Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3508-3519.doi: 10.3864/j.issn.0578-1752.2018.18.007

• PLANT PROTECTION • Previous Articles     Next Articles

Detection and Analysis of Fungi Carried by Maize Grain in Huang-Huai-Hai Summer Maize Region

LiuYan JIN(), Ning GUO, Jie SHI(), HaiJian ZHANG, ShuSen LIU, JiaQi ZHANG   

  1. Plant Protection Institute, Hebei Academy of Agriculture and Forestry Science, Baoding 071000, Hebei
  • Received:2018-04-21 Accepted:2018-06-25 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】 The objective of this study is to determine the amount of fungi carried in maize grains in Huang-Huai- Hai summer maize region, and to provide reference for safe production, storage, processing and quarantine of maize. 【Method】A total of 720 maize ears were collected at the stages of milk-ripening and full-ripening in 90 cities or counties in 4 provinces (Hebei, Henan, Shandong, Anhui) of the Huang-Huai-Hai summer maize region, 4 full maize ears with no symptom on the surface were sampled in each city or county. All samples were tested for the amount and species of fungi carried, including external and internal tests of maize grains. Washing detection method was used to calculate the spores load on the grain surface, the spore load on the grain surface and isolation rate of each genus were calculated by counting the total number of colonies and dilution multiple. The PDA plate method was used for internal detection. Ten grains tested externally were sterilized and cultured on PDA plate. The fungi carrying rate of grains and the isolation frequency of each genus of fungi were calculated by counting the fungi carrying rate of each grain. In addition, the morphological and molecular identification of the higher frequency fungi were carried out. 【Result】The samples carried a large number of fungi. The spores load of the tested samples ranged from 0 to 1 886 per grain, with an average of 439 spores per grain at milk-ripening stage, the fungi-carrying rate of grains ranged from 0 to 65.0%, with an average of 23.6%. The spores load ranged from 18 to 2 658 per grain, with an average of 942 spores per grain at full-ripening stage, the fungi-carrying rate of grains ranged from 10.0% to 100.0%, with an average of 59.6%. The amount of fungi carried in full-ripening stage was higher than that in milk-ripening stage, but in some areas, the amount of fungi carried was still large in milk-ripening stage. There were differences in the amount of fungi carried in maize grains in different areas. The amount of fungi carried in maize grains in Henan Province was the largest, and Anhui Province had the least amount of fungi, Hebei Province and Shandong Province were in the middle and the difference was not significant. Fungal communities carried both inside and outside of maize grains included Fusarium spp., Penicillium spp., Aspergillus spp., Alternaria spp., Trichoderma spp., Rhizopus spp., Hel-minthosporium spp., Mucor spp. The isolation rate of Fusarium spp. in the grain external and internal detection was 59.1% and 36.1% respectively at milk-ripening stage, indicating that a large number of Fusarium spp. occurred at milk-ripening stage of maize. The isolation rate of Penicillium spp. and Aspergillus spp. in external grains was 8.9% and 0.7% respectively, and the isolation frequency in internal grains was 6.0% and 1.9% respectively, indicating that Penicillium spp. and Aspergillus spp. had begun to infect maize ear at milk-ripening stage. The isolation rate of Fusarium spp. in the grain external and internal detection was 71.9% and 58.5% respectively at full-ripening stage, the isolation rate of Penicillium spp. and Aspergillus spp. in external grains was 17.0% and 0.9% respectively, and the isolation frequency in internal grains was 9.3% and 2.6% respectively, indicating that Fusarium spp., Penicillium spp. and Aspergillus spp. were the main fungi carried by maize grains in Huang-Huai-Hai summer maize region. Morphological and molecular identification results showed that F. verticillioides was the dominant strain in Fusarium spp., the isolation frequency of F. verticillioides, F. proliferatum, F. graminearum was 29.7%, 25.9%, 1.3%, respectively. P. funiculosum and P. oxalicum were the dominant strains in Penicillium spp., and the isolation frequency was 5.0% and 3.6%, respectively. A. flavus and A. niger were the dominant strains in Aspergillus spp., and the isolation frequency was 1.4% and 1.2%, respectively. 【Conclusion】 The maize grains with no surface symptom carried a large number of fungi in both milk-ripening and full-ripening stages, and the amount of fungi carried in the full-ripening stage is higher than that in the milk-ripening stage. Fusarium spp. is the most frequently isolated fungi in Huang-Huai-Hai summer maize region and F. verticilliflora is the dominant strain. It is the dominant pathogen carried by local maize grains.

Key words: maize grain, fungi detection, isolation frequency, Huang-Huai-Hai summer maize region

Table 1

Sampling spot and time"

省份
Province
乳熟期采样时间
Sampling time of milk-ripening stage
完熟期采样时间
Sampling time of full-ripening stage
河北Hebei 2017-09-07—2017-09-09 2017-09-23—2017-09-25
河南Henan 2017-09-01—2017-09-03 2017-09-18—2017-09-20
山东Shandong 2017-09-04—2017-09-07 2017-09-21—2017-09-23
安徽Anhui 2017-09-04 2017-09-20

Fig. 1

Pictures of the detection of fungi carried by maize grain"

Table 2

Results of grain carrying fungi in different areas"

编号
Number

Province
市/县
City/County
籽粒带菌率Rate of grains with fungi (%) 孢子负荷量(个/粒)Spore load
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
1 河北Hebei 武强Wuqiang 10.0 52.5 75 33
2 河北Hebei 涿州Zhuozhou 2.5 55.0 1448 2160
3 河北Hebei 万全Wanquan 47.5 47.5 188 228
4 河北Hebei 昌黎Changli 2.5 40.0 34 128
5 河北Hebei 怀来Huailai 5.0 47.5 0 83
6 河北Hebei 滦平Luanping 47.5 87.5 1064 1123
7 河北Hebei 廊坊Langfang 15.0 85.0 90 1780
8 河北Hebei 平泉Pingquan 35.0 77.5 240 1895
9 河北Hebei 玉田Yutian 32.5 75.0 604 863
10 河北Hebei 故城Gucheng 32.5 87.5 202 538
11 河北Hebei 鹿泉Luquan 5.0 72.5 1020 1278
12 河北Hebei 沧州Cangzhou 12.5 60.0 324 425
13 河北Hebei 定兴Dingxing 17.5 65.0 54 70
14 河北Hebei 衡水Hengshui 7.5 75.0 636 938
15 河北Hebei 赵县Zhaoxian 12.5 80.0 330 823
16 河北Hebei 邢台Xingtai 2.5 40.0 174 265
17 河北Hebei 藁城Gaocheng 16.0 42.5 77 313
18 河北Hebei 蠡县Lixian 37.5 50.0 984 1303
19 河北Hebei 高阳Gaoyang 17.5 42.5 66 288
20 河北Hebei 大明Daming 22.5 52.5 708 1263
21 河北Hebei 肃宁Suning 0.0 47.5 260 1453
22 河北Hebei 成安Cheng’an 7.5 65.0 86 1845
23 河北Hebei 无极Wuji 52.5 57.5 14 1008
24 河北Hebei 鸡泽Jize 15.0 50.0 68 1520
25 河北Hebei 新乐Xinle 5.0 37.5 642 648
26 河北Hebei 河间Hejian 20.0 50.0 64 1260
27 河北Hebei 满城Mancheng 42.5 55.0 36 78
28 河北Hebei 望都Wangdu 30.0 70.0 12 793
29 河北Hebei 深州Shenzhou 5.0 67.5 64 1183
30 河南Henan 睢阳Suiyang 2.5 52.5 28 265
31 河南Henan 新郑Xinzheng 27.5 100.0 2 275
32 河南Henan 汝阳Ruyang 20.0 57.5 112 360
33 河南Henan 温县Wenxian 25.0 97.5 88 573
34 河南Henan 淇县Qixian 10.0 72.5 42 168
35 河南Henan 南阳Nanyang 5.0 95.0 4 643
36 河南Henan 鹤壁Hebi 47.5 87.5 370 453
37 河南Henan 驻马店Zhumadian 47.5 52.5 78 545
38 河南Henan 淮阳Huaiyang 37.5 100.0 368 18
表2 Continued Table 2
编号
Number

