Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2743-2756.doi: 10.3864/j.issn.0578-1752.2020.13.021

• ECOLOGICAL INDUSTRY PRACTICE AND REGIONAL SCALE PROCESSES • Previous Articles     Next Articles

Temporal and Spatial Variation of Productivity and Its Response to Climate in Semi-Arid Pasture of Forage Harvesting Area

MAO PingPing,SHEN BeiBei,DING Lei,ZHU XiaoYu,XIN XiaoPing(),YAN YuChun,WANG Xu,YAN RuiRui,XU LiJun,CHEN BaoRui   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Hulunbuir Grassland Ecosystem Observation and Research Station, Beijing 100081
  • Received:2019-09-15 Accepted:2020-04-01 Online:2020-07-01 Published:2020-07-16
  • Contact: XiaoPing XIN E-mail:xinxp@sina.com

Abstract:

【Objective】 This study aimed to simulate the productivity of hay-land in the semi-arid pastoral region, to evaluate the grassland degradation and to explore the impact of climate on grassland production. 【Method】 The potential productivity of hay-land from 2000 to 2017 was calculated by using Miami and Thornthwaite model, and compared with the MODIS NPP products (MOD17A2H), which represented the actual productivity. 【Result】 From 2000 to 2017, both actual productivity and potential productivity of hay-land in semi-arid pastoral region increased with rising precipitation, with mean value of 295.24 and 557.79 g C?m-2?a-1, respectively. Both the potential and actual productivity were the highest in meadow steppe, which were 589.68 and 349.78 g C?m-2?a-1, respectively, and with the lowest coefficient of variation. The potential productivity was the lowest in mountainous meadow with an average value of 518.72 g C?m-2?a-1, while the actual productivity was the lowest in the typical steppe with 269.52 g C?m-2?a-1. The inter-annual change rate of potential productivity was the highest in the meadow steppe, which was 6.30 g C?m-2?a-1, and the actual productivity was the highest in mountainous meadow with 4.44 g C?m-2?a-1. The actual productivity showed significant positive relationship with precipitation in 95.88% of the hay-land steppe, however, showed negative correlation with temperature in 5.70% of the area. 【Conclusion】 The climatic production potential of forage harvesting area increased from west to east. Under the influence of hydrothermal conditions, the actual productivity gradually decreased in the east and west foothills of the Daxing’an Mountain range, and its response to precipitation was higher than that of temperature. The average annual utilization rate of climate resources was the same as the actual productivity, and the average utilization rate of climate resources was 55.09%. The grassland of meadow grassland had the highest utilization rate of climate resources, which was as high as 60.34%.

Key words: climate productivity potential, actual productivity, forage harvesting area, climate resources utilization

Fig. 1

Distribution of grassland types of cutting pasture 审图号:GS(2020)2229号"

Fig. 2

The consistency test of measured value and simulated value"

Fig. 3

The climate potential productivity (A) and its dynamic coefficient of variation (B) and change slope (C) of in cutting pasture 审图号:GS(2020)2229号"

Fig. 4

Inter annual changes climate potential productivity in different grassland types of cutting pasture"

Table 1

18-years average annual climate potential production in different grassland types of cutting pasture"

草地类型
Grassland type
温度
t
(℃)
降水
p
(mm)
蒸散量
v
(mm)
由温度决定的植物干物质产量
Wt (g C?m-2?a-1)
由降水决定的植物干物质产量
Wp (g C?m-2?a-1)
由蒸散量决定的植物干物质产量
Wv (g C?m-2?a-1)
气候生产潜力
W
(g C?m-2?a-1)
限制因子Limiting factor
草甸草原 Meadow steppe 2.32 368.76 360.41 794.92 647.12 623.09 623.09 V
山地草甸 Mountain steppe 0.77 315.40 319.89 688.27 563.66 545.13 545.13 V
典型草原 Typical steppe 2.47 304.84 364.03 802.22 546.47 565.75 546.47 p
低地草甸 Lowland steppe 1.78 322.70 346.30 756.91 574.74 568.62 568.62 V

