Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2715-2727.doi: 10.3864/j.issn.0578-1752.2020.13.019

• ECOLOGICAL INDUSTRY PRACTICE AND REGIONAL SCALE PROCESSES • Previous Articles     Next Articles

The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015

ZHU XiaoYu1,2,XU DaWei1(),XIN XiaoPing1,SHEN BeiBei1,DING Lei1,WANG Xu1,CHEN BaoRui1,YAN RuiRui1   

  1. 1The Institute of Agricultural Resources and Regional Planning of Chinese Academy of Agricultural Sciences / Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081
    2Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191
  • Received:2019-09-17 Accepted:2020-03-11 Online:2020-07-01 Published:2020-07-16
  • Contact: DaWei XU E-mail:xudawei@caas.cn

Abstract:

【Background】 Hulunber grassland, as the main part of temperate steppe in China, possesses its important position in grassland animal husbandry production and plays the ecological buffer function with its unique geographical location, typical ecological climate and representative production mode. 【Objective】 Grassland, as one of the most important terrestrial ecosystems, has great significance in agricultural and animal husbandry production, ecological and environmental protection, climate change and other aspects. The spatial distribution and change of different grassland types are the basis of grassland research and management. 【Method】 In this paper, different land cover and grassland types in Hulunber grassland were taken as research objects, remote sensing images in 1992 and 2015 were treated as data sources, support vector machine and object-based image analysis classification were used to obtain the spatial distribution in the study area. The temporal and spatial change characteristics were studied by geostatistics, and the effects of climate change and human activities were analyzed by the potential distribution of zonal grassland types classified by plant-habitat classification, social statistical data and the transformation process. 【Result】 The area of cropland, forestland, sandy and alkaline land, building land increased, while the area of grassland and water decreased. Grassland is the largest coverage type in the study area, the areas were 7 601 258 hm2 and 7 148 085 hm2 in 1992 and 2015 respectively, with a 5.96% reduction. Steppe, meadow steppe and lowland meadow had large distribution areas, accounting for more than 70% of the study area, while mountain meadow and swamp had relatively small distribution area, accounting for about 2%. Except the increase of steppe area, the area of other grassland types decreased. The area of steppe increased by 283 790 hm2, with an increase rate of 7.12%. The area of meadow steppe showed the largest decrease, with a decrease of 563 439 hm2 and a decrease of 28.72%. In the study area, the grassland types with relatively humid water status were mainly converted to relatively arid ones, with the transfered area of 466 687 hm2 from 1992 to 2015, and grassland types with relatively dry water status converted to relatively humid ones with a total area of 212 330 hm2. 【Conclusion】 The spatial distribution of different grassland and land cover types in Hulunber grassland changed dramatically. The impacts of climate change are trend, long-term and hard to recover, and the impacts of human activities are fragmentary, reversible and easy to recover.

Key words: Hulunber grassland, remote sensing, grassland types, influencing factors

Fig. 1

Study area and distribution of different grassland types 审图号:GS(2020)2229号"

Fig. 2

Area and change of different land cover and grassland types in 1992 and 2015"

Fig. 3

Spatial distribution of different land cover and grassland types in 1992 and 2015 审图号:GS(2020)2229号"

Fig. 4

Conversion of dry and wet grassland types"

Fig. 5

Potential distribution change of temperate meadow steppe and temperate steppe 审图号:GS(2020)2229号"

Fig. 6

Change rate of population quantity and grassland area in the study area"

Fig. 7

Changes of population in the study area from 1986 to 2015"

Fig. 8

GDP change from 1990 to 2015"

Fig. 9

Changes in added value of primary/secondary/tertiary industries from 1990 to 2015"

Fig. 10

Change rate of cropland and temperate meadow steppe area in the study area"

Fig. 11

Cropland area from 1997 to 2015 in the study area"

