Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (23): 4555-4565.doi: 10.3864/j.issn.0578-1752.2016.23.008

• PLANT PROTECTION • Previous Articles     Next Articles

Expression and Molecular Simulation of Alkaline Phosphatase Receptor of Plutella xyllostella

ZHANG Xiao, HU Xiao-dan, ZHONG Jian-feng, WU Ai-hua, XU Chong-xin, LIU Yuan, ZHANG Cun-zheng, XIE Ya-jing, LIU Xian-jin   

  1. Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Food Quality and Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture, Nanjing 210014
  • Received:2016-09-05 Online:2016-12-01 Published:2016-12-01

Abstract: 【Objective】The objective of this study is to confirm the binding ability of membrane-bound alkaline phosphatase (mALP) of Plutella xyllostella with Cry1Ac toxin using prokaryotic expression and Ligand blot, and to predict toxin-receptor binding region and key amino acid binding sites (hot-spots) employed by homology modeling and docking study of Cry1Ac-mALP binding mode. It will provide a basis for the study of toxin-receptor interaction mechanism and molecular modification to enhance the activity of Cry toxin. 【Method】 The mALP of P. xyllostella full-length primers were designed and amplified by PCR. The restricted products of mALP and pET-26b (+) were ligated by T4 DNA ligase after the dual-enzyme digestion procedures. The recombinant pET-26b-mALP vectors were transferred into the Trans1-T1 phage resistant chemically competent cells, then picked clones were analyzed by PCR amplification, dual-enzyme digestion and sanger sequencing. The positive recombinant vectors (anchoring the corrected mALP gene) were transferred into the E. coli BL21 (DE3) competent cells for prokaryotic expression. The inducible expression products of mALP were transformed onto PVDF membrane. Preparation of mALP and binding activity of Cry1Ac with mALP were verified through Western blot and Ligand blot, respectively. Three-dimensional structure of mALP was predicted by homology modeling, molecular dynamics simulation and model evaluation. The toxin-receptor docking complexes were generated by using the PatchDocK and FireDock web-servers with molecular dynamics simulations. The toxin-receptor complex was analyzed to determine the interaction region and the amino acid binding sites, key amino acid residues involved in Cry toxin and ALP receptor by computer-aided alanine mutation scanning tests. 【Result】P. xyllostella mALP gene was successfully amplified, followed with the prokaryotic expression of mALP receptor protein. Binding of Cry1Ac toxin with prepared mALP protein was verified. The three-dimensional structure of mALP was successfully obtained by homology modeling, then the Cry toxin-ALP complex was determined. By the changed solvent accessible surface areas calculation and Ligplot analysis, the results showed that the domain II and domain III of Cry toxin were involved in binding to receptor, and Cry toxin and ALP were interacted mainly depending on hydrophobic and hydrogen bonding patterns. Finally, through the computer-aided alanine mutation scanning hot residues analysis, there were three key amino acid residues (376ASN, 443SER and 486SER) from Cry toxin and four key amino acid residues (452ARG, 499THR, 502TYR and 513TYR) from ALP were participated in the interaction of toxin-receptor complex, respectively. 【Conclusion】It can be determined that the mALP receptor also has the ability to bind Cry1Ac toxin by prokaryotic expression, the three-dimensional structure of mALP was predicted and the toxin-receptor binding model was studied using molecular simulation.

Key words: alkaline phosphatase (ALP), prokaryotic expression, Ligand blot, homology modeling, molecular docking, hot-spots prediction

[1] 喻子牛, 孙明, 刘子铎, 戴经元, 陈亚华, 喻凌, 罗曦霞. 苏云金芽孢杆菌的分类及生物活性蛋白基因. 中国生物防治, 1996, 12(2): 85-89. YU Z N, SUN M, LIU Z D, DAI J Y, CHEN Y H, YU L, LUO X X. The classification of Bacillus thringiensis and their biological active protein genes. Chinese Journal of Biological Control, 1996, 12(2): 85-89. (in Chinese) [2] BRAVO A, LIKITVIVATANAVONG S, GILL S S, SOBERÓN M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 2011, 41(7): 423-431. [3] VACHON V, LAPRADE R, SCHWARTZ J L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. Journal of Invertebrate Pathology, 2012, 111(1): 1-12. [4] FABRICK J A, TABASHNIK B E. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochemistry and Molecular Biology, 2007, 37(2): 97-106. [5] 潘家荣, 乔艳红, 张维, 林敏, 张杰. Bt晶体蛋白CrylAc放射免疫检测技术研究. 核农学报, 2006, 20(6): 544-547. PAN J R, QIAO Y H, ZHANG W, LIN M, ZHANG J. Study on radioimmunoassary of Bt Cry1Ac. Journal of Nuclear Agricultural Sciences, 2006, 20(6): 544-547. (in Chinese) [6] LEE D W, CHOI J Y, KIM W T, JE Y H, SONG J T, CHUNG B K, BOO K S, KOH Y H. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). Biochemical and Biophysical Research Communications, 2007, 353: 591-597. [7] 李怡萍, 梁革梅, 仵均祥, 陈豪, 马康生, 吴孔明, 郭予元. 苏云金芽孢杆菌杀虫机理及害虫对其抗性机制的研究进展. 西北农林科技大学学报(自然科学版), 2010, 38(9): 118-128. LI Y P, LIANG G M, WU J X, CHEN H, MA K S, WU K M, GUO Y Y. Progress in insecticidal mechanism of Bt and resistance mechanism of pest insect to Bt. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(9): 118-128. (in Chinese) [8] 张丽阳, 刘承兰. 昆虫抗药性机制及抗性治理研究进展. 环境昆虫学报, 2016, 38(3): 640-647. ZHANG L Y, LIU C L. Research progress on mechanism of insect resistance to insecticides and its management. Journal of Environmental Entomology, 2016, 38(3): 640-647. (in Chinese) [9] HECKE D G, GAHAN L J, BAXTER S W, ZHAO J Z, SHELTON A M, GOULD F, TABASHNIK B E. The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology, 2007, 95: 192-197. [10] 谭声江, 陈晓峰, 李典谟. 昆虫对Bt毒素的抗性机理研究进展. 昆虫知识, 2001, 38(1): 12-17. TAN S J, CHEN X F, LI D M. Research progresses on mechanism of insect resistance to Bacillus thuringiensls toxin. Entomological Knowledge, 2001, 38(1): 12-17. (in Chinese) [11] PIGOTT C R, ELLAR D J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 2007, 71(2): 255-281. [12] 张长胜, 来鲁华. 蛋白质相互作用预测、设计与调控. 物理化学学报, 2012, 28(10): 2363-2380. ZHANG C S, LAI L H. Protein-protein interaction: Prediction, design, and modulation. Acta Physico-Chimica Sinica, 2012, 28(10): 2363-2380. (in Chinese) [13] ROSENFELD L, HEYNE M, SHIFMAN J M, PAPO N. Protein engineering by combined computational and in vitro evolution approaches. Trends in Biochemical Sciences, 2016, 41(5): 421-433. [14] JURAT-FUENTES J L, ADANG M J. Characterization of a Cry1Ac- receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry, 2004, 271: 3127-3135. [15] JURAT-FUENTES J L, KARUMBAIAH L, JAKKA S R K, NING C, LIU C, WU K, JACKSON J, GOULD F, BLANCO C, PORTILLA M, PERERA O, ADANG M. Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS ONE, 2011, 6(3): e17606. [16] CHEN W, LIU C, XIAO Y, ZHANG D, ZHANG Y, LI X, TABASHNIK B E, WU K. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS ONE, 2015, 10(4): e0126288. [17] 杨峰山, 吴青君, 徐宝云, 曹丽波, 朱国仁, 张友军. 小菜蛾对Bt毒素Cry1Ac和Bt制剂抗性的选育及其抗性种群的生物学适应性. 昆虫学报, 2006, 49(1): 64-69. YANG F S, WU Q J, XU B Y, CAO L B, ZHU G R, ZHANG Y J. Resistance selection of Plutella xylostella by Cry1Ac toxin and Bt formulation and biological fitness of the resistant populations. Acta Entomologica Sinica, 2006, 49(1): 64-69. (in Chinese) [18] GUO Z J, KANG S, ZHU X, WU Q J, WANG S L, XIE W, ZHANG Y J. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Journal of Invertebrate Pathology, 2015, 126: 21-30. [19] 张涛, 张丽丽, 魏纪珍, 肖玉涛, 梁革梅, 周瑞阳. Cry1Ac抗、感棉铃虫碱性磷酸酯酶(ALP1)的表达量比较. 中国农业科学, 2013, 46(17): 3580-3586. ZHANG T, ZHANG L L, WEI J Z, XIAO Y T, LIANG G M, ZHOU R Y. The expression level of alkaline phosphatase (ALP1) in Cry1Ac-resistant and susceptible cotton bollworm Helicoverpa armigera Hübner. Scientia Agricultura Sinica, 2013, 46(17): 3580-3586. (in Chinese) [20] YANG Z X, WU Q J, WANG S L, CHANG X, WANG J H, GUO Z J, LEI Y Y, XU B Y, ZHANG Y J. Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Ac- susceptible and Cry1Ac-resistant strains of Plutella xylostella (L.). Journal of Applied Entomology, 2012, 136: 539-548. [21] 刘洁, 文礼章, 王少丽, 吴青君, 张友军. 小菜蛾碱性磷酸酶基因cDNA片段的克隆及其序列分析. 昆虫知识, 2010, 47(2): 270-274. LIU J, WEN L Z, WANG S L, WU Q J, ZHANG Y J. Cloning and sequence analysis of alkaline phosphatase gene in the diamondback moth, Plutella xylostella. Chinese Bulletin of Entomology, 2010, 47(2): 270-274. (in Chinese) [22] GUO Z, KANG S, CHEN D F, WU Q J, WANG S L, XIE W, ZHU X, BAXTER S W, ZHOU X G, JUERAT-FUENTES J L, ZHANG Y J. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genetics, 2015, 11(4): e1005124. [23] 李红亮, 张林雅, 庄树林, 倪翠侠, 韩宝瑜, 商晗武. 中华蜜蜂普通气味结合蛋白ASP2的气味结合功能模式分析. 中国农业科学, 2013, 46(1): 154-161. LI H L, ZHANG L Y, ZHUANG S L, NI C X, HAN B Y, SHANG H W. Interpretation of odorant binding function and mode of general odorant binding protein ASP2 in Chinese honeybee (Apis cerana cerana). Scientia Agricultura Sinica, 2013, 46(1): 154-161. (in Chinese) [24] 庄绪静, 尹姣, 李克斌, 曹雅忠. 华北大黑鳃金龟气味结合蛋白HoblOBP2的生物信息学分析. 植物保护, 2013, 39(1): 50-55. ZHUANG X J, YIN J, LI K B, CAO Y Z. Bioinformatics analysis of the odorant-bindig protein HoblOBP2 in olfactory sensilla of the scarab bettle Holotichaia oblita. Plant Protection, 2013, 39(1): 50-55. (in Chinese) [25] SHAN S P, XIA L Q, DING X Z, ZHANG Y M, HU S B, SUN Y J, YU, Z Q, HAN L Z. Homology modeling of Cry1Ac toxin-binding alkaline phosphatase receptor from Helicoverpa armigera and its functional interpretation. Chinese Journal of Chemistry, 2011, 29: 427-432. [26] ZHANG X, CANDAS M, GRIKO N B, ROSE-YOUNG L, JR BULLA L A. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death and Differentiation, 2005, 12: 1407-1416. [27] 王俊华, 周小毛, 吴青君, 王少丽, 谢文, 陈得峰, 徐宝云, 张友军. 小菜蛾中肠氨肽酶N2在昆虫细胞中的表达. 农药学学报, 2012, 14(2): 151-157. WANG J H, ZHOU X M, WU Q J, WANG S L, XIE W, CHEN D F, XU B Y, ZHANG Y J. Expression of aminopeptidase N (APN2) from Plutellaxylost ellalarval midgut in Sf9 cells. Chinese Journal of Pesticide Science, 2012, 14(2): 151-157. (in Chinese) [28] ZHANG X B, GRIKO N B, CORONA S K, JR BULLA L A. Enhanced exocytosis of the receptor BT-R1 induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comparative Biochemistry and Physiology, Part B Biochemistry and Molecular Biology, 2008, 149(4): 581-588. [29] NING C, WUA, K, LIU C, GAO Y, JURAT-FUENTES J L, GAO X. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae. Journal of Insect Physiology, 2010, 56: 666-672. [30] 李红亮, 聂文敏, 高其康, 程家安. 中华蜜蜂气味结合蛋白ASP2 cDNA的克隆及原核表达. 中国农业科学, 2008, 41(3): 933-938. LI H L, NIE W M, GAO Q K, CHENG J A. Cloning of cDNA encoding odorant binding protein ASP2 in working bee’s antenna of Apis cerana cerana and its prokaryotic expression. Scientia Agricultura Sinica, 2008, 41(3): 933-938. (in Chinese) [31] 林慧岩, 周子珊, 束长龙, 高继国, 张杰. APN1的原核表达及其与Cry1Ac蛋白体外结合. 植物保护, 2015, 41(4): 23-28. LIN H Y, ZHOU Z S, SHU C L, GAO J G, ZHANG J. Prokaryotic expression of aminopeptidase N1 from Helicoverpa armigera and binding analysis with Cry1Ac toxin in virto. Plant Protection, 2015, 41(4): 23-28. (in Chinese) [32] PERERA O P, WILLIS J D, ADANG M J, JURAT-FUENTES J L. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Insect Biochemistry and Molecular Biology, 2009, 39: 294-302. [33] FERNANDEZ L E, MARTINEZ-ANAYA C, LIRA E, CHEN J, EVANS A, HERNÁNDEZ-MARTÍNEZ S, LANZ-MENDOZA H, BRAVO A, GILL S S, SOBERÓN M. Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti. Biochemistry, 2009, 48: 8899-8907. [34] 张丽丽, 梁革梅, 曹广春, 高希武, 郭予元. 增强Bt Cry毒素杀虫作用的重要途径: 增效因子的利用及晶体蛋白的遗传改良. 环境昆虫学报, 2010, 32(3): 525-531. ZHANG L L, LIANG G M, CAO G C, GAO X W, GUO Y Y. Approaches for enhancing the insecticidal activity of Bacillus thuringiensis Cry toxins: application of synergistic factors and genetic improvement of crystal protein. Journal of Environmental Entomology, 2010, 32(3): 525-531. (in Chinese) [35] ZHANG S P, CHENG H M, GAO Y L, WANG G R, LIANG G M, WU K M. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry and Molecular Biology, 2009, 39: 421-429. [36] 束长龙, 张风娇, 黄颖, 李艳秋, 张杰. Bt杀虫基因研究现状与趋势. 中国科学: 生命科学, 2016, 46(5): 548-555. SHU C L, ZHANG F J, HUANG Y, LI Y Q, ZHANG J. Current status and research trends of Bt insecticidal gene. Scientia Sinica Vitae, 2016, 46(5): 548-555. (in Chinese) [37] ATKINSON S C, ARMISTEAD J S, MATHIAS D K, SANDEU M M, TAO D Y, BORHANI-DIZAJI N, TARIMO B B, MORLAIS I, DINGLASAN R R, BORG N A. Structural analysis of Anopheles midgut aminopeptidase N reveals a novel malaria transmission- blocking vaccine B-cell epitope. Nature Structural & Molecular Biology, 2015, 22(7): 532-539. [38] TAJNEA S, SANAM R, GUNDLA R, GANDHI N S, MANCERA R L, BODDUPALLY D, VUDEM D R, KHAREEDU V R. Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. Journal of Molecular Graphics and Modelling, 2012, 33: 61-76. [39] AHAMD A, JAVED M R, RAO A Q, KHAN M A, AHAD A, DIN S U, SHAHID A A, HUSNAIN T. In-Silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking. Frontiers in Plant Science, 2015, 6: Article 1081. [40] SHAO E, LIN L, CHEN C, CHEN H, ZHUANG H H, WU S Q, SHAO L, GUAN X, HUANG Z P. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål). Scientific Reports, 2016, 6(12): e84022. [41] BRAVO A, GÓMEZA I, PORTA H, GARCÍA-GÓMEZ B I, RODRIGUEZ-ALMAZAN C, PARDO L, SOBERÓN M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology, 2012, 6(1): 17-26. [42] CUKUROGLU E, ENGIN H B, GURSOY A, KESKