Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2728-2742.doi: 10.3864/j.issn.0578-1752.2020.13.020

• ECOLOGICAL INDUSTRY PRACTICE AND REGIONAL SCALE PROCESSES • Previous Articles     Next Articles

Analysis of Spatial-Temporal Characteristics of Drought Variation in Grassland Area of Inner Mongolia Based on TVDI

CHENG Wei,XIN XiaoPing()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081
  • Received:2019-09-20 Accepted:2020-04-01 Online:2020-07-01 Published:2020-07-16
  • Contact: XiaoPing XIN E-mail:xinxiaoping@caas.cn

Abstract:

【Objective】 To study the spatio-temporal characteristics of temperature vegetation drought index (TVDI) in the grassland area of Inner Mongolia in the past 18 years and to explore the relationship between TVDI and meteorological factors, so as to provide theoretical reference for ecological warning and ecological restoration of the study area. 【Method】 Based on MODIS enhanced vegetation index (EVI) and land surface temperature (LST) products to build Ts-EVI characteristic space, according to the characteristic space to calculate TVDI, for normal value of accumulated year of TVDI using unary the Theil-Sen Median trend analysis and Mann-Kendall examination to study the spatial distribution, time-varying characteristics and spatiotemporal evolution trend of drought in the study area during 18 years. 【Result】 On the whole, the average drought degree of grassland in Inner Mongolia is high in southwest and low in northeast, and the average annual TVDI of all grassland types is in order of temperate desert type>temperate steppe-desert type>temperate desert-steppe type>marsh type>temperate steppe type>temperate meadow-steppe type>lowland meadow type>montane meadow type. Among them, the desert grasslands (temperate desert type, temperate steppe-desert type and temperate desert-steppe type) are mainly in the state of severe and mild drought, while non-desert grasslands (temperate steppe type, temperate meadow steppe type, lowland meadow type, mountain meadow type and marsh type) are mainly in the state of mild drought, normal state and mild wetness. Over the past 18 years, the desert grassland has been gradually drying out. In contrast, the non-desert grassland is basically getting wet slowly except for temperate steppe type. In terms of spatial distribution, the total area ratios of the three types of desert grasslands with stable drought degree and drying tendency (slight drying, drying and significant drying) are respectively 44.93% and 55.01%. The total area ratios of the five types of non-desert grassland with stable drought degree and wetting trend (slightly wetting, wetting and significantly wetting) were 72.19% and 24.27%, respectively. 【Conclusion】 Therefore, in the past 18 years, the drought situation of desert grassland is mainly stable and continuous drying, and there are more areas that keep drying, so the ecological environment of grassland continues to deteriorate. The drought situation of non-desert grassland is mainly stable, a small part of the area has a tendency of becoming wet, so the ecological environment of grassland is improving steadily. In addition, the lack of precipitation has a significant effect on the drought degree of non-desert grassland, but not on the desert grassland. The increase of temperature only has a significant effect on the drought degree of the temperate steppe type and the temperate steppe-desert type.

Key words: temperature vegetation drought index, remote sensing, spatial and temporal characteristics, Inner Mongolia, grassland type

Fig. 1

Spatial distribution and area ratio of grassland types in Inner Mongolia 审图号:GS(2020)2229号"

Table 1

The dry and wet edges in Ts-EVI space estimated by linear regression for 2007"