Province
市/县
City/County
籽粒带菌率Rate of grains with fungi (%) 孢子负荷量(个/粒)Spore load
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
39 河南Henan 遂平Suiping 10.0 97.5 492 867
40 河南Henan 夏邑Xiayi 60.0 82.5 452 1208
41 河南Henan 焦作Jiaozuo 37.5 92.5 106 1503
42 河南Henan 漯河Luohe 35.0 70.0 970 1910
43 河南Henan 通许Tongxu 20.0 48.0 160 2252
44 河南Henan 平顶山Pingdingshan 32.5 52.5 1410 2290
45 河南Henan 内黄Neihuang 22.5 45.0 160 783
46 河南Henan 襄县Xiangxian 15.0 77.5 1056 2658
47 河南Henan 洛阳Luoyang 32.5 70.0 1320 2638
48 河南Henan 太康Taikang 60.0 62.5 266 600
49 河南Henan 邓州Dengzhou 65.0 85.0 1632 1850
50 河南Henan 原阳Yuanyang 55.0 60.0 1074 1498
51 河南Henan 滑县Huaxian 30.0 47.5 846 953
52 河南Henan 南乐Nanle 12.5 47.5 920 1233
53 河南Henan 商丘Shangqiu 2.5 42.5 776 995
54 河南Henan 辉县Huixian 53.3 45.0 812 1185
55 河南Henan 新乡Xinxiang 22.5 45.0 156 400
56 山东Shandong 德州Dezhou 16.0 70.0 264 1038
57 山东Shandong 嘉祥Jiaxiang 30.0 52.5 770 808
58 山东Shandong 莘县Shenxian 47.5 55.0 621 805
59 山东Shandong 莱州Laizhou 27.5 47.5 302 660
60 山东Shandong 章丘Zhangqiu 20.0 52.5 640 1363
61 山东Shandong 菏泽Heze 32.5 45.0 339 1240
62 山东Shandong 泰安Taian 12.5 85.0 430 418
63 山东Shandong 冠县Guanxian 5.0 62.5 230 812
64 山东Shandong 莱阳Laiyang 0.0 77.5 1550 1836
65 山东Shandong 青岛Qingdao 22.5 45.0 613 932
66 山东Shandong 临沂Linyi 15.0 65.0 333 350
67 山东Shandong 济阳Jiyang 55.0 85.0 418 444
68 山东Shandong 齐河Qihe 50.0 72.5 410 936
69 山东Shandong 曲阜Qufu 25.0 57.5 270 366
70 山东Shandong 诸城Zhucheng 15.0 92.5 443 408
71 山东Shandong 平度Pingdu 20.0 32.5 86 635
72 山东Shandong 宁津Ningjin 30.0 47.5 456 1043
73 山东Shandong 莒县Juxian 12.5 47.5 34 2228
74 山东Shandong 郓城Yuncheng 27.5 20.0 306 850
75 山东Shandong 滨州Binzhou 42.5 62.5 12 605
76 山东Shandong 平原Pingyuan 27.5 42.5 882 978
77 山东Shandong 聊城Liaocheng 20.0 45.0 204 520
表2 Continued Table 2
编号
Number

