Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2787-2792.doi: 10.3864/j.issn.0578-1752.2012.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

TALENs: Molecular Scissors for Site-specific Genome Editing in Plants

 ZHAO  Kai-Jun, YANG  Bing   

  1. 1.中国农业科学院作物科学研究所/农业部作物遗传育种重点实验室/农作物基因资源与基因改良国家重大科学工程,北京 100081,中国
    2.美国爱荷华州立大学遗传发育和细胞生物学系,爱荷华州 50011,美国
  • Received:2012-05-28 Online:2012-07-15 Published:2012-06-15

Abstract: TALENs (transcription activator-like effector nucleases) are fusion proteins of truncated or full-length TAL effectors with the DNA cleavage domain of the restriction enzyme FokⅠ. Years’ study on the biology of TAL (transcription activator-like) effectors from Xanthomonas bacteria has led to the deciphering of DNA recognition code for TAL effectors, i.e., one of multiple 34-amino acid repeats in the central region of TAL effector preferentially recognizes one nucleotide of lengthy target DNA. With such “code” novel TALENs can be designed and engineered to target chromosomal DNA sequence for genetic modification in eukaryotes. Indeed, TALENs have been used to precisely modify genes or gene functions in yeast, plant, animal and even human pluripotent stem cells, holding the promise in its application to both basic and applied researches. This review highlights some aspects of methodologies as well as specifically the applications and prospects of TALENs in plant functional genomics and crop improvement.

Key words: TALENs, site-specific genome editing, TAL effector, plant genetic improvement

[1] Paszkowski J, Baur M, Bogucki A, Potrykus I. Gene targeting in plants. The EMBO Journal, 1988, 7: 4021-4026.

[2] Lloyd A, Plaisier C L, Carroll D, Drews G N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2005, 102: 2232-2237.

[3] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 2009, 326: 1509-1512.

[4] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326: 1501.

[5] Li T, Huang S, Jiang W Z, Wright D, Spalding M H, Weeks D P, Yang B. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 2011, 39(1): 359-372.

[6] Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F,Hummel A, Bogdanove A J, Voytas D F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186: 757-761.

[7] Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J E J. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143-148.

[8] Miller J, McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor III A from Xenopus oocytes. The EMBO Journal, 1985, 4: 1609-1614.

[9] Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annual Review of Biochemistry, 2010, 79: 213-231.

[10] Pabo C O, Peisach E, Grant R A. Design and selection of novel cys2his2 zinc finger proteins. Annual Review of Biochemistry, 2001, 70: 313-340.

[11] Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to FokⅠcleavage domain. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 1156-1160.

[12] 张余洋, 张晓辉, 张婵娟. 利用人工锌指蛋白核酸酶进行植物基因定点突变和置换. 中国生物工程杂志, 2008, 28(11): 110-115.

Zhang Y Y, Zhang X H, Zhang C J. Targeted gene mutagenesis and replacement mediated by zinc finger nucleases. China Biotechnology, 2008, 28(11): 110-115. (in Chinese)

[13] Sander J D, Zaback P, Joung J K, Voytas D F, Dobbs D. An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Research, 2009, 37: 506-515.

[14] Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 2011, 39: 1-11.

[15] Bonas U, Stall R E, Stskawicz B J. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. campestris. Molecular and General Genetics, 1989, 218(1): 127-136.

[16] 李岩强, 王春连, 赵开军. 病原细菌TAL效应子与寄主靶基因识别的分子密码. 生物工程学报, 2011, 27(8) : 1132-1141.

Li Y Q, Wang C L, Zhao K J. Molecular recognition code between pathogenic bacterial TAL-effectors and host target genes-a review. Chinese Journal of Biotechnology, 2011, 27(8): 1132-1141. (in Chinese)

[17] Reyon D, Tsai S Q, Kyayter C, Foden J F, Sander J D, Joung J K. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 2012, 30: 460-465.

[18] Li T, Huang S, Zhao X, Wright D A, Carpenter S, Spalding M H, Weeks D P, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, 39: 6315-6325.

[19] Zhang F, Cong L, Lodato S, Kosuri S, Church G M, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 2011, 29: 149-153.

[20] Morbitzer R, Elsaesser J, Hausner J, Lahaye T. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Research, 2011, 39: 5790-5799.

[21] Li L, Piatek M J, Atef A, Piatek A, Wibowo A, Fang X, Sabir J S, Zhu J K, Mahfouz M M. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Molecular Biology, 2012, 78: 407-416.

[22] Weber E, Gruetzner R, Werner S, Engler C. Marillonnet S. Assembly of designer TAL effectors by golden gate cloning. PLoS One, 2011, 6: 19722.

[23] Sander J D, Cade L, Khayter C, Reyon D, Peterson R T, Joung J K, Yeh J R J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29: 697-698.

[24] Huang P, Xiao A, Zhou M G, Zhu Z Y, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 2011, 29: 699-700.

[25] Tesson L, Usal C, Ménoret S, Leung E, Niles B J, Remy S, Santiago Y, Vincent A I, Meng X D, Zhang L, Gregory P D, Anegon I, Cost G J. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29: 695-696.

[26] Wood A J, Lo T W, Zeitler B, Pickle C S, Ralston E J, Lee A H, Amora R, Miller J C, Leung E, Meng X D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Meyer B J. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333: 307.

[27] Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731-734.

[28] Mahfouz M M, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J K. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the USA, 2011, 108(6): 2623-2628.

[29] Li T, Liu B, Spalding H M, Weeks D, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 2012, 30(5): 390-392.
[1] WANG FuJun, ZHAO KaiJun. Progress and Challenge of Crop Genetic Improvement via Genome Editing [J]. Scientia Agricultura Sinica, 2018, 51(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!