日序Day of year 干边Dry edge 湿边 Wet edge
2007001 Tsmax = -82.87x+11.56 (R2=0.83) Tsmin= 40.12x-34.74 (R2=0.70)
2007017 Tsmax = -90.54x+15.04 (R2=0.80) Tsmin= 20.20x-26.08 (R2=0.44)
2007033 Tsmax = -97.38x+15.04 (R2=0.81) Tsmin= 33.15x-25.03 (R2=0.74)
2007049 Tsmax = -145.5x+34.04 (R2=0.85) Tsmin= 49.65x-26.43 (R2=0.77)
2007065 Tsmax = -172.65x+37.75 (R2=0.87) Tsmin= 61.21x-24.82 (R2=0.51)
2007081 Tsmax = -203.46x+49.17 (R2=0.85) Tsmin= 31.51x-11.72 (R2=0.43)
2007097 Tsmax = -148.72x+48.57 (R2=0.90) Tsmin= 64.58x-11.61 (R2=0.71)
2007113 Tsmax = -140.01x+56.65 (R2=0.73) Tsmin= -13.78x+9.54 (R2=0.16)
2007129 Tsmax = -32.86x+43.75 (R2=0.83) Tsmin= 41.38x+0.76 (R2=0.78)
2007145 Tsmax = -42.46x+52.65 (R2=0.92) Tsmin= -2.33x+20.41 (R2=0.03)
2007161 Tsmax = -41.11x+56.77 (R2=0.95) Tsmin=-7.85x+23.16 (R2=0.29)
2007177 Tsmax = -39.30x+58.04 (R2=0.96) Tsmin= -5.74x+24.22 (R2=0.13)
2007193 Tsmax = -36.77x+55.14 (R2=0.95) Tsmin= -2.93x+20.76 (R2=0.03)
2007209 Tsmax = -39.59x+58.42 (R2=0.94) Tsmin= -4.29x+22.52 (R2=0.16)
2007225 Tsmax = -33.28x+50.68 (R2=0.93) Tsmin= -11.03x+25.73 (R2=0.45)
2007241 Tsmax = -39.86x+50.00 (R2=0.93) Tsmin= 4.31x+16.25 (R2=0.05)
2007257 Tsmax = -46.32x+44.40 (R2=0.90) Tsmin= 7.98x+7.82 (R2=0.21)
2007273 Tsmax = -41.59x+35.04 (R2=0.93) Tsmin= 52.85x-3.67 (R2=0.69)
2007289 Tsmax = -110.85x+37.67 (R2=0.90) Tsmin= 27.34x-9.22 (R2=0.34)
2007305 Tsmax = -77.21x+23.40 (R2=0.84) Tsmin= 32.70x-14.35 (R2=0.53)
2007321 Tsmax = -96.06x+17.73 (R2=0.84) Tsmin= 36.85x-30.38 (R2=0.71)
2007337 Tsmax = -78.62x+11.81 (R2=0.85) Tsmin= 29.30x-30.69 (R2=0.63)
2007353 Tsmax = -84.95x+14.68 (R2=0.88) Tsmin= 29.17x-31.44 (R2=0.56)

Fig. 2

Relationship between TVDI and soil relative humidity in 10 cm depth"

Table 2

Criteria for classification of drought with TVDI"

干旱等级Drought grades TVDI值TVDI value
重度湿润Severe wetness 0<TVDI≤0.2
轻度湿润Mild wetness 0.2<TVDI≤0.4
正常Normal state 0.4<TVDI≤0.6
轻度干旱Mild drought 0.6<TVDI≤0.8
重度干旱Severe drought 0.8<TVDI≤1.0

Fig. 3

Spatial distribution of drought grades with annual average TVDI from 2000 to 2017 in Inner Mongolia 审图号:GS(2020)2229号"

Fig. 4

The area ratio of different drought grades in different grassland types TD-Temperate desert type; TS-Temperate steppe type; TSD-Temperate steppe-desert type; TDS-Temperate desert-steppe type; TMS-Temperate meadow-steppe type; LM-Lowland meadow type; MM-Montane meadow type; M-Marsh type"

Fig. 5

Interannual variation of TVDI from 2000 to 2017 in Inner Mongolia"

Table 3

Characteristic of linear regression of TVDI and drought trend in different grassland types"

草地类型
Grassland type
回归方程
Regression equation
R2 显著性
Significance
TVDI趋势
Trend of TVDI
干旱趋势
Trend of drought
TMS y = -0.0036x + 0.5725 0.4428 P<0.01 减小 Decrease 变湿 Wet
TDS y = 0.0026x + 0.6297 0.279 P<0.05 增加 Increase 变干 Dry
TSD y = 0.003x + 0.6846 0.4666 P<0.01 增加 Increase 变干 Dry
TD y = 0.0025x + 0.7812 0.4091 P<0.01 增加 Increase 变干 Dry
LM y = -0.0018x + 0.526 0.3518 P<0.01 减小 Decrease 变湿 Wet
MM y = -0.0036x + 0.4641 0.4956 P<0.01 减小 Decrease 变湿 Wet
M y = -0.0015x + 0.6542 0.307 P<0.05 减小 Decrease 变湿 Wet

