sericulture, 2010, 36(6): 921-929. (in Chinese)
[13]   Quan X G, Ladd T, Jun D, Wen F Y, Dourcet D, Cusson M, Krell P J. Characterization of a spruce budworm chitin deacetylase gene: stage-and tissue-specific expression, and inhibition using RNA interference. Insect Biochemistry and Molecular Biology, 2013, 43(8): 683-691.
[14]   Arakane Y, Dixit R, Begum K, Park Y, Specht C A, Merzendorfer H, Kramer K J, Muthukrishnan S, Beeman R W. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009, 39(5/6): 355-365.
[15]   丁国伟, 于荣荣, 杨美玲, 马恩波, 杨静, 张建珍. 中华稻蝗几丁质脱乙酰基酶1基因的分子特性及功能. 昆虫学报, 2014, 57(11): 1265-1271.
Ding G W, Yu R R, Yang M L, Ma E B, YANG J, Zhang J Z. The molecular characterization and functional analysis of chitin deacetylase 1 gene in Oxya chinensis. Acta Entomologica Sinica, 2014, 57(11): 1265-1271. (in Chinese)
[16]   于荣荣, 丁国伟, 郭亚平, 马恩波, 张建珍. 中华稻蝗几丁质脱乙酰基酶2基因的分子特性和生物学功能. 中国农业科学, 2014, 47(7): 1321-1329.
Yu R R, Ding G W, Guo Y P, Ma E B, Zhang J Z. Molecular characterization and functional analysis of chitin deacetylase 2 gene in Oxya chinensis. Scientia Agricultura Sinica, 2014, 47(7): 1321-1329. (in Chinese)
[17]   Yu R R, Liu W M, Li D Q, Zhao X M, Ding G W, Zhang M, Ma E B, Zhu K Y, Li S, Moussian B, Zhang J Z. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase2 enzyme (LmCDA2). The Journal of Biological Chemistry, 2016, 291(47): 24352-24363.
[18]   Zhong X W, Wang X H, Tan X, Xia Q Y, Xiang Z H, Zhao P. Identification and Molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. International Journal of Molecular Sciences, 2014, 15(2): 1946-1961.
[19]   刘丽萍, 赵祥颖, 刘建军, 田延军, 张家祥. 一种简易、高效产几丁质脱乙酰酶菌种的筛选方法. 食品与发酵工业, 2008, 34(1): 65-70.
Liu L P, Zhao X Y, Liu J J, Tian Y J, Zhang J X. A simple and efficient production of chitin deacetylase strains method. Food and Fermentation Industries, 2008, 34(1): 65-70. (in Chinese)
[20]   Liu L, Song H F, Zhang L, Fan X T, Zhang Q, Chen K, Chen H Q, Zhou Y J. Expression, purification, and enzymatic characterization of Bombyx mori nucleopolyhedrovirus DNA polymerase. Archives of virology, 2013, 158(12): 2453-2463.
[21]   Kauss H, Jeblick W, Young D H. Chitin deacetylase from the plant pathogen colletotrichum lindemuthianum. Plant Science Letters, 1983, 28(2): 231-236.
[22]   Kafetzopoulos D, Thireos G, Voumakis J N, Bouriotis V. The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(17): 8005-8008.
[23]   田曙光, 王璇琳, 刘至玄, 章扬培, 宫锋. 四唑蓝比色法测定肝素酶活性. 军事医学, 2006, 30(1): 65-67.
Tian S G, Wang X L, Liu Z X, Zhang Y P, Gong F. Analysis of heparanase activity by colorimetry. Military Medical Sciences, 2006, 30(1): 65-67. (in Chinese)
[24]   肖丽霞, 师明磊, 王洋, 张彦, 沈文龙, 李德彬, 赵玉军, 赵志虎. NADH依赖型酶活性检测方法的建立. 中国生物工程杂志, 2012, 32(4): 72-75.
