Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5132-5143.doi: 10.3864/j.issn.0578-1752.2021.23.017
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
FENG YunKui(),WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun()
[1] |
李拥军, 黄永宏. 我国的笔料毛山羊和笔料毛生产. 中国草食动物, 2005, 25(1):44-45. doi: 10.3969/j.issn.2095-3887.2005.01.026.
doi: 10.3969/j.issn.2095-3887.2005.01.026 |
LI Y J, HUANG Y H. The status of the goat and its wool production for writing brush in China. China Herbivores, 2005, 25(1):44-45. doi: 10.3969/j.issn.2095-3887.2005.01.026. (in Chinese)
doi: 10.3969/j.issn.2095-3887.2005.01.026 |
|
[2] |
GUO H, CHENG G, LI Y, ZHANG H, QIN K. A screen for key genes and pathways involved in high-quality brush hair in the Yangtze River Delta white goat. PLoS ONE, 2017, 12(1):e0169820. doi: 10.1371/journal.pone.0169820.
doi: 10.1371/journal.pone.0169820 |
[3] | 孟杨, 姜怀志. 羔羊期辽宁绒山羊皮肤毛囊发育规律的研究. 中国草食动物科学, 2020(5):70-73. |
MENG Y, JIANG H Z. Research on the development of skin and hair follicles of Liaoning cashmere goats at lamb stage. China Herbivore Science, 2020(5):70-73. (in Chinese) | |
[4] |
MARDARYEV A N, AHMED M I, VLAHOV N V, FESSING M Y, GILL J H, SHAROV A A, BOTCHKAREVA N V. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. BMC Dermatology, 2010, 24(10):3869-3881. doi: 10.1096/fj.10-160663.
doi: 10.1096/fj.10-160663 |
[5] |
JI D, YANG B, LI Y, CAI M, ZHANG W, CHENG G, GUO H. Transcriptomic inspection revealed a possible pathway regulating the formation of the high-quality brush hair in Chinese Haimen goat (Capra hircus). Royal Society Open Science, 2018, 5(1):170907. doi: 10.1098/rsos.170907.
doi: 10.1098/rsos.170907 |
[6] |
ECKERT R L, EFIMOVA T, DASHTI S R, BALASUBRAMANIAN S, DEUCHER A, CRISH J F, STURNIOLO M, BONE F. Keratinocyte survival, differentiation, and death: Many roads lead to mitogen- activated protein kinase. The Journal of Investigative Dermatology Symposium Proceedings, 2002, 7(1):36-40. doi: 10.1046/j.1523-1747.2002.19634.x.
doi: 10.1046/j.1523-1747.2002.19634.x |
[7] |
PENG H, WANG L, SU Q, YI K, DU J, WANG Z. miR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomedicine & Pharmacotherapy, 2019, 109:208-216. doi: 10.1016/j.biopha.2018.10.048.
doi: 10.1016/j.biopha.2018.10.048 |
[8] |
MI B, LI Q, LI T, LIU G, SAI J. High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1. Aging, 2020, 12(8):7480-7490. doi: 10.18632/aging.103096.
doi: 10.18632/aging.103096 |
[9] |
LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1):15-20. doi: 10.1016/j.cell.2004.12.035.
doi: 10.1016/j.cell.2004.12.035 |
[10] |
YI R, O'CARROLL D, PASOLLI H A, ZHANG Z, DIETRICH F S, TARAKHOVSKY A, FUCHS E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 2006, 38(3):356-362. doi: 10.1038/ng1744.
doi: 10.1038/ng1744 |
[11] |
YI R, POY M N, STOFFEL M, FUCHS E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 2008, 452(7184):225-229.
doi: 10.1038/nature06642 |
[12] |
PAL A S, KASINSKI A L. Animal models to study microRNA function. Advances in Cancer Research, 2017, 135:53-118. doi: 10.1016/bs.acr.2017.06.006.
doi: 10.1016/bs.acr.2017.06.006 |
[13] |
LENA A M, SHALOM-FEUERSTEIN R, RIVETTI DI VAL CERVO P, ABERDAM D, KNIGHT R A, MELINO G, CANDI E. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 2008, 15(7):1187-1195. doi: 10.1038/cdd.2008.69.
doi: 10.1038/cdd.2008.69 |
[14] |
MA T, LI J P, JIANG Q, WU S F, JIANG H Z, ZHANG Q L. Differential expression of miR-let7a in hair follicle cycle of Liaoning cashmere goats and identification of its targets. Functional & Integrative Genomics, 2018, 18(6):701-707. doi: 10.1007/s10142-018-0616-x.