Fig. 6

The 16 days interval variation of average TVDI (18 years average)"

Fig. 7

Spatial distribution of variation trend (a) and corresponding significance (b) for TVDI 审图号:GS(2020)2229号"

Table 4

Classification of the significance of drought trend"

β |Zc|
|Zc|≤1.960 1.960<|Zc|≤2.576 2.576<|Zc|≤3.291 |Zc|>3.291
β≤-0.001 稳定不变Stable 轻微变湿Wet slightly 变湿Wet 显著变湿Wet significantly
-0.001<β≤0.001 稳定不变Stable 稳定不变Stable 稳定不变Stable 稳定不变Stable
β>0.001 稳定不变Stable 轻微变干Dry slightly 变干Dry 显著变干Dry significantly

Fig. 8

Spatial distribution of drought detailed changes in Inner Mongolia from 2000 to 2017 审图号:GS(2020)2229号"

Table 5

The ratio of area for each drought type (%)"

变化类型Change type TMS TS TDS TSD TD LM MM M
显著变湿Wet significantly 2.83 0.33 0 0 0 2.23 3.54 1.12
变湿Wet 18.67 2.42 0.02 0 0.02 10.23 17.30 7.44
轻微变湿Wet slightly 28.44 9.39 0.04 0.02 0.04 18.58 31.77 16.93
稳定不变Stable 49.98 84.02 63.43 33.93 37.98 63.68 47.37 63.02
轻微变干Dry slightly 0.07 2.91 22.17 32.38 34.13 3.61 0.02 9.91
变干Dry 0.01 0.84 12.32 26.50 23.50 1.30 0 1.47
显著变干Dry significantly 0 0.10 2.02 7.16 4.33 0.36 0 0.10

Fig. 9

Correlation between TVDI and precipitation (a) and the corresponding significance tests (b) 审图号:GS(2020)2229号"

Table 6

Area ratio of correlation between TVDI and precipitation and the corresponding significance tests (%)"

显著性Significanct TMS TS TDS TSD TD LM MM M
显著正相关Positive correlation & P<0.05 0 0 0 0 0.01 0.09 0.01 0.06
正相关不显著Positive correlation & P>0.05 0.55 0.53 0.26 1.10 12.27 9.26 0.85 4.25
显著负相关Negative correlation & P<0.05 89.66 61.67 37.00 12.07 5.68 49.15 80.47 35.06
负相关不显著Negative correlation & P>0.05 9.79 37.80 62.74 86.83 82.04 41.50 18.67 60.63

Fig. 10

Correlation between TVDI and air temperature (a) and the corresponding significance tests (b) 审图号:GS(2020)2229号"

Table 7

Area ratio of correlation between TVDI and air temperature and the corresponding significance tests(%)"