Province
市/县
City/County
籽粒带菌率Rate of grains with fungi (%) 孢子负荷量(个/粒)Spore load
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
乳熟期
Milk-ripening stage
完熟期
Full-ripening stage
78 山东Shandong 济宁Jining 20.0 42.5 1886 1948
79 山东Shandong 茌平Chiping 7.5 35.0 340 405
80 山东Shandong 平邑Pingyi 37.5 65.0 528 1308
81 山东Shandong 临朐Linqu 8.0 52.0 404 788
82 山东Shandong 潍坊Weifang 12.0 26.0 34 453
83 安徽Anhui 阜阳Fuyang 12.0 34.0 146 553
84 安徽Anhui 泗县Sixian 48.0 40.0 696 1233
85 安徽Anhui 立辛Lixin 18.0 64.0 224 775
86 安徽Anhui 蒙城Mengcheng 2.0 70.0 1250 1320
87 安徽Anhui 濉溪Suixi 6.0 70.0 18 308
88 安徽Anhui 蚌埠Bengbu 4.0 10.0 628 1458
89 安徽Anhui 界首Jieshou 40.0 54.0 284 290
90 安徽Anhui 宿州Suzhou 6.0 22.0 206 960
均值Average 23.6 59.6 439 942

Table 3

The isolation rate of main fungi in external testing of maize grains from different provinces"

省份
Province
乳熟期分离比例 Isolation rate at milk-ripening stage (%) 完熟期分离比例 Isolation rate at full-ripening stage (%)
孢子负荷量
(个/粒)
Spore load
镰孢菌
Fusarium spp.
青霉菌
Penicillium spp.
曲霉菌
Aspergillus spp.
孢子负荷量
(个/粒)
Spore load
镰孢菌
Fusarium spp.
青霉菌
Penicillium spp.
曲霉菌
Aspergillus spp.
河北Hebei 330 58.5 6.5 0.6 882 58.7 22.9 0.9
河南Henan 527 62.6 8.6 0.2 1082 75.8 13.6 0.3
山东Shandong 474 61.4 6.5 1.9 895 83.3 11.6 2.2
安徽Anhui 432 53.7 13.8 0 862 69.7 19.9 0.2
均值Average 441 59.1 8.9 0.7 930 71.9 17.0 0.9

Table 4

The fungi species and isolation frequency inside the maize grains from different provinces (%)"

省份
Province
轮枝镰孢
F. verticillioides
层出镰孢
F. proliferatum
禾谷镰孢
F. graminearum
绳状青霉
P. funiculosum
草酸青霉
P. oxalicum
黄曲霉
A. flavus
黑曲霉
A. niger
其他
Others
河北Hebei 23.2 23.7 0.3 3.3 4.1 0.6 2.5 42.3
河南Henan 35.9 22.1 3.0 3.2 5.8 1.5 1.1 27.4
山东Shandong 31.4 30.1 1.7 2.1 4.5 1.3 1.1 27.8
安徽Anhui 28.1 27.5 0.0 11.5 0.0 2.0 0.0 30.9
均值Average 29.7 25.9 1.3 5.0 3.6 1.4 1.2 32.1

Table 5

The isolation frequency of main fungi inside the maize grains from different provinces (%)"