doi: 10.1007/s10142-018-0616-x |
[15] |
WANG Z, JINNIN M, KUDO H, INOUE K, NAKAYAMA W, HONDA N, MAKINO K, KAJIHARA I, FUKUSHIMA S, INOUE Y, IHN H. Detection of hair-microRNAs as the novel potent biomarker: evaluation of the usefulness for the diagnosis of Scleroderma. Journal of Dermatological Science, 2013, 72(2):134-141. doi: 10.1016/j.jdermsci.2013.06.018.
doi: 10.1016/j.jdermsci.2013.06.018 |
[16] |
KAO Y Y, CHOU C H, YEH L Y, CHEN Y F, CHANG K W, LIU C J, FAN CHIANG C Y, LIN S C. microRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma. Cancer Letters, 2019, 456:40-48. doi: 10.1016/j.canlet.2019.04.028.
doi: 10.1016/j.canlet.2019.04.028 |
[17] | 张翌, 马丹丹, 张兆林, 张杨, 曹钧. miR-31促进结肠癌转移侵袭的作用及机制探讨. 临床外科杂志, 2018(10):747-750. |
ZHANG Y, MA D D, ZHANG Z L, ZHANG Y, CAO J. The effect and mechanism of miR-31 on the metastasis and invasion of colon cancer. Journal of Clinical Surgery, 2018(10):747-750. (in Chinese) | |
[18] | 石建云. miR-31在皮肤损伤修复过程中介导炎症阶段向上皮再生阶段转换的功能与作用机制[D]. 北京: 中国农业大学, 2018. |
SHI J Y. MiR-31 mediates inflammatory signaling to promote re-epithelialization during skin wound healing[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
[19] |
SHI J, MA X, SU Y, SONG Y, TIAN Y, YUAN S, ZHANG X, YANG D, ZHANG H, SHUAI J, CUI W, REN F, PLIKUS M V, CHEN Y, LUO J, YU Z. miR-31 mediates inflammatory signaling to promote Re-epithelialization during skin wound healing. The Journal of Investigative Dermatology, 2018, 138(10):2253-2263. doi: 10.1016/j.jid.2018.03.1521.
doi: 10.1016/j.jid.2018.03.1521 |
[20] |
WANG Q, QU J, LI Y, JI D, ZHANG H, YIN X, WANG J, NIU H. Hair follicle stem cells isolated from newborn Yangtze River Delta White Goats. Gene, 2019, 698:19-26. doi: 10.1016/j.gene.2019.02.052.
doi: 10.1016/j.gene.2019.02.052 |
[21] |
DWEEP H, GRETZ N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nature Methods, 2015, 12(8):697. doi: 10.1038/nmeth.3485.
doi: 10.1038/nmeth.3485 |
[22] |
朱芷葳, 侯淑宁, 郝庆玲, 景炅婕, 吕丽华, 李鹏飞. 牛卵泡AGTR2序列结构及表达特性分析. 中国农业科学, 2020, 53(7):1482-1490. doi: 10.3864/j.issn.0578-1752.2020.07.016.
doi: 10.3864/j.issn.0578-1752.2020.07.016 |
ZHU Z W, HOU S N, HAO Q L, JING J J, LÜ L H, LI P F. Sequence structure and expression characteristics analysis of AGTR2 in bovine follicle. Scientia Agricultura Sinica, 2020, 53(7):1482-1490. doi: 10.3864/j.issn.0578-1752.2020.07.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.07.016 |
|
[23] |
张利环, 马悦悦, 刘文艳, 蓝吴涛, 朱芷葳. microRNA-96-5p靶向调控羊驼黑色素细胞中MITF基因的表达. 畜牧兽医学报, 2020, 51(6):1229-1237. doi: 10.11843/j.issn.0366-6964.2020.06.007.
doi: 10.11843/j.issn.0366-6964.2020.06.007 |
ZHANG L H, MA Y Y, LIU W Y, LAN W T, ZHU Z W. microRNA- 96-5p targets MITF gene in alpaca melanocytes. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1229-1237. doi: 10.11843/j.issn.0366-6964.2020.06.007. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2020.06.007 |
|
[24] |
CHEN C C, WANG L, PLIKUS M V, JIANG T X, MURRAY P J, RAMOS R, GUERRERO-JUAREZ C F, HUGHES M W, LEE O K, SHI S, WIDELITZ R B, LANDER A D, CHUONG C M. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell, 2015, 161(2):277-290. doi: 10.1016/j.cell.2015.02.016.
doi: 10.1016/j.cell.2015.02.016 |
[25] |
SLATTERY M L, LUNDGREEN A, WOLFF R K. MAP kinase genes and colon and rectal cancer. Carcinogenesis, 2012, 33(12):2398-2408.
