Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3372-3384.doi: 10.3864/j.issn.0578-1752.2020.16.014
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
WANG YaoSong1(),ZHANG WeiWei1,MA TianYi1,CAI Min1,ZHANG YiFan1,HU RongRong2,TANG ChangBo2(
)
[1] | TAPIA M I, SÁNCHEZ-MORGADO J R, GARCÍA-PARRA J, RAMÍREZ R, HERNÁNDEZ T, GONZÁLEZ-GÓMEZ D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. Journal of Food Composition and Analysis, 2013,31(2):232-237. |
[2] |
HOLT R R, YIM S J, SHEARER G C, HACKMAN R M, DJURICA D, NEWMAN J W, SHINDEL A W, KEEN C L. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. Journal of Nutritional Biochemistry, 2015,26(12):1458-1466.
pmid: 26396054 |
[3] | KOŁAKOWSKA A, BARTOSZ G. Oxidation of Food Components:An Introduction: Food Oxidants and Antioxidants Chemical, Biological, and Functional Properties. CRC Press, 2014. |
[4] | BURANASOMPOB A, TANG J, POWERS J R, REYES J, CLARK S, SWANSON B G. Lipoxygenase activity in walnuts and almonds. LWT-Food Science and Technology, 2007,40(5):893-899. |
[5] |
JENSEN P N, SØRENSEN G, ENGELSEN S B, BERTELSEN G. Evaluation of quality changes in walnut kernels (Juglans regia L.) by Vis/NIR spectroscopy. Journal of Agricultural and Food Chemistry, 2001,49(12):5790-5796.
pmid: 11743765 |
[6] |
CHOE E, MIN D B. Chemistry and reactions of reactive oxygen species in foods. Critical Reviews in Food Science and Nutrition, 2006,46(1):1-22.
pmid: 16403681 |
[7] | BARON C P. Protein Oxidation in Foods and Its Prevention: Food Oxidants and Antioxidants Chemical, Biological, and Functional Properties. CRC Press, 2014. |
[8] |
LIU S, LIU F G, XUE Y H, GAO Y X. Evaluation on oxidative stability of walnut beverage emulsions. Food Chemistry, 2016,203:409-416.
pmid: 26948632 |
[9] | 孙领鸽, 王丹丹, 毛晓英, 詹萍, 田洪磊. 丙烯醛氧化修饰对核桃蛋白结构和乳化特性的影响. 食品科学, 2018,39(20):43-48. |
SUN L G, WANG D D, MAO X Y, ZHAN P, TIAN H L. Influence of oxidative modification with acrolein on structural and emulsifying properties of walnut protein. Food Science, 2018,39(20):43-48. (in Chinese) | |
[10] | 王丹丹, 毛晓英, 孙领鸽, 田洪磊, 詹萍. 蛋白质氧化对核桃蛋白质结构的影响. 食品工业与科技, 2018,39(12):32-38. |
WANG D D, MAO X Y, SUN L G, TIAN H L, ZHAN P. Effect of oxidative modification of protein on structure of walnut protein. Science and Technology of Food Industry, 2018,39(12):32-38. (in Chinese) | |
[11] | 王丹丹, 孙领鸽, 毛晓英. 脂质氢过氧化物氧化对核桃分离蛋白结构的影响. 食品与发酵工业, 2019,45(1):94-99. |
WANG D D, SUN L G, MAO X Y. Effects of lipid oxidative modification by hydroperoxides on the structure of walnut protein. Food and Fermentation Industries, 2019,45(1):94-99. (in Chinese) | |
[12] | 王丹丹, 毛晓英, 孙领鸽, 吴庆智, 李宝坤, 程卫东. 氢过氧化物氧化对核桃蛋白结构和乳化特性的影响. 中国食品学报, 2019,19(12):60-68. |
WANG D D, MAO X Y, SUN L G, WU Q Z, LI B K, CHENG W D. Effects of oxidation by hydrogen peroxide on the structure and emulsifying properties of walnut protein. Journal of Chinese Institute of Food Science and Technology, 2019,19(12):60-68. (in Chinese) | |
[13] |
MAO X Y, HUA Y F. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences, 2012,13(2):1561-1581.
pmid: 22408408 |
[14] | ADAMS A, DE KIMPE N, VAN BOEKEL M A J S. Modification of casein by the lipid oxidation product malondialdehyde.[J] ournal of Agricultural and Food Chemistry, 2008,56(5):1713-1719. |
[15] |
WANG Y S, LIU C Q, MA T Y, ZHAO J. Physicochemical and functional properties of γ-aminobutyric acid-treated soy proteins. Food Chemistry, 2019,295:267-273.
pmid: 31174759 |
[16] | LIU G, XIONG Y L, BUTTERFIELD D A. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates. Journal of Food Science, 2000,65(5):811-818. |
[17] |
WANG Y S, LIU M Y, ZHAO L M, QIU Y J, ZHUANG Y P. Influence of processing conditions on reducing γ-aminobutyric acid content during fortified milk production. Food Research International, 2015,72:215-222.
doi: 10.1016/j.foodres.2015.04.004 |
[18] |
LEVINE R L, GARLAND D, OLIVER C N, AMICI A, CLIMENT I, LENZ A G, AHN B W, SHALTIEL S, STADTMAN E R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 1990,186:464-477.
pmid: 1978225 |
[19] |
LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature, 1970,227(5259):680-685.
doi: 10.1038/227680a0 pmid: 5432063 |
[20] | WANG Y S, LIU M Y, ZHAO L M, QIU Y J, ZHUANG Y P. Interactions of γ-aminobutyric acid and whey proteins/caseins during fortified milk production. RSC Advances, 2015,5(111):91235-91245. |
[21] |
HARLEY C A, JESUS C S, CARVALHO R, BRITO R M, MORAIS-CABRAL J H. Changes in channel trafficking and protein stability caused by LQT2 Mutations in the PAS domain of the HERG channel. PloS ONE, 2012,7(3):e32654.
pmid: 22396785 |
[22] | KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1980,624(1):13-20. |
[23] |
SLATTER D A, PAUL R G, MURRAY M, BAILEY A J. Reactions of lipid-derived malondialdehyde with collagen. The Journal of Biological Chemistry, 1999,274(28):19661-19669.
pmid: 10391905 |
[24] |
ZHAO J, CHEN J, ZHU H N, XIONG Y L. Mass spectrometric evidence of malonaldehyde and 4 hydroxynonenal adductions to radical-scavenging soy peptides. Journal of Agricultural and Food Chemistry, 2012,60(38):9727-9736.
doi: 10.1021/jf3026277 pmid: 22946674 |
[25] |
HELLWIG M. The chemistry of protein oxidation in food. Angewandte Chemie International Edition, 2019,58(47):16742-16763.
doi: 10.1002/anie.201814144 pmid: 30919556 |
[26] | BUTTKUS H A. The reaction of malondialdehyde or oxidized linolenic acid with sulphydryl compounds. Journal of the American Oil Chemists Society, 1972,49:613-614. |
[27] | DAVIES M J. Protein oxidation and peroxidation. Biochemical Journal, 2016,473(Pt7):805-825. |
[28] | 沈鹏辉, 樊诗堃, 赵谋明, 周非白. 氧化对大豆蛋白结构、乳液稳定性及消化特性的影响. 食品科学. 2019,40(14):7-14. |
SHEN P H, FAN S K, ZHAO M M, ZHOU F B. Influence of oxidation on soy protein structure, emulsion stability and lipid digestion. Food Science, 2019,40(14):7-14. (in Chinese) | |
[29] | WU W, ZHANG C M, HUA Y F. Structural modification of soy protein by the lipid peroxidation product malondialdehyde. Journal of the Science of Food and Agriculture, 2009,89:1416-1423. |
[30] | WU W, WU X J, HUA Y F. Structural modification of soy protein by the lipid peroxidation product acrolein. LWT-Food Science and Technology, 2010,43(1):133-140. |
[31] | LI F, WU X J, WU W. Effects of malondialdehyde-induced protein oxidation on the structural characteristics of rice protein. International Journal of Food Science and Technology, 2020,55:760-768. |
[32] |
NIU X Y, WANG X Y, HAN Y T, LU C R, CHEN X Q, WANG T Y, XU M J, ZHU Q. Influence of malondialdehyde-induced modifications on physicochemical and digestibility characteristics of whey protein isolate. Journal of Food Biochemistry, 2019,43(12):e13041.
pmid: 31502294 |
[33] |
ESTÉVEZ M, PADILLA P, CARVALHO L, MARTÍN L, CARRAPISO A, DELGADO J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biology, 2019,26:101277.
doi: 10.1016/j.redox.2019.101277 pmid: 31352127 |
[34] |
CHEN N N, ZHAO Q Z, SUN W Z, ZHAO M M. Effects of malondialdehyde modification on the in vitro digestibility of soy protein isolate. Journal of Agricultural and Food Chemistry, 2013,61(49):12139-12145.
doi: 10.1021/jf404099y pmid: 24236702 |
[35] |
WANG Z M, HE Z F, EMARA A M, GAN X, LI H J. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry, 2019,288:405-412.
doi: 10.1016/j.foodchem.2019.02.126 pmid: 30902311 |
[36] |
GÜRBÜZ G, HEINONEN M. LC-MS investigations on interactions between isolatedβ-lactoglobulin peptides and lipid oxidation product malondialdehyde. Food Chemistry, 2015,175:300-305.
doi: 10.1016/j.foodchem.2014.11.154 pmid: 25577084 |
[37] |
ESTÉVEZ M. Protein carbonyls in meat systems: A review. Meat Science, 2011,89(3):259-279.
doi: 10.1016/j.meatsci.2011.04.025 pmid: 21621336 |
[38] | 王守业, 徐小龙, 刘清亮, 解永树. 荧光光谱在蛋白质分子构象研究中的应用. 化学进展, 2001,13(4):257-260. |
WANG S Y, XU X L, LIU Q L, XIE Y S. The application of fluorescence spectroscopy in the study on protein conformation. Progress in Chemistry, 2001,13(4):257-260. (in Chinese) | |
[39] |
FOETTINGER A, MELMER M, LEITNER A, LINDNER W. Reaction of the indole group with malondialdehyde: Application for the derivatization of tryptophan residues in peptides. Bioconjugate Chemistry, 2007,18(5):1678-1683.
doi: 10.1021/bc070001h pmid: 17705413 |
[40] |
WANG J, ZHAO M M, QIU C Y, SUN W Z. Effect of malondialdehyde modification on the binding of aroma compounds to soy protein isolates. Food Research International, 2018,105:150-158.
doi: 10.1016/j.foodres.2017.11.001 pmid: 29433202 |
[41] |
TRAVERSO N, MENINI S, MAINERI E P, PATRIARCA S, ODETTI P, COTTALASSO D, MARINARI U M, PRONZATO M A. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2004,59(9):B890-B895.
doi: 10.1093/gerona/59.9.B890 |
[42] | SUN W Z, ZHOU F B, SUN D W, ZHAO M M. Effect of oxidation on the emulsifying properties of myofibrillar proteins. Food Bioprocess Technology, 2013,6(7):1703-1712. |
[43] |
FITZPATRICK A W, KNOWLES T P J, WAUDBY C A, VENDRUSCOLO M, DOBSON C M. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Computational Biology, 2011,7(10):e1002169.