省份
Province
乳熟期分离频率
Isolation frequency at milk-ripening stage
完熟期分离频率
Isolation frequency at full-ripening stage
籽粒带菌率
Rate of grain with fungi
镰孢菌
Fusarium
spp.
青霉菌
Penicillium spp.
曲霉菌
Aspergillus spp.
籽粒带菌率
Rate of grain with fungi
镰孢菌
Fusarium spp.
青霉菌
Penicillium spp.
曲霉菌
Aspergillus
spp.
河北Hebei 19.3 34.6 8.9 1.3 59.8 49.2 7.9 3.1
河南Henan 30.3 40.7 4.0 3.1 68.7 63.0 10.0 2.7
山东Shandong 23.6 43.7 6.8 1.9 54.9 65.2 7.6 2.4
安徽Anhui 17.0 25.2 4.0 1.3 45.5 56.6 11.8 2.0
均值Average 22.6 36.1 6.0 1.9 57.2 58.5 9.3 2.6
[1] 孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018, 48(1): 8-15.
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P.Composition and distribution of pathogens causing ear rot in spring maize region and identification ofFusarium graminearum species complex. Acta Phytopathologica Sinica, 2018, 48(1): 8-15. (in Chinese)
[2] 姚瑞丽. 玉米穗腐病病原鉴定、产毒条件及田间防控研究[D]. 太谷: 山西农业大学, 2015.
YAO R L.Study on identification, toxin production and field control of maize ear rot[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[3] 肖淑芹, 许佳宁, 闫丽斌, 隋韵涵, 薛春生, 陈捷. 辽宁省玉米镰孢穗腐病病原菌的鉴定与分布. 植物保护学报, 2017, 44(5): 803-808.
doi: 10.13802/j.cnki.zwbhxb.2017.2016056
XIAO S Q, XU J N, YAN L B, SUI Y H, XUE C S, CHEN J.Identification and distribution ofFusarium species causing maize ear rot in Liaoning Province. Journal of Plant Protection, 2017, 44(5): 803-808. (in Chinese)
doi: 10.13802/j.cnki.zwbhxb.2017.2016056
[4] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164.
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D.Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. (in Chinese)
[5] 欧阳毅, 祁智慧, 李春元, 张海洋, 唐芳. 玉米储藏真菌早期预测的研究. 粮油食品科技, 2017, 25(5): 52-55.
OUYANG Y, QI Z H, LI C Y, ZHANG H Y, TANG F.Early prediction of fungus hazard during corn storage. Science and Technology of Cereals, Oils and Foods, 2017, 25(5): 52-55. (in Chinese)
[6] 李慧, 王若兰, 渠琛玲, 薛飞. 玉米储藏过程发热霉变研究综述. 食品工业, 2017, 38(8): 188-191.
LI H, WANG R L, QU C L, XUE F.Review on the fever and mildew of corn during storage. The Food Industry, 2017, 38(8): 188-191. (in Chinese)
[7] MARCO M O, MARCELO A R, GERÓNIMO A V, GRACIELA C M. Diagnosis of mycotoxigenic fungi in stored grain corn. ECORFAN Journal, 2015, 1(1): 37-47.
[8] 刘凤芝, 李锋, 王永丽. 2017年上半年我国部分地区饲料及饲料原料中霉菌毒素的污染状况分析. 粮食与饲料工业, 2017(11): 46-50.
LIU F Z, LI F, WANG Y L. Investigation of mycotoxins contamination in feeds and feed ingredients in the first half of 2017 in some parts of China. Cereal and Feed Industry, 2017(11): 46-50. (in Chinese)
[9] 李昕, 秦泽明, 张维嘉, 苏祥, 刘建伟, 郑雯, 杨奕, 温红玲, 赵丽. 2015年山东部分地区食用植物油中黄曲霉毒素B1和玉米赤霉烯酮污染状况调查. 食品安全质量检测学报, 2018, 9(1): 198-203.
LI X, QIN Z M, ZHANG W J, SU X, LIU J W, ZHENG W, YANG Y, WEN H L, ZHAO L.Contaminations of aflatoxin B1 and zearalenone in edible oil in Shandong province in 2015.Journal of Food Safety and Quality, 2018, 9(1): 198-203. (in Chinese)