doi: 10.1093/carcin/bgs305 |
[26] |
KLINGE C M, BLANKENSHIP K A, RISINGER K E, BHATNAGAR S, NOISIN E L, SUMANASEKERA W K, ZHAO L, BREY D M, KEYNTON R S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. The Journal of Biological Chemistry, 2005, 280(9):7460-7468. doi: 10.1074/jbc.m411565200.
doi: 10.1074/jbc.m411565200 |
[27] |
REBBECK T R, DEMICHELE A, TRAN T V, PANOSSIAN S, BUNIN G R, TROXEL A B, STROM B L. Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women. Carcinogenesis, 2009, 30(2):269-274. doi: 10.1093/carcin/bgn247.
doi: 10.1093/carcin/bgn247 |
[28] | 杨波. 基于RNA-Seq技术的长江三角洲白山羊优质笔料毛性状研究及皮肤毛囊结构的观察[D]. 扬州: 扬州大学, 2015. |
YANG B. Study on high quality brush hair gens based on RNA-Seq of Yangtze River Delta White Goat and observation on follicles structures[D]. Yangzhou: Yangzhou University, 2015. (in Chinese) | |
[29] |
CORREIA DE SOUSA M, GJORGJIEVA M, DOLICKA D, SOBOLEWSKI C, FOTI M. Deciphering miRNAs’ action through miRNA editing. International Journal of Molecular Sciences, 2019, 20(24):6249.
doi: 10.3390/ijms20246249 |
[30] |
WANG J, WANG W, LI J, WU L, SONG M, MENG Q. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. OncoTargets and Therapy, 2017, 10:667-679. doi: 10.2147/ott.s121864.
doi: 10.2147/ott.s121864 |
[31] |
STEPICHEVA N A, SONG J L. Function and regulation of microRNA-31 in development and disease. Molecular Reproduction and Development, 2016, 83(8):654-674. doi: 10.1002/mrd.22678.
doi: 10.1002/mrd.22678 |
[32] |
HE J, JIN S, ZHANG W, WU D, LI J, XU J, GAO W. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. Journal of Cancer, 2019, 10(24):6003-6013. doi: 10.7150/jca.35097.
doi: 10.7150/jca.35097 |
[33] |
HU C, HUANG F, DENG G, NIE W, HUANG W, ZENG X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Experimental and Therapeutic Medicine, 2013, 6(5):1265-1270. doi: 10.3892/etm.2013.1311.
doi: 10.3892/etm.2013.1311 |
[34] | 朱玥荃, 王皓, 石雪迎, 王俊杰, 王文恭, 薛丽香. miR-31通过激活NF-κB信号通路而促进结肠癌细胞增殖. 中国生物化学与分子生物学报, 2017, 33(9):908-916. |
ZHU Y Q, WANG H, SHI X Y, WANG J J, WANG W G, XUE L X. miR-31 promotes the proliferation of colorectal cancer cells through activating NF-B signal pathway. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(9):908-916.(in Chinese) | |
[35] | 马金亮, 王健, 冯云奎, 王强, 张柳明, 李拥军. 干扰MAP3K1基因对山羊毛囊干细胞增殖和凋亡的影响. 东北农业大学学报, 2020(10):56-62. |
MA J L, WANG J, FENG Y K, WANG Q, ZHANG L M, LI Y J. Effect of interference with MAP3K1 gene on proliferation and apoptosis of goat hair follicle stem cells. Journal of Northeast Agricultural University, 2020(10):56-62. (in Chinese) | |
[36] |
FENG Y, WANG J, MA J, ZHANG L, CHU C, HU H, WANG Y, LI Y. miR-31-5p promotes proliferation and inhibits apoptosis of goat hair follicle stem cells by targeting RASA1/MAP3K1 pathway. Experimental Cell Research, 2021, 398(2):112441. doi: 10.1016/j.yexcr.2020.112441.
doi: 10.1016/j.yexcr.2020.112441 |
[37] |
ZHANG Z, CHEN C Z, XU M Q, ZHANG L Q, LIU J B, GAO Y, JIANG H, YUAN B, ZHANG J B. miR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology, 2019, 123:45-53. doi: 10.1016/j.theriogenology.2018.09.020.
doi: 10.1016/j.theriogenology.2018.09.020 |
[1] | YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178. |
[2] | LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. |
[3] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[4] | LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252. |
[5] | MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663. |
[6] | YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449. |
[7] | HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301. |
[8] | MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007. |
[9] | LI Yu,WANG Fang,WENG ZeBin,SONG HaiZhao,SHEN XinChun. Preparation of Soybean Protein-Derived Pro-osteogenic Peptides via Enzymatic Hydrolysis [J]. Scientia Agricultura Sinica, 2021, 54(13): 2885-2894. |
[10] | LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444. |
[11] | HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202. |
[12] | Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912. |
[13] | LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296. |
[14] | PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296. |
[15] | CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567. |
|