doi: 10.1371/journal.pcbi.1002169 pmid: 22022239 |
[44] | WANG Y S, ZHAO J, ZHANG W W, LIU C Q, JAUREGI P, HUANG M G. Modification of heat-induced whey protein gels by basic amino acids. Food Hydrocolloids, 2020,100:105397. |
[45] | WANG L, ZHANG M, BHANDARI B, GAO Z X. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel. Food Research International, 2016,86:131-139. |
[46] |
TAN L, HONG P Z, YANG P, ZHOU C X, XIAO D H, ZHONG T J. Correlation Between the water solubility and secondary structure of tilapia-soybean protein co-precipitates. Molecules, 2019,24(23):4337.
doi: 10.3390/molecules24234337 |
[47] |
WANG Y S, XIONG Y L, RENTFROW G K, NEWMAN M C. Oxidation promotes cross-linking but impairs film-forming properties of whey proteins. Journal of Food Engineering, 2013,115(1):11-19.
doi: 10.1016/j.jfoodeng.2012.09.013 |
[48] | 周麟依, 孙玉凤, 吴非. 丙二醛氧化对米糠蛋白结构及功能性质的影响. 食品科学, 2019,40(12):98-107. |
ZHOU L Y, SUN Y F, WU F. Effects of oxidation by malondialdehyde on the structure and function of rice bran protein. Food Science, 2019,40(12):98-107. (in Chinese) | |
[49] |
WANG Y S, ZHAO J, LIU C Q, LI W W. Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels. Food Hydrocolloids, 2019,94:287-293.
doi: 10.1016/j.foodhyd.2019.03.031 |
[50] | BARHOUM A, GARCÍA-BETANCOURT M L, RAHIER H, ASSCHE G V. Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability: Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc., 2018. |
[51] |
SHACTER E. Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews, 2000,32(3/4):307-326.
doi: 10.1081/DMR-100102336 |
[52] |
RYAN K N, ZHONG Q, FOEGEDING E A. Use of whey protein soluble aggregates for thermal stability-a hypothesis paper. Journal of Food Science, 2013,78(8):R1105-R1115.
doi: 10.1111/1750-3841.12207 pmid: 23957418 |
[53] | ZAYAS J F. Solubility of Proteins: Functionality of Proteins in Food. Verlag Berlin Heidelberg New York: Springer, 1997. |
[54] |
LI S J, KING A J. Structural changes of rabbit myosin subfragment 1 altered by malonaldehyde, a byproduct of lipid oxidation. Journal of Agricultural and Food Chemistry, 1999,47(8):3124-3129.
pmid: 10552619 |
[55] |
JU Z Y, KILARA A. Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. Journal of Agricultural and Food Chemistry, 1998,46(5):1830-1835.
doi: 10.1021/jf9710185 |
[56] | LACLAIR C E, ETZEL M R. Turbidity and protein aggregation in whey protein beverages. Journal of Food Science, 2009,74(7):526-535. |
[57] |
TANG C H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 2017,57(12):2636-2679.
doi: 10.1080/10408398.2015.1067594 pmid: 26463743 |
[58] | ZAYAS J F. Emulsifying Properties of Proteins: Functionality of Proteins in Food. Verlag Berlin Heidelberg New York: Springer, 1997. |
[59] |
YUAN B E, REN J Y, ZHAO M M, LUO D H, GU L J. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate. LWT-Food Science and Technology, 2012,46(2):453-459.
doi: 10.1016/j.lwt.2011.12.001 |
[60] |
CHEN N N, ZHAO M M, SUN W Z, REN J Y, CUI C. Effect of oxidation on the emulsifying properties of soy protein isolate. Food Research International, 2013,52(1):26-32.
doi: 10.1016/j.foodres.2013.02.028 |
[61] |
KONG B H, XIONG Y L, CUI X H, ZHAO X H. Hydroxyl radical-stressed whey protein isolate: Functional and rheological properties. Food Bioprocess Technology, 2013,6(1):169-176.