显著性Significanct TMS TS TDS TSD TD LM MM M
显著正相关Positive correlation & P<0.05 25.00 64.47 44.60 52.48 37.37 29.95 19.69 19.87
正相关不显著Positive correlation & P>0.05 73.49 35.29 53.44 45.88 61.87 65.31 77.72 78.72
显著负相关Negative correlation & P<0.05 0 0 0 0.01 0.02 0.01 0 0
负相关不显著Negative correlation & P>0.05 1.51 0.24 1.96 1.63 0.74 4.73 2.59 1.41
[1] LI Y, HUANG J P, JI M X, RAN J J. Dryland expansion in northern China from 1948 to 2008. Advances in Atmospheric Sciences, 2015,32(6):870-876.
[2] HUANG J P, ZHANG W, ZUO J Q, BI J R, SHI J S, WANG X, CHANG Z L, HUANG Z W, YANG S, ZHANG B D, WANG G Y, FEGN G H, YUAN J Y, ZHANG L, ZUO H C, WANG S G, FU Z B, CHOU J F. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Advances in Atmospheric Sciences, 2008,25(6):906-921.
[3] PETERSON T C, HOERLING M P, STOTT P A, HERRING S C. Explaining extreme events of 2012 from a climate perspective. Bulletin of the American Meteorological Society, 2013,94(9):S1-S73.
[4] ROHLI R V, BUSHRA N, AM N S, ZOU L, MIHUNOV V, REAMS M A, ARGOTE J E. Drought indices as drought predictors in the south-central USA. Natural Hazards, 2016,83(3):1567-1582.
[5] MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales//AMS 8th Conference on Applied Climatology. Anaheim, CA: American Meteorological Society, 1993: 179-184.
[6] PALMER W C. Meteorological Drought. Research Paper No. 45. Washington. DC: United State Department of Commerce, Weather Bureau, 1965:45-58.
[7] VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 2010,23(7):1696-1718.
[8] 胡红武, 胡梅, 龙玲, 刘雷. 区域干旱遥感监测研究综述, 安徽农业科学, 2008,36(33):14817-14819.
HU H W, HU M, LONG L, LIU L. Research on drought monitoring by remote sensing in attachment. Journal of Anhui Agriculture Science, 2008,36(33):14817-14819. (in Chinese)
[9] 黄友昕, 刘修国, 沈永林, 刘诗诗, 孙飞. 农业干旱遥感监测指标及其适应性评价方法研究进展. 农业工程学报, 2015,8(16):186-195.
HUANG Y X, LIU X G, SHEN Y L, LIU S S, SUN F. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods. Transactions of the Chinese Society of Agricultural Engineering, 2015,8(16):186-195. (in Chinese)
[10] BHUIYAN C, SINGH R P, KOGAN F N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2006,6(4):289-302.
[11] ANDERSON M C, HAIN C, OTKIN J, ZHAN X W, MO K, SVOBODA M, WARDLOW B, PIMSTEIN A. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with us drought monitor classifications. Journal of Hydrometeorology, 2013,14(4):1035-1056.
[12] ROUSE J W, HAAS R H, SCHELL J A, DEERING D W. Monitoring Vegetation Systems in the Great Plains with ERTS//Proceedings of the Third ERTS-1 Symposium NASA SP-351. Washington DC, 1974: 309-317.
[13] KOGAN F N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 1990,11(8):1405-1419.
[14] KOGAN F N. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 1995,15(11):91-100.
[15] 王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用. 武汉大学学报(信息科学版), 2001,26(5):412-418.
WANG P X, GONG J Y, LI X W. Vegetation-temperature condition index and its application for drought monitoring. Geomatics and Information Science of Wuhan University. 2001,26(5):412-418. (in Chinese)
[16] SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 2002,79(2):213-224.
[17] LIANG L, ZHAO S H, QIN Z H, HE K X, CHEN C, LUO Y X, ZHOU X D. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010. Journal of Integrative Agriculture, 2014,13(7):1501-1508.
[18] 温国涛, 白建军, 孙嵩松. 基于时间序列遥感数据的陕西省2004-2014年干旱变化特征分析. 干旱地区农业研究, 2018,36(1):221-229.