[10] 周建川, 郑文革, 赵丽红, 张天国, 雷元培, 计成. 2016年中国饲料和原料中霉菌毒素污染调查报告. 中国猪业, 2017(6): 22-26, 32.
ZHOU J C, ZHENG W G, ZHAO L H, ZHANG T G, LEI Y P, JI C . Chinafeed and feed investigation of mycotoxin contamination in raw materials in 2016. China Swine Industry, 2017(6): 22-26, 32. (in Chinese)
[11] 陈甫, 朱风华, 黄凯, 王倩文, 朱连勤. 山东省肉鸡全价料及饲料原料中AFB1、FUMB1、DON和ZEN污染情况调查报告. 中国畜牧杂志, 2016, 52(2): 66-71.
CHEN F, ZHU F H, HUANG K, WANG Q W, ZHU L Q.Investigation of AFB1, FUMB1, DON and ZEN contamination on broiler feeds and feed ingredients in Shandong Province. Chinese Journal of Animal Science, 2016, 52(2): 66-71. (in Chinese)
[12] 刘少文, 柏凡, 李云, 柏雪, 程传民, 方思敏, 董艾青, 樊淑娜. 我国西南地区猪配合饲料中霉菌毒素污染状况——基于102家饲料生产企业样品调查. 中国畜牧杂志, 2015, 51(12): 62-67.
LIU S W, BAI F, LI Y, BAI X, CHENG C M, FANG S M, DONG A Q, FAN S N.Mycotoxins contamination of pig feeds in Southwest China: Based on a survey about 102 feed enterprises. Chinese Journal of Animal Science, 2015, 51(12): 62-67. (in Chinese)
[13] 邓惠中, 贺建华. 饲料中霉菌毒素检测技术研究进展. 饲料工业, 2010, 31(7): 48-50.
DENG H Z, HE J H.Research progress of mycotoxin detection in feed. Feed Industry, 2010, 31(7): 48-50. (in Chinese)
[14] WIDSTROM N W, GUO B Z, WILSON D M.Integration of crop management and genetics for control of preharvest aflatoxin contamination of corn. Journal of Toxicology, 2003, 22(2/3): 195-223.
doi: 10.1080/10915810305102 pmid: 12851152
[15] MANNAA M, KIM K D.Control strategies for deleterious grain fungi and mycotoxin production from preharvest to postharvest stages of cereal crops: A review. Life Science and Natural Resources Research, 2017, 25: 13-27.
[16] MANNAA M, KIM K D.Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 2017, 45(4): 240-254.
doi: 10.5941/MYCO.2017.45.4.240 pmid: 29371792
[17] LACEY J.Pre-and post-harvest ecology of fungi causing spoilage of foods and other stored products. Journal of Applied Bacteriology Symposium Supplement, 1989, 67: 11S-25S.
doi: 10.1111/j.1365-2672.1989.tb03766.x pmid: 2508232
[18] 曲晓丽, 徐秀德, 董怀玉, 王丽娟, 姜钰, 宋艳春, 盖淑军. 玉米子粒携带真菌种群多样性分析. 玉米科学, 2009, 17(6): 115-117.
QU X L, XU X D, DONG H Y, WANG L J, JIANG Y, SONG Y C, GAI S J.Analysis of fungi species diversity on maize kernels. Journal of Maize Sciences, 2009, 17(6): 115-117. (in Chinese)
[19] 郭聪聪, 朱维芳, 付萌, 庞民好, 刘颖超, 董金皋. 甘肃省玉米籽粒中镰孢菌分离频率及伏马毒素含量监测. 植物保护学报, 2015, 42(6): 942-948.
doi: 10.13802/j.cnki.zwbhxb.2015.06.012
GUO C C, ZHU W F, FU M, PANG M H, LIU Y C, DONG J G.Occurrence ofFusarium species and fumonisins associated with maize kernels from Gansu Province. Journal of Plant Protection, 2015, 42(6): 942-948. (in Chinese)
doi: 10.13802/j.cnki.zwbhxb.2015.06.012
[20] 罗晓杨, 郭庆元, 武小菲, 王晓鸣, 杨建国, 谢爱婷. 玉米生产品种种子带菌和镰孢菌毒素的检测. 作物杂志, 2009(3): 75-79.