[1] 何亚婷, 董云社, 齐玉春, 肖胜生, 刘欣超. 草地生态系统土壤微生物量及其影响因子研究进展. 地理科学进展, 2010,29(11):1350-1359.
HE Y T, DONG Y S, QI Y C, XIAO S S, LIU X C. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors. Progress in Geography, 2010,29(11):1350-1359. (in Chinese)
[2] 辛晓平, 徐大伟, 何小雷, 李振旺, 丁蕾, 沈贝贝, 毛平平. 草地碳循环遥感研究进展. 中国农业信息, 2018,30(4):1-16.
XIN X P, XU D W, HE X L, LI Z W, DING L, SHEN B B, MAO P P. Research progress of grassland carbon cycle using remote sensing technology. China Agricultural Informatics, 2018,30(4):1-16. (in Chinese)
[3] 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云. 中国草地资源的现状分析. 科学通报, 2016,61(2):139-154.
SHEN H H, ZHU Y K, ZHAO X, GENG X Q, GAO S Q, FANG J Y. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016,61(2):139-154. (in Chinese)
[4] TILMAN D, REICH P B, KNOPS J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006,441(7093):629-632.
[5] 谢高地, 张钇锂, 鲁春霞, 郑度, 成升魁. 中国自然草地生态系统服务价值. 自然资源学报, 2001(1):47-53.
XIE G D, ZHANG Y L, LU C X, ZHENG D, CHENG S K. Study on valuation of rangeland ecosystem services of China, Journal of Natural Resources, 2001(1):47-53. (in Chinese)
[6] LI G Y, HAN H Y, Du Y, HUI D F, XIAJ Y, NIU S L, LI X N, WAN S Q. Effects of warming and increased precipitation on net ecosystem productivity: A long-term manipulative experiment in a semiarid grassland. Agricultural and Forest Meteorology, 2017232:359-366.
[7] 朱殊慧, 梅再美, 张琦, 周宇洋. 重庆市万州区土地利用变化及驱动力分析. 安徽农学通报, 2018,24(14):98-100, 127.
ZHU S H, MEI Z M, ZHANG Q, ZHOU Y Y. Land use changes and driving forces in Wanzhou district of Chongqing city. Anhui Agricultural Science Bulletin, 2018,24(14):98-100, 127. (in Chinese)
[8] HE J, SU D R, LV S H, DIAO Z Y, YE S X, ZHENG Z R. Analysis of factors controlling sediment phosphorus flux potential of wetlands in Hulun Buir grassland by principal component and path analysis method. Environmental Monitoring and Assessment, 2017,189(12):1-9.
[9] REN H, ZHOU G. Measuring the impacts of anthropogenic activities on Inner Mongolian temperate grassland. Land Degradation & Development, 2018,29(9):2942-2950.
[10] FANG J Y, YANG Y H, MA W H, MOHAMMAT A, SHEN H H. Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences, 2010,53(7):757-765.
[11] 李肖娟. 气候变化和人类活动对祁连山草地演变影响程度的研究[D]. 西安: 陕西师范大学, 2018.
LI X J. Study on the influence degree of climate change and human activities on grassland evolution in Qilian mountains[D]. Xi’an: Shaanxi Normal University, 2018. (in Chinese)
[12] 徐大伟, 陈宝瑞, 辛晓平. 气候变化对草原影响的评估指标及方法研究进展. 草业科学, 2014,31(11):2183-2190.
XU D W, CHEN B R, XIN X P. Adances in evaluation indices and methods to assess effects of climatic changes on grassland ecosystem. Pratacultural Science, 2014,31(11):2183-2190. (in Chinese)
[13] MA W H, HE J S, YANG Y H, WANG X P, LIANG C Z, ANWAR M, ZENG H, FANG J Y, SCHMID B. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites . Global Ecology and Biogeography, 2010,19(2):233-243.
[14] 马文红, 杨元合, 贺金生, 曾辉, 方精云. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学(C辑), 2008,38(1):84-92.
MA W H, YANG Y H, HE J S, ZENG H, FANG J Y. Biomass of temperate steppe and the environmental controls in Inner Mongolia. Science in China(Series C), 2008,38(1):84-92. (in Chinese)