Xiao L X, Shi M L, Wang Y, Zhang Y, Shen W L, Li D B, Zhao Y J, Zhao Z H. An efficient and economic method for detecting the activity of NADH dependent enzyme. China Biotechnology, 2012, 32(4): 72-75. (in Chinese)
[25]   Tokura S. Latest development on the application of chitin and chitosan. Kobunshi, 1995, 44(3): 112-115.
[26]   宋慧芳, 李应龙, 马恩波, 张建珍. 飞蝗β-N-乙酰氨基葡萄糖苷酶基因的表达及酶学特性分析. 中国农业科学, 2016, 49(21): 4140-4148.
SONG H F, LI Y L, MA E B, ZHANG J Z. The heterogenous expression and enzymatic characteristics of β-N-acetylglucosaminidase from Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(21): 4140-4148. (in Chinese)
[1] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[2] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[3] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[4] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[5] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
[6] LI YongHua, CHE LuPing, QIU XuSheng, TAN Lei, SUN YingJie, LIU WeiWei, SONG CuiPing, LIAO Ying, DING Chan, WANG JinQuan, MENG ChunChun. Construction of Chicken TIGAR Gene Eukaryotic Expression Plasmid and Evaluation of Its Anti-Apoptotic Function [J]. Scientia Agricultura Sinica, 2019, 52(6): 1102-1109.
[7] YANG YaTing, ZHAO XiaoMing, QIN ZhongYu, LIU WeiMin, MA EnBo, ZHANG JianZhen. Molecular Characteristics and Function Analysis of Cuticle Protein Gene LmNCP1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(7): 1303-1314.
[8] SONG HuiFang, ZHANG JianQin, FAN YunHe, LI Tao, MA EnBo, ZHANG JianZhen. Antibody Preparation and Subcelluar Localization of dsRNA Degrading Enzyme in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(19): 3704-3713.
[9] ZHANG TingTing, LIU WeiWei, GAO Lu, LI RenJian, FU SuiYe, LIU XiaoJian, LI DaQi, LIU WeiMin, DONG Qing, ZHANG JianZhen. The antibody preparation and expression analysis of Chitinase 5-1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(12): 2418-2428.
[10] WEI YuanJie, WANG YaMei, HUANG LiNa, LIU Ning, ZHAO Jie, AI XinYu, LIU XiaoNing. Cloning, Prokaryotic Expression and Preparation of the Polyclonal Antibody Against CYP6CY3 from Aphis gossypii [J]. Scientia Agricultura Sinica, 2017, 50(7): 1351-1360.
[11] YAN XiaoPing, ZHAO Dan, GUO Wei, WANG Wei, ZHANG YaKun, GAO YuJie, ZHAO KunLi. Cloning, Expression and Enzymatic Characterization of Chitin Deacetylases from Hyphantria cunea [J]. Scientia Agricultura Sinica, 2017, 50(5): 849-858.
[12] PAN GuangZhao, ZHANG Kui, LI ChongYang, ZHAO YuZu, SHEN Li, XU Man, SU JingJing, LIN Xi, CUI HongJuan. Identification, Expression, and Functional Analysis of Cathepsin L in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3236-3246.
[13] YU RongRong, DING GuoWei, LIU WeiMin, ZHANG Min, ZHAO XiaoMing, HAN PengFei, MA EnBo, ZHANG JianZhen. Molecular Characterization and Biological Function of Chitin Deacetylase Genes in Locusta migratoria [J]. Scientia Agricultura Sinica, 2017, 50(13): 2498-2507.
[14] ZHAO XiaoMing, JIA Pan, GOU Xin, LIU WeiMin, MA EnBo, ZHANG JianZhen. Expression and Functional Analysis of Endocuticle Structural Glycoprotein Gene LmAbd-5 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2017, 50(10): 1817-1826.
[15] LIU Xiao-jian, SUN Ya-wen, CUI Miao, MA En-bo, ZHANG Jian-zhen. Molecular Characteristics and Functional analysis of Trehalase Genes in Locusta migratoria
 
[J]. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!