LUO X Y, GUO Q Y, WU X F, WANG X M, YANG J G, XIE A T.Seed health testing and detection ofFusarium toxins in maize varieties. Crops, 2009(3): 75-79. (in Chinese)
[21] 胡晓芬, 蒋孟多. 玉米种子表面带菌检测的初步研究. 甘肃科技, 2017, 33(16): 139-140.
HU X F, JIANG M D.Preliminary study on the detection of maize seed surface bacteria. Gansu Science and Technology, 2017, 33(16): 139-140. (in Chinese)
[22] 蒋孟多, 胡晓芬. 玉米种子内部带菌检测的初步研究. 农业科技与信息, 2017(15): 59-60.
JIANG M D, HU X F.Preliminary study on the detection of internal bacteria in maize seeds. Agricultural Science-Technology and Information, 2017(15): 59-60. (in Chinese)
[23] 马奇祥, 张进云, 王胜亮, 喻璋. 玉米种子寄藏真菌的研究. 河南农学院学报, 1983(2): 1-8.
MA Q X, ZHANG J Y, WANG S L, YU Z.The study of fungi on the maize kernels. Journal of Henan Agricultural College, 1983(2): 1-8. (in Chinese)
[24] 陆家云. 植物病原真菌学. 北京: 中国农业出版社, 2001.
LU J Y. Plant Pathogenic Mycology.Beijing: China Agriculture Press, 2001. (in Chinese)
[25] 方中达. 植病研究方法. 3版. 北京: 中国农业出版社, 2007.
FANG Z D.Research Methods of Plant Disease. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[26] GULLINO M L, MUNKVOLD G.Global Perspectives on the Health of Seeds and Plant Propagation Material. Springer Netherlands, 2014, 6: 17-28.
[27] 杨硕, 石洁, 张海剑, 郭宁, 李坡, 王振营. 桃蛀螟为害夏玉米果穗对产量的影响. 植物保护学报, 2015, 42(6): 991-996.
doi: 10.13802/j.cnki.zwbhxb.2015.06.019
YANG S, SHI J, ZHANG H J, GUO N, LI P, WANG Z Y.Impacts of durian fruit borerConogethes punctiferalis on yield loss of summer corn by injury corn ears. Journal of Plant Protection, 2015, 42(6): 991-996. (in Chinese)
doi: 10.13802/j.cnki.zwbhxb.2015.06.019
[28] 刘玥, 李荣荣, 何康来, 白树雄, 张天涛, 丛斌, 王振营. 桃蛀螟为害对春玉米镰孢穗腐病发生及产量损失的影响. 昆虫学报, 2017, 60(5): 576-581.
LIU Y, LI R R, HE K L, BAI S X, ZHANG T T, CONG B, WANG Z Y.Effects ofConogethes punctiferalis(Lepidopteran: Crambidae) infestation on the occurrence of Fusarium ear rot and the yield loss of spring corn. Acta Entomologica Sinica, 2017, 60(5): 576-581. (in Chinese)
[29] 李夫沙, 李玲莉, 白亚东, 董军忠. 元江县曼来镇烟后套种玉米高产栽培技术. 中国林副产品, 2016(1): 47-48.
LI F S, LI L L, BAI Y D, DONG J Z.High yield cultivation techniques of maize after tobacco interplanting in Manlai town of Yuanjiang County. Forest by-Product and Speciality in China, 2016(1): 47-48. (in Chinese)
[30] 朱维芳. 玉米籽粒中镰孢菌的分离及相互作用对产毒的影响[D]. 保定: 河北农业大学, 2014.
ZHU W F.The isolation of Fusarium species and the effect of interaction between Fusarium species for mycotoxin accumulation[D]. Baoding: Agricultural University of Hebei, 2014. (in Chinese)
[31] 孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞. 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017, 44(5): 796-802.
doi: 10.13802/j.cnki.zwbhxb.2017.2016078
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X.Isolation and identification of pathogens causing maize ear rot in Huang-Huai-Hai summer corn region. Journal of Plant Protection, 2017, 44(5): 796-802. (in Chinese)