WEN G T, BAI J J, SUN S S. Variation of drought in Shaanxi from 2004 to 2014 based on remotely sensed data. Agricultural Research in the Arid Areas, 2018,36(1):221-229. (in Chinese)
[19] 托亚. 内蒙古干旱成因及预测研究[D]. 北京: 中国农业科学院学位论文, 2006.
TUO Y. Research on the cause of formation and forecast method of draught in Inner Mongolia[D]. Beijing: Chinese Academy of Agriculture Sciences, 2006. (in Chinese)
[20] 宋春桥, 游松财, 刘高焕, 柯灵红, 钟新科. 基于TVDI的藏北地区土壤湿度空间格局. 地理科学进展, 2011,30(5):569-576.
SONG C Q, YOU S C, LIU G H, KE L H, ZHONG X K. The spatial pattern of soil moisture in northern Tibet based on TVDI method. Process in Geography, 2011,30(5):569-576. (in Chinese)
[21] 杨曦, 武建军, 闫峰, 张洁. 基于地表温度-植被指数特征空间的区域土壤干湿状况. 生态学报, 2009,29(3):1205-1216.
YANG X, WU J J, YAN F, ZHANG J. Assessment of regional soil moisture status based on characteristics of surface temperature/ vegetation index space. Acta Ecologica Sinica, 2009,29(3):1205-1216. (in Chinese)
[22] 毕力格, 银山, 包玉龙, 关彦如. 基于TVDI 的内蒙古植被生长期干旱研究. 安徽农业科学, 2011,39(10):5945-5948.
BI L G, YIN S, BAO Y L, GUAN Y R. Research on the drought during the vegetation growth period of Inner Mongolia based on TVDI, Journal of Anhui Agricultural Science, 2011,39(10):5945-5948. (in Chinese)
[23] 左娇娇. 基于TVDI的内蒙古地区干旱频率时空变换分析. 可持续发展, 2018,295(8):48-50.
ZUO J J. Spatiotemporal transformation analysis of drought frequency in Inner Mongolia based on TVDI. Sustainable Development, 2018,295(8):48-50. (in Chinese)
[24] 内蒙古草地资源编委会. 内蒙古草地资源. 呼和浩特: 内蒙古人民出版社, 1990.
Inner Mongolia Grassland Resources Editorial Committee. Grassland Resources of Inner Mongolia. Hohhot: Inner Mongolia People's Publishing House, 1990. (in Chinese)
[25] HUTCHINSON M F. Anusplin Version 4.3 User Guide. Canberra: The Australia National University, Center for Resource and Environment Studies. 2004. http://cres.anu.edu.au/outputs/anuslin.php.
[26] 刘志红, LI L T, McVICAR T R, Van NIEL T G, 杨勤科, 李锐. 专用气候数据空间插值软件ANUSPLIN及其应用. 气象, 2008,34(2):92-100.
LIU Z H, LI L T, McVicar T R, VAN NIEL T G, YANG Q K, LI R. Introduction of the professional interpolation software for meteorology data: ANUSPLINN. Meteorological, 2008,34(2):92-100. (in Chinese)
[27] 1:1000000中国草地资源图编制委员会. 1:1000000中国草地资源图集, 北京: 中国地图出版社, 1993.
1:1000000 CHINA GRASSLAND RESOURCES MAP COMPILATION COMMITTEE. 1:1000000 Atlas of Grassland Resources in China Beijing: China Map Press. 1993. (in Chinese)
[28] PRICE J C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(1):940-948.
[29] CARLSON T N, GILLIES R R, PERRY E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 1994,9(1):161-173.
[30] NEMANI R R, RUNNING S W. Estimation of regional surface resistance to evapotranspiration from NDVI and Thermal-IR AVHRR data. Journal of Applied Meteorology, 1989,28(4):276-284.
[31] MORAN M S, RAHMAN A F, WASHBURNE J C, GOODRICH D C, WELTZ M A, KUSTAS W P. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agricultural and Forest Meteorology, 1996,80(2):87-109.
[32] CARLSON T N. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 2007,7:1612-1629.
[33] 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究. 遥感学报, 2003,7(5):420-427.
QI S H, WANG C Y, NIU Z. Evaluating soil moisture status in China using the temperature/vegetation dryness index (TVDI). Journal of Remote Sensing, 2003,7(5):420-427. (in Chinese)
[34] 姚春生, 张增祥, 汪潇. 使用温度植被干旱指数法(TVDI)反演新疆土壤湿度. 遥感技术与应用, 2004,19(6):473-478.