[15] 史晓亮, 王馨爽. 黄土高原草地覆盖度时空变化及其对气候变化的响应. 水土保持研究, 2018,25(4):189-194.
SHI X L, WANG X S. Spatial and temporal variation of vagetation coverage and its response to climate change in the Loess Plateau. Research of Soil and Water Conservation, 2018,25(4):189-194. (in Chinese)
[16] 张清雨, 吴绍洪, 赵东. 30年来内蒙古草地退化时空变化研究. 农业科学与技术, 2013,14(4):676-683.
ZHANG Q Y, WU S H, ZHAO D. Temporal-spatial changes in Inner Mongolian grassland degradation during past three decades. Agricultural Science & Technology, 2013,14(4):676-683. (in Chinese)
[17] 张煦庭. 中国温带地区草地植被动态时空特征及其对气候变化的响应[D]. 北京: 中国农业大学, 2018: 36-54.
ZHANG X T. Dynamic temporal and spatial characteristics of grassland vegetation and its response to climate change in temperate regions of China[D]. Beijing: China Agricultural University, 2018: 36-54. (in Chinese)
[18] 宋春桥, 游松财, 刘高焕, 柯灵红, 钟新科. 那曲地区草地植被时空格局与变化及其人文因素影响研究. 草业学报, 2012,21(3):1-10.
SONG C Q, YOU S C, LIU G H, KE L H, ZHONG X K. Spatio-temporal pattern and change of Nagqu grassland and the influence of human factors. Acta Prataculturae Sinica, 2012,21(3):1-10. (in Chinese)
[19] 李金亚. 科尔沁沙地草原沙化时空变化特征遥感监测及驱动力分析[D]. 北京: 中国农业科学院, 2014.
LI J Y. Remote sensing monitoring and driving force analysis of grassland desertification in Horqin sandy land[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[20] 宋理明, 马晓虹, 魏永林, 马宗泰, 马扶林, 王建民. 海北州天然草地退化沙化成因与对策. 草业科学, 2009,26(7):186-190.
SONG L M, MA X H, WEI Y L, MA Z T, MA F L, WANG J M. Causes and countermeasures of degradation and desertification of natural meadow in Haibei District of Qinghai Province. Pratacultural Science, 2009,26(7):186-190. (in Chinese)
[21] 袁子坤. 土地利用/土地覆被变化研究综述. 甘肃农业科技, 2016(9):73-77.
YUAN Z K. Summarization of the study of land use/land cover change. Gansu Agricultural Science and Technology, 2016(9):73-77. (in Chinese)
[22] 张瑞娅, 肖武, 张建勇, 杨洁, 周祥勃, 位蓓蕾, 王然. 基于转移矩阵的矿区土地利用结构变化分析: 以淮南某高潜水位煤矿为例. 贵州农业科学, 2014,42(7):206-209.
ZHANG R Y, XIAO W, ZAHNG J Y, YANG J, ZHOU X B, WEI B L, WANG R. Analysis on land use structure change of coal mining area based on transition matrix-taking a high ground-water level mining area in Huainan as a case. Guizhou Agricultural Sciences, 2014,42(7):206-209. (in Chinese)
[23] 汤洁, 李昭阳, 林年丰, 孙平安, 成升魁. 松嫩平原西部草地的时空变化特征. 资源科学, 2006,28(1):63-69.
TANG J, LI Z Y, LIN N F, SUN P A, CHENG S K. Spatio-temporal variation of grassland in western Songnen plain. Resources Science, 2006,28(1):63-69. (in Chinese)
[24] 冯威丁. 呼伦贝尔草原近30年草地覆盖变化遥感研究[D]. 南京: 南京大学, 2014:56-60.
FENG W D. Remote sensing study on grassland cover change in Hulunber grassland in recent 30 years[D]. Nanjing: Nanjing University, 2014: 56-60. (in Chinese)
[25] BAI X L, SHARMA R C, TATEISHI R, KONDOH A, WULIANGHA B, TANA G. A detailed and high-resolution land use and land cover change analysis over the past 16 years in the Horqin sandy land, Inner Mongolia. Mathematical Problems in Engineering, 2017,13. doi: 10.1155/2017/1316505.
[26] LI Z Y, WU W Z, LIU X H, FATH B D, SUN H L, LIU X C, XIAO X R, CAO J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecological Modelling, 2017,353:86-94.
[27] WANG R, MURAYAMA Y. Change of land use/cover in Tianjin city based on the markov and cellular automata models. ISPRS International Journal of Geo-Information, 2017,6(5):150.
[28] WAN H W. Grassland degradation monitoring and spatio-temporal variation analysis of the Hulun Buir Ecological Function Region. Resources Science, 2016,38(8):24-28.
[29] XU D W, CHEN B R, SHEN B B, WANG X, YAN Y C, XU L J, XIN X P. The classification of grassland types based on object-based image analysis with multisource data. Rangeland Ecology & Management, 2019,72(2):318-326.
[30] 中华人民共和国农业部畜牧兽医司, 全国畜牧兽医总站. 中国草地资源. 北京: 中国科学与技术出版社, 1996.
Department of Animal Husbandry and Veterinary, Ministry of Agriculture of the People's Republic of China. China Grassland Resources. Beijing: China Science and Technology Press, 1996. (in Chinese)
[31] FAMELLI S, PINHEIRO S, SOUZA F, CHIARAVALLOTI R, BERTOLUCI J. Population viability analysis of a long-lived freshwater turtle, Hydromedusa maximiliani (Testudines: Chelidae). Chelonian Conservation and Biology, 2012,11(2):162-169.
[32] 甘爽, 肖玉, 徐洁, 王洋洋, 余付勤, 谢高地. 呼伦贝尔草原草甸生态功能区建设效益评价. 生态学报, 2019,39(16):5874-5884.
GAN S, XIAO Y, XU J, WANG Y Y, YU F Q, XIE G D. Comprehensive cost-benefit evaluation of the Hulunbuir grassland meadow ecological function area. Acta Ecologica Sinica, 2019,39(16):5874-5884. (in Chinese)
[33] 王世新, 杨胜利, 高娃, 安卯柱. 呼伦贝尔草原资源面积变化分析. 内蒙古草业, 2008(1):49-51.
WANG S X, YANG S L, GAO W, AN M Z. Change analysis of grassland resource area in Hulunbuir. Inner Mongolia Prataculture, 2008(1):49-51. (in Chinese)
[34] 刘雪冉, 胡振琪, 许涛, 朱琦. 呼伦贝尔草原2000—2010年土地覆盖变化的遥感监测与分析. 中国农业大学学报, 2017,22(5),118-127.
LIU X R, HU Z Q, XU T, ZHU Q. Remoting sensing monitoring and analysis of Hulunbuir grassland cover changes in the year 2000 to 2010. Journal of China Agricultural University, 2017,22(5),118-127. (in Chinese)
[35] 张德平. 内蒙古呼伦贝尔市土地利用现状及变化分析. 中国土地科学, 2011,25(11):43-48.
ZHANG D P. Analysis on the current status and the changes of land use in Hulunbuir, Inner Mongolia. China Land Science, , 2011,25(11):43-48. (in Chinese)
[36] 王煊, 许子乾, 刘旻帝, 钟贵廷, 宁心哲, 阮宏华. 1999年至2010年呼伦贝尔市重要湿地遥感动态变化研究. 湿地科学与管理, 2014,10(2):53-57.
WANG X, XU Z Q, LIU M D, ZHONG G T, NING X Z, RUAN H H. Dynamic analysis of the wetlands in Hulunbeier region based on remote sensing from 1999 to 2010. Wetland Science & Management, 2014,10(2):53-57. (in Chinese)
[37] 冯威丁, 肖鹏峰, 冯学智, 常潇, 杨永可. 呼伦贝尔草原典型区1989年—2010年草地覆盖变化遥感研究. 遥感信息, 2014,29(1):61-67.
FENG W D, XIAO P F, FENG X Z, CHANG X, YANG Y K. Grassland change detection based on remote sensing imagery in typical area of Hulunbuir grassland from 1989 to 2010. Remote Sensing Information, 2014,29(1):61-67. (in Chinese)
[38] 宁镇亚, 刘东兰, 郑小贤, 张峰. 呼伦贝尔生态环境遥感调查和驱动力分析. 遥感信息, 2006(3):36-39+92.
NING Z Y, LIU D L, ZHENG X X, ZHANG F. The remote sensing investigation and driving force analysis of eco-environment in Hulunbuir. Remote Sensing Information, 2006(3):36-39+92. (in Chinese)
[39] 张钦, 唐海萍, 崔凤琪, 戴路炜. 基于标准化降水蒸散指数的呼伦贝尔草原干旱变化特征及趋势分析. 生态学报, 2019,39(19):7110-7123.