doi: 10.13802/j.cnki.zwbhxb.2017.2016078
[32] 任旭. 我国玉米穗腐病主要致病镰孢菌多样性研究[D]. 北京: 中国农业科学院, 2011.
REN X.Diversity analyses of Fusarium spp., the main causal agents of maize ear rot in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[33] 马红霞, 孙华, 郭宁, 张海剑, 石洁, 常佳迎. 禾谷镰孢复合种毒素化学型及遗传多样性分析. 中国农业科学, 2018, 51(1): 82-95.
MA H X, SUN H, GUO N, ZHANG H J, SHI J, CHANG J Y.Analysis of toxigenic chemotype and genetic diversity of theFusarium graminearum species complex. Scientia Agricultura Sinica, 2018, 51(1): 82-95. (in Chinese)
[34] NELSON P E, PLATTNER R D, SHACKELFORD D D, DESJARDINS A E.Production of fumonisins byFusarium moniliforme strains from various substrates and geographic areas. Applied and Environmental Microbiology, 1991, 57(8): 2410-2412.
[35] MISHRA H N, DAS C.A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition, 2003, 43(3): 245-264.
doi: 10.1080/10408690390826518 pmid: 12822672
[36] ROBENS J F, RICHARD J L.Aflatoxins in animal and human health//Reviews of Environmental Contamination Toxicology. Springer- Verlag New York, Inc., 1992, 127: 69-94.
doi: 10.1007/978-1-4613-9751-9_3 pmid: 1631352
[37] 韩小敏, 张宏元, 张靖, 徐文静, 刘丹, 江涛, 徐进, 李凤琴. 中国94份玉米饲料原料中真菌及其毒素污染状况调查. 中华预防医学杂志, 2016, 50(10): 907-911.
doi: 10.3760/cma.j.issn.0253-9624.2016.10.013
HAN X M, ZHANG H Y, ZHANG J, XU W J, LIU D, JIANG T, XU J, LI F Q.Survey on fungi contamination and natural occurrence of mycotoxins in 94 corn feed ingredients collected from China. Chinese Journal of Prevention Medicine, 2016, 50(10): 907-911. (in Chinese)
doi: 10.3760/cma.j.issn.0253-9624.2016.10.013
[38] 刘付香, 李玲, 梁炫强. 生物防治黄曲霉毒素污染研究进展. 中国生物防治学报, 2010, 26(1): 96-101.
LIU F X, LI L, LIANG X Q.Advances on biological control of aflatoxin contamination. Chinese Journal of Biological Control, 2010, 26(1): 96-101. (in Chinese)
[39] 李磊, 姬建生, 赵军锋. 河南省玉米真菌毒素污染调查. 中国卫生检验杂志, 2017, 27(8): 1171-1173.
LI L, JI J S, ZHAO J F.Investigation on mycotoxin contamination in corn in Henan. Chinese Journal of Health Laboratory Technology, 2017, 27(8): 1171-1173. (in Chinese)
[1] DU Qing, TANG ZhaoLei, LI ShiChu, SHANGGUAN LingLing, LI HuaJiao, DUAN CanXing. Composition of Fusarium Species Causing Maize Ear Rot and Analysis of Toxigenic Chemotype in Guangxi [J]. Scientia Agricultura Sinica, 2019, 52(11): 1895-1907.
[2] GAO Hong-jun, PENG Chang, ZHANG Xiu-zhi, LI Qiang, ZHU Ping. Effect of Long-Term Different Fertilization on Maize Yield Stability in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2015, 48(23): 4790-4799.
[3] YANG Zhen-xing, ZHOU Huai-ping, XIE Wen-yan, GUAN Chun-lin, CHE Li. Effect of Long-Term Fertilization on Pb, As Contents of Soil and Maize Grain [J]. Scientia Agricultura Sinica, 2015, 48(23): 4827-4836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!