doi: 10.1007/s11947-011-0674-8 |
[1] | WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858. |
[2] | LI BaoLing,LI Ying,FAN Xin,MA WenHui,CAO YunGang. Synergistic Enhancement of Gelling Properties of Oxidatively Damaged Myofibrillar Protein by Sodium Pyrophosphate and Transglutaminase [J]. Scientia Agricultura Sinica, 2021, 54(16): 3527-3536. |
[3] | GU MingHui,LIU YongFeng,SHEN Qian,QIAO ChunYan. Improving Quality and Delaying Oxidation in Goat Meat Refrigeration by Polyphenols from Thinned Young Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(8): 1643-1654. |
[4] | GE Xia,XU Rui,LI Mei,TIAN JiaChun,LI ShouQiang,CHENG JianXin,TIAN ShiLong. Regulation Mechanism of Carvone on Seed Potato Sprouting [J]. Scientia Agricultura Sinica, 2020, 53(23): 4929-4939. |
[5] | LIN XiaJing,CHEN Fang,JIANG ShouQun,JIANG ZongYong. Effects of Soybean Isoflavones on Growth Performance, Antioxidant Performance and Intestinal Morphology of Early-Weaned Piglets [J]. Scientia Agricultura Sinica, 2020, 53(10): 2101-2111. |
[6] | ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271. |
[7] | TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477. |
[8] | LI Zhen,LIU ZhiYong,JIANG WuJun,HE XuJiang,YAN WeiYu,ZHANG LiZhen,ZENG ZhiJiang. Effects of Natural Bee Bread on Blood Lipid, Antioxidation and Immune Function in Rats with Hyperlipidemia [J]. Scientia Agricultura Sinica, 2019, 52(16): 2912-2920. |
[9] | YuLing YANG, Lei ZHOU, Yuan YOU, XiaoZhi TANG, SuMeng WEI. The Effects of Oxidation on Textural Properties and Water Holding Capacity of Heat-Induced Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2018, 51(18): 3570-3581. |
[10] | WANG Juan, DENG Hong, LIU Yun, GUO YuRong, MENG YongHong. Enzymatic Reaction System and Structural Characterization of Phloridzin Oxidation Products POP2 [J]. Scientia Agricultura Sinica, 2018, 51(1): 182-190. |
[11] | ZHENG XiuPing, DING HaoJie, GUO XiaoLu, YANG Yi, HUANG Yan, CHEN XueQiu, ZHOU QianJin, DU AiFang. Characteristics of Hc-daf-22 Gene from Haemonchus contortus: Crokaryotic Expression and Its Enzymatic Activity [J]. Scientia Agricultura Sinica, 2017, 50(8): 1535-1542. |
[12] | WANG Ce, LI Xia, DENG ShaoYing, WANG Hang, ZHANG ChunHui. Effects of Hydroxyl Radicals Oxidation on Structure and Hydration Properties of Bovine Serum Albumin [J]. Scientia Agricultura Sinica, 2017, 50(15): 3013-3023. |
[13] | TIAN Ping-ping, LI Ren-zhou, JIAN Yong-jian, LI Jian-ming, WANG Jie. Analysis of Antioxidative Functional Components from Walnut Green Rind and Its Antioxidation Stability [J]. Scientia Agricultura Sinica, 2016, 49(3): 543-553. |
[14] | BAI Ya-juan, LIU Lei, ZHANG Rui-fen, DENG Yuan-yuan, HUANG Fei, ZHANG Ming-wei. Longan Pulp Extracts Ameliorate Scopolamine-Induced Learning and Memory of Impairment Mice [J]. Scientia Agricultura Sinica, 2016, 49(21): 4203-4213. |
[15] | CHEN Lin, ZHOU Guang-hong, XU Xing-lian, ZHANG Wan-gang. Effects of High Oxygen Modified Atmosphere Packaging on Protein Oxidation, Calpain Activity and Protein Proteolysis of Pork During Postmortem Refrigerated Storage [J]. Scientia Agricultura Sinica, 2016, 49(18): 3628-3638. |
|