YAO C S, ZHANG Z X, WANG X. Evaluating soil moisture status in Xinjiang using the temperature vegetation dryness index (TVDI), Remote Sensing Technology and Application, 2004,19(6):473-478. (in Chinese)
[35] 刘英, 岳辉, 侯恩科. MODIS 数据在陕西省干旱监测中的应用. 国土资源遥感, 2019,31(2):172-179.
LIU Y, YUE H, HOU E K. Drought monitoring based on MODIS in Shaanxi. Remote Sensing for Land and Resources, 2019,31(2):172-179. (in Chinese)
[36] 刘馨, 宋小宁, 冷佩, 夏龙. 基于MODIS数据的黄河源区土壤干湿状况时空格局变化. 中国科学院大学学报, 2019,36(2):178-187.
LIU X, SONG X N, LENG P, XIA L. Spatiotemporal variation of drought conditions based on MODIS data over the source area of Yellow River. Journal of University of Chinese Academy of Sciences, 2019,36(2):178-187. (in Chinese)
[37] HUETE A, DIDAN K, VAN LEEUWEN W, VERMOTE E. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation. Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, 1999,3868:141-151.
[38] HUETE A, DIDAN K, MIURA T, RODRIGUEZ E P, GAO X, FERREIRA L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002,83(1):195-213.
[39] CAI B F, YU R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. Journal of Remote Sensing, 2009,13(6):1170-1186.
[40] TUCKER C J, NEWCOMB W W, LOS S O, PRINCE S D. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981-1989. International Journal of Remote Sensing, 1991,12(6):1133-1135.
[41] MILICH L, WEISS E. GAC NDVI inter annual coefficient of variation (CoV) images: ground truth sampling of the Sahel along north-south transects. International Journal of Remote Sensing, 2000,21(2):235-260.
[42] LUNETTA R S, KNIGHT J F, EDIRIWICKREMA J, LYON J G, WORTHY L D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 2006,105(2):142-154.
[43] 袁丽华, 蒋卫国, 申文明, 刘颖慧, 王文杰, 陶亮亮, 郑华, 刘孝富. 2000-2010年黄河流域植被覆盖的时空变化. 生态学报, 2013,33(24):7798-7806.
YUAN L H, JIANG W G, SHEN W M, LIU Y H, WANG W J, TAO L L, ZHENG H, LIU X F. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecologica Sinaca,2013,33(24):7798-7806. (in Chinese)
[44] 戴声佩, 张勃, 王海军, 王亚敏, 郭玲霞, 王兴梅, 李丹. 中国西北地区植被覆盖变化驱动因子分析. 干旱区地理, 2010,33(4):636-643.
DAI S H, ZHANG B, WANG H J, WANG Y M, GUO L X, WANG X M, LI D. Vegetation cover change and its driving factors over northwest China. Arid Land Geography, 2010,33(4):636-643. (in Chinese)
[45] THEIL H. A rank-invariant method of linear and polynomial regression analysis. I, II and III// Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Series A Mathematical Sciences, 1950,53:386-392,521-525,1397-1412.
[46] SEN P K. Estimates of the regression coefficient based on Kendall' s tau. Journal of the American Statistical Association, 1968,63(324):1379-1389.
[47] HOAGLIN D C, MOSTELLER F, TUKEY J W. Understanding Robust and Exploratory Data Analysis. New York: Wiley, 2000, 169-181.
[48] KENDALL M G. Rank Correlation Methods. London: Griffin, 1975.
[49] TOŠIĆ I. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theoretical and Applied Climatology, 2004,77(1/2):47-56.
[50] MANN H B. Noparametric tests against trend. Econometrica, 1945,3(3):245-259.
[51] GOETZ S J. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 1997,18(1):71-94.
[52] 王纯枝, 毛留喜, 何延波, 韩丽娟, 陈健, 宇振荣. 温度植被干旱指数法(TVDI)在黄淮海平原土壤湿度反演中的应用研究. 土壤通报, 2009,40(5):998-1005.
WANG C Z, MAO L X, HE Y B, HAN L J, CHEN J, YU Z R. Application of temperature-vegetation dryness index (TVDI) in estimation of soil moisture in the Huanghuaihai Plain. Chinese Journal of Soil Science, 2009,40(5):998-1005. (in Chinese)