ZHANG Q, TANG H P, CUI F Q, DAI L W. SPEI-based analysis of drought characteristics and trends in Hulunbuir grassland. Acta Ecologica Sinica, 2019,39(19):7110-7123. (in Chinese)
[40] 张宏斌, 杨桂霞, 黄青, 李刚, 陈宝瑞, 辛晓平. 呼伦贝尔草甸草原景观格局时空演变分析——以海拉尔及周边地区为例. 草业学报, 2009,18(1):134-143.
ZHANG H B, YANG G X, HUANG Q, LI G, CHEN B R, XIN X P. Analysis of dynamic spatial-temporal changes of landscape patterns in Hulunber meadow steppes-Taking Hailaer and surrounding areas as an example. Acta Prataculturae Sinica, 2009,18(1):134-143. (in Chinese)
[1] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[2] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[3] LI MeiXuan,ZHU XiCun,BAI XueYuan,PENG YuFeng,TIAN ZhongYu,JIANG YuanMao. Remote Sensing Inversion of Nitrogen Content in Apple Canopy Based on Shadow Removal in UAV Multi-Spectral Remote Sensing Images [J]. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094.
[4] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[5] FengZhi SHI,RuiYan WANG,YuHuan LI,Hong YAN,XiaoXin ZHANG. LAI Estimation Based on Multi-Spectral Remote Sensing of UAV and Its Application in Saline Soil Improvement [J]. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805.
[6] ZHAO Jing,LI ZhiMing,LU LiQun,JIA Peng,YANG HuanBo,LAN YuBin. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555.
[7] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[8] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[9] CHENG Wei, XIN XiaoPing. Analysis of Spatial-Temporal Characteristics of Drought Variation in Grassland Area of Inner Mongolia Based on TVDI [J]. Scientia Agricultura Sinica, 2020, 53(13): 2728-2742.
[10] LIU HuanJun, YU ShengNan, ZHANG XinLe, GUO Dong, YIN JiXian. Timeliness Analysis of Crop Remote Sensing Classification One Crop A Year [J]. Scientia Agricultura Sinica, 2017, 50(5): 830-839.
[11] CHEN ZhiFang, SONG Ni, WANG JingLei, SUN JingSheng. Leaf Water Potential Estimating Models of Winter Wheat Based on Hyperspectral Remote Sensing [J]. Scientia Agricultura Sinica, 2017, 50(5): 871-880.
[12] ZHANG XiaoYuan, ZHANG LiFu, ZHANG Xia, WANG ShuDong, TIAN JingGuo, ZHAI YongGuang. Sensitivity of Different Spectral Vegetation Index for Estimating Winter Wheat Leaf Nitrogen [J]. Scientia Agricultura Sinica, 2017, 50(3): 474-485.
[13] SONG Qian, ZHOU Qing-bo, WU Wen-bin, HU Qiong, YU Qiang-yi,TANG Hua-jun. Recent Progresses in Research of Integrating Multi-Source Remote Sensing Data for Crop Mapping [J]. Scientia Agricultura Sinica, 2015, 48(6): 1122-1135.
[14] TAN Chang-wei, LUO Ming, YANG Xin, MA Chang, YAN Xiang, ZHOU Jian, DU Ying, WANG Ya-nan. Remote Sensing Estimation of Winter Wheat Theoretical Yield on Regional Scale Using Partial Least Squares Regression Algorithm Based on HJ-1A/1B Images [J]. Scientia Agricultura Sinica, 2015, 48(20): 4033-4041.
[15] TAN Chang-wei, YANG Xin, LUO Ming, MA Chang, YAN Xiang, CHEN Ting-ting. Quantitative Inversion of Key Seedling Condition Parameters in Winter Wheat at Booting Stage Using Remote Sensing Based on HJ-CCD Images [J]. Scientia Agricultura Sinica, 2015, 48(13): 2518-2527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!