Fig. 5

The actual productivity (A) and its dynamic coefficient of variation (B) and change slope (C) of in cutting pasture 审图号:GS(2020)2229号"

Fig. 6

Mean actual productivity of different grassland types from 2000 to 2017"

Fig. 7

The spatial distribution of significant level between actual productivity with precipitation(A, B) and temperature (C,D) and the pixel frequency 审图号:GS(2020)2229号"

Table 2

Statistical tables of correlation coefficients between actual productivity and precipitation for different grassland types"

草地类型
Grassland type
相关性系数区间所占面积分配比 Area distribution ratio of correlation coefficients interval (%)
显著负相关
Negative correlation
不显著相关
Not significantly correlation
显著正相关
Positive correlation
-1.000—-0.693*** -0.693—-0.575** -0.575—-0.456* -0.456—0.456 0.456—0.575* 0.575—0.693** 0.693—1.000***
草甸草原
Meadow steppe
0.00 0.01 0.05 4.37 7.05 21.41 67.11
山地草甸
Mountain steppe
0.00 0.00 0.00 2.52 9.17 15.36 72.95
典型草原
Typical steppe
0.00 0.00 0.00 2.87 5.20 16.77 75.16
低地草甸
Lowland steppe
0.01 0.01 0.02 1.79 3.36 16.31 78.50
总计Total 0.00 0.01 0.02 3.09 5.45 18.04 73.39

Table 3

Statistical tables of actual productivity and temperature correlation coefficients for different grassland types"

草地类型
Grassland type
相关性系数区间所占面积分配比 Area distribution ratio of correlation coefficient interval (%)
显著负相关
Negative correlation
不显著相关
Not significantly correlation
显著正相关
Positive correlation
-1.000—-0.693*** -0.693—-0.575** -0.575—-0.456* -0.456—0.456 0.456—0.575* 0.575—0.693** 0.693—1.000***
草甸草原
Meadow steppe
0.00 0.22 2.39 97.38 0.00 0.00 0.00
山地草甸
Mountain steppe
0.00 0.00 2.98 97.02 0.00 0.00 0.00
典型草原
Typical steppe
0.00 0.26 6.62 93.13 0.00 0.00 0.00
低地草甸
Lowland steppe
0.02 0.57 7.13 92.28 0.00 0.00 0.00
总计Total 0.01 0.31 5.38 94.31 0.00 0.00 0.00

Fig. 8

The distribution of 18-year average climate resources utilization (A) and the pixel frequency of cutting pasture (B) 审图号:GS(2020)2229号"

Fig. 9

The difference between potential productivity and actual productivity of cutting pasture from 2000 to 2017"

[1] 石岳, 马殷雷, 马文红, 梁存柱, 赵新全, 方精云, 贺金生. 中国草地的产草量和牧草品质: 格局及其与环境因子之间的关系. 科学通报, 2013,58(3):226-239.
SHI Y, MA Y L, MA W H, LIANG C H, ZHAO X Q, FANG J Y, HE J S. Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 2013,58(3):226-239. (in Chinese)
[2] 梁燕, 韩国栋, 周禾, 赵萌莉, 魏玉荣, 郭海明, 涂伟志, 李旭薇. 内蒙古克什克腾旗羊草草原打草场合理利用的研究. 内蒙古草业, 2011,23(3):32-38.
LIANG Y, HAN G D, ZHOU H, ZHAO M L, WEI Y R, GUO H M, TU W Z, LI X W. Study on Inner Mongolia Leymus chinensis steppe in Hexigten Bannergrassland utilization. Inner Mongolia Prataculture, 2011,23(3):32-38. (in Chinese)
[3] 谢高地, 张钇锂, 鲁春霞, 郑度, 成升魁. 中国自然草地生态系统服务价值. 自然资源学报, 2001,16(1):47-53.
XIE G D, ZHANG Y L, LU C X, ZHENG D, CHENG S K. Study on valuation of rangeland ecosystem services of China. Journal of Natural Resources, 2001,16(1):47-53. (in Chinese)
[4] 侯西勇. 1951-2000年中国气候生产潜力时空动态特征. 干旱区地理, 2008,31(5):723-730.
HOU X Y. Temporal and spatial dynamics of climatic potential productivity in China from 1951 to 2000. Arid Land Geography, 2008,31(5):723-730. (in Chinese)
[5] 陈国南. 用迈阿密模型测算我国生物生产量的初步尝试. 自然资源学报, 1987,2(3):270-278.
CHEN G N. Preliminary study on calculation of primary production of ecosystem in China with application of Miami model. Journal of Natural Resources, 1987,2(3):270-278. (in Chinese)
[6] 高浩, 潘学标, 符瑜. 气候变化对内蒙古中部草原气候生产潜力的影响. 中国农业气象, 2009,30(3):277-282, 288.
GAO H, PAN X B, FU Y. Influence of climate change on potential climate productivity in grassland of central Inner Mongolia. Chinese Journal of Agrometeorology, 2009,30(3):277-282, 288. (in Chinese)
[7] 马甜, 王俊波, 张治华, 徐秀梅. 宁夏中部干旱带天然草地气候生产潜力研究. 草地学报, 2013,21(2):236-242.
MA T, WANG J B, ZHANG Z H, XU X M. Potential climatic productivity of natural grassland in the middle arid zone of Ningxia. Acta Agrestia Sinica, 2013,21(2):236-242. (in Chinese)
[8] 赵慧颖, 魏学占, 乌秋力, 赵恒和, 田辉春. 呼伦贝尔典型草原区牧草气候生产潜力评估. 干旱地区农业研究, 2008,26(1):137-140, 159.
ZHAO H Y, WEI X Z, WU Q L, ZHAO H H, TIAN H C. Assessment of climate potential for forage production in typical grassland. Agricultural Research in the Arid Area, 2008,26(1):137-140, 159. (in Chinese)
[9] PIAO S L, CIASIS P, LOMAS M, BEER C, LIU H, FANG J, FRIENDLINGSTEIN, HUANG Y, MURAOKA H, SON Y, WOODWARD I. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multi-model analysis. Global and Planetary Change, 2010,75:133-142.
[10] SHVIDENKO A Z, SCHEPASHCHENKO D G, VAGANOV E A, NILSSON S. Net primary production of forest ecosystems of Russia: A new estimate. Doklady Earth Sciences, 2008,421:1009-1012.
[11] ZHAO M S, RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010,329:940-943.
[12] 穆少杰, 李建龙, 周伟, 杨红飞, 章超斌, 居为民. 2001-2010年内蒙古植被净初级生产力的时空格局及其与气候的关系. 生态学报, 2013,33(12):3752-3764.
MU S J, LI J L, ZHOU W, YANG H F, ZHANG C B, JU W M. Spatial-temporal distribution of net primary productivity and its relationship with climate factors in Inner Mongolia from 2001 to 2010. Acta Ecologica Sinica, 2013,33(12):3752-3764. (in Chinese)
[13] 周伟, 牟凤云, 刚成诚, 官冬杰, 何锦峰, 李建龙. 1982-2010年中国草地净初级生产力时空动态及其与气候因子的关系. 生态学报, 2017,37(13):4335-4345.
ZHOU W, MU F Y, GANG C C, GUAN D J, HE J F, LI J L. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China. Acta Ecologica Sinica, 2017,37(13):4335-4345. (in Chinese)
[14] 刘刚, 孙睿, 肖志强, 崔天翔. 2001-2014年中国植被净初级生产力时空变化及其与气象因素的关系. 生态学报, 2017,37(15):4936-4945.
LIU G, SUN R, XIAO Z Q, CUI T X. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014. Acta Ecologica Sinica, 2017,37(15):4936-4945. (in Chinese)
[15] 唐欢, 高娃, 徐丽君, 闫瑞瑞, 陈宝瑞, 辛晓平. 基于Landsat TM影像的半干旱牧区天然打草场面积的遥感监测. 农业工程学报, 2015,31(23):160-167.
TANG H, GAO W, XU L J, YAN R R, CHEN B R, XIN X P. Monitoring forage harvesting area in semi-arid pasture based on Landsat TM images. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(23):160-167. (in Chinese)
[16] 赵雪雁, 万文玉, 王伟军. 近50年气候变化对青藏高原牧草生产潜力及物候期的影响. 中国生态农业学报, 2016,24(4):532-543.
ZHAO X Y, WAN W Y, WANG W J. Impact of climate change on potential productivity and phenological phase of forage in the Qinghai-Tibet Plateau in the past 50 years. Chinese Journal of Eco-Agriculture, 2016,24(4):532-543. (in Chinese)
[17] 朴世龙, 方精云, 贺金生, 肖玉. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004,28(4):491-498.
PIAO S L, FANG J Y. HE J S, XIAO Y. Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 2004,28(4):491-498. (in Chinese)
[18] ZHAO D, WU S, YIN Y. Responses of terrestrial ecosystems’ net primary productivity to future regional climate change in China. PLoS ONE, 2013,8:861-865.
[19] 张存厚, 王明玖, 乌兰巴特尔, 姜新华. 内蒙古典型草原地上净初级生产力对气候变化响应的模拟. 西北植物学报, 2012,32(6) : 1229-1237.
ZHANG C H, WANG M J, WULANBATER , JIANG X H. Response of ANPP to climate change in Inner Mongolia typical steppe: A simulation study. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(6):1229-1237. (in Chinese)
[20] 陈效逑, 郑婷. 内蒙古典型草原地上生物量的空间格局及其气候成因分析. 地理科学, 2008,28(3):369-374.
CHEN X Q, ZHENG T. Spatial patterns of aboveground biomass and its climatic attributions in typical steppe of Inner Mongolia. Scientia Geographica Sinica, 2008,28(3):369-374. (in Chinese)
[21] GRIME J P. The response of two contrasting limestone grasslands to simulated climate change. Science, 2000,289:762-765.
[22] 苏占胜, 陈晓光, 黄峰, 杨淑萍. 宁夏农牧交错区(盐池)草地生产力对气候变化的响应. 中国沙漠, 2007,27(3):430-435.
SU Z S, CHEN X G, HUANG F, YANG S P. Response of grassland productivity to climate change in farming-pasturing interlaced area of Ningxia. Journal of Desert Research, 2007,27(3):430-435. (in Chinese)
[23] 罗永忠, 成自勇, 郭小芹. 近40年甘肃省气候生产潜力时空变化特征. 生态学报, 2011,31(1):221-229.
LUO Y Z, CHENG Z Y, GUO X Q. The changing characteristics of potential climate productivity in Gansu Province during nearly 40 years. Acta Ecologica Sinica, 2011,31(1):221-229. (in Chinese)
[24] 韩芳, 牛建明, 刘朋涛, 那日苏, 张艳楠, 王海. 气候变化对内蒙古荒漠草原牧草气候生产力的影响. 中国草地学报, 2010,32(5):57-65.
HAN F, NIU J M, LIU P T, NA R S, ZHANG Y N, WANG H. Impact of climate change on forage potential climatic productivity in desert steppe in Inner Mongolia. Chinese Journal of Grassland, 2010,32(5):57-65. (in Chinese)
[25] 杨泽龙, 杜文旭, 侯琼, 李喜仓, 王冰晨. 内蒙古东部气候变化及其草地生产潜力的区域性分析. 中国草地学报, 2008,30(6):62-66.
YANG Z L, DU W X, HOU Q, LI X C, WANG B C. Regional analysis of climate change in the east of Inner Mongolia and its potential productivity of grassland. Chinese Journal of Grassland, 2008,30(6):62-66. (in Chinese)
[26] 李霞, 李晓兵, 王宏, 喻锋, 余弘婧, 杨华. 气候变化对中国北方温带草原植被的影响. 北京师范大学学报(自然科学版), 2006,42(6):618-623.
LI X, LI X B, WANG H, YU F, YU H J, YANG H. Impact of climate change on temperate grassland in northern China. Journal of Beijing Normal University (Natural Science Edition), 2006,42(6):618-623. (in Chinese)
[27] WU S H, ZHOU S L, CHEN D X, WEI Z Q, DAI L, LI X G. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Science of the Total Environment, 2014,472:397-406.
[28] WANG X X, LI F L, GAP R Z, LUO Y Y, LIU T X. Predicted NPP spatiotemporal variations in a semiarid steppe watershed for historical and trending climates. Journal of Arid Environments, 2014,104:67-79.
[29] 杨晗, 周伟, 石佩琪, 黄露. 内蒙古草地NPP时空变化格局及其与水热因子耦合关系. 水土保持研究, 2019,26(2):234-240.
YANG H, ZHOU W, SHI P Q, HUANG L. Analysis of temporal- spatial variation of NPP and coupling relationship with hydrothermal factors in grasslands of Inner Mongolia. Research of Soil and Water Conservation, 2019,26(2):234-240. (in Chinese)
[30] 潘学平, 冯朝阳, 刘乙淼. 呼伦贝尔森林草原交错区近30年NPP动态与气象因子的相关性研究. 干旱区资源与环境, 2015,29(3):103-107.
PAN X P, FENG C Y, LIU Y M. Correlations between NPP dynamics and climatic factors of nearly 30 years in Hulunbeier grass staggered district. Journal of Arid Land Resources and Environment, 2015,29(3):103-107. (in Chinese)
[31] 何玉斐, 赵明旭, 王金祥, 张宏升. 内蒙古农牧交错带草地生产力对气候要素的响应-以多伦县为例. 干旱气象, 2008,26(2):84-89.
HE Y F, ZHAO M X, WANG J X, ZHANG H S. Response of grassland productivity to climate change in the farming-pasturing interlocked area of Inner Mongolia: Case study of Duolun country. Arid Meteorology, 2008,26(2):84-89. (in Chinese)
[32] 赵慧颖. 气候变化对典型草原区牧草气候生产潜力的影响. 中国农业气象, 2007,28(3):281-284.
ZHAO H Y. Impacts of climate change on forage potential climate productivity in typical grassland. Chinese Journal of Agrometeorology, 2007,28(3):281-284. (in Chinese)
[33] 罗瑞敏, 郭梁, 程积民. 近20年云雾山草地生产力对气候变化的响应. 干旱区研究, 2018,35(1):77-84.
LUO R M, GUO L, CHEN J M. Responses of grassland productivity to climate change in the Yunwu Mountain in recent 20 years. Arid Zone Research, 2018,35(1):77-84. (in Chinese)
[34] 秦冬梅, 冯今. 甘南天然草地生产潜力与载畜量研究. 中国草食动物科学, 2014,34(5):40-42.
QIN D M, FENG J. Study on the potential productivity and stock capacity of natural grassland in Gannan. China Herbivore Science, 2014,34(5):40-42. (in Chinese)
[35] 于皓. 基于光学和雷达影像的吉林省西部草地退化评价[D]. 长春: 中国科学院大学, 2018.
YU H. Evaluation of grassland degradation in West Jilin Province based on optical and radar images[D]. Changchun: Chinese Academy of Sciences, 2018. (in Chinese)
[36] 王云霞. 内蒙古草地资源退化及其影响因素的实证研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
WANG Y X. A positive study on the grassland degradation and its determinants in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
[37] 马梅, 张圣微, 魏宝成. 锡林郭勒草原近30年草地退化的变化特征及其驱动因素分析. 中国草地学报, 2017,39(4):86-93.
MA M, ZHANG S W, WEI B C. Temporal and spatial pattern of grassland degradation and its determinants for recent 30 years in Xilingol. Chinese Journal of Grassland, 2017,39(4):86-93.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!