[53] ALTMAN D G, BLAND J M. How to obtain the confidence interval from a P value. British Medical Journal, 2011,343(Aug08 1):d2090-d2090.
[1] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[2] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[3] LI MeiXuan,ZHU XiCun,BAI XueYuan,PENG YuFeng,TIAN ZhongYu,JIANG YuanMao. Remote Sensing Inversion of Nitrogen Content in Apple Canopy Based on Shadow Removal in UAV Multi-Spectral Remote Sensing Images [J]. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094.
[4] FengZhi SHI,RuiYan WANG,YuHuan LI,Hong YAN,XiaoXin ZHANG. LAI Estimation Based on Multi-Spectral Remote Sensing of UAV and Its Application in Saline Soil Improvement [J]. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805.
[5] ZHAO Jing,LI ZhiMing,LU LiQun,JIA Peng,YANG HuanBo,LAN YuBin. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555.
[6] ZHU XiaoYu,XU DaWei,XIN XiaoPing,SHEN BeiBei,DING Lei,WANG Xu,CHEN BaoRui,YAN RuiRui. The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015 [J]. Scientia Agricultura Sinica, 2020, 53(13): 2715-2727.
[7] ZHANG XiaoLi,ZHANG HongYuan,LU Chuang,PANG HuanCheng,JIN CunWang,GAO Xi,CHENG AiPing,LI YuYi. Effects of the Different Autumn Irrigation Years on Soil Bacterial Community in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2019, 52(19): 3380-3392.
[8] LIU HuanJun, YU ShengNan, ZHANG XinLe, GUO Dong, YIN JiXian. Timeliness Analysis of Crop Remote Sensing Classification One Crop A Year [J]. Scientia Agricultura Sinica, 2017, 50(5): 830-839.
[9] CHEN ZhiFang, SONG Ni, WANG JingLei, SUN JingSheng. Leaf Water Potential Estimating Models of Winter Wheat Based on Hyperspectral Remote Sensing [J]. Scientia Agricultura Sinica, 2017, 50(5): 871-880.
[10] ZHANG XiaoYuan, ZHANG LiFu, ZHANG Xia, WANG ShuDong, TIAN JingGuo, ZHAI YongGuang. Sensitivity of Different Spectral Vegetation Index for Estimating Winter Wheat Leaf Nitrogen [J]. Scientia Agricultura Sinica, 2017, 50(3): 474-485.
[11] LI Jian-jun, XU Ming-gang, XIN Jing-shu, DUAN Jian-jun, REN Yi, LI Dong-chu, HUANG Jing, SHEN Hua-ping, ZHANG Hui-min. Spatial and Temporal Characteristics of Basic Soil Productivity in China [J]. Scientia Agricultura Sinica, 2016, 49(8): 1510-1519.
[12] HU Xing-guo, SONG Wen-wen, WEI Yun-shan, SUN Bin-cheng, LI Qiang, CHAI Shen, SUN Ru-jian, SHAO Yu-bin, REN Ke, DING Su-rong, WU Cun-xiang, WU Ting-ting, ZHANG Wan-hai, HAN Tian-fu. Maturity Group Classification and Planting Regionalization of Soybean Varieties in the Inner Mongolia [J]. Scientia Agricultura Sinica, 2016, 49(2): 260-271.
[13] SONG Qian, ZHOU Qing-bo, WU Wen-bin, HU Qiong, YU Qiang-yi,TANG Hua-jun. Recent Progresses in Research of Integrating Multi-Source Remote Sensing Data for Crop Mapping [J]. Scientia Agricultura Sinica, 2015, 48(6): 1122-1135.
[14] TAN Chang-wei, LUO Ming, YANG Xin, MA Chang, YAN Xiang, ZHOU Jian, DU Ying, WANG Ya-nan. Remote Sensing Estimation of Winter Wheat Theoretical Yield on Regional Scale Using Partial Least Squares Regression Algorithm Based on HJ-1A/1B Images [J]. Scientia Agricultura Sinica, 2015, 48(20): 4033-4041.
[15] TAN Chang-wei, YANG Xin, LUO Ming, MA Chang, YAN Xiang, CHEN Ting-ting. Quantitative Inversion of Key Seedling Condition Parameters in Winter Wheat at Booting Stage Using Remote Sensing Based on HJ-CCD Images [J]. Scientia Agricultura Sinica, 2015, 48(13): 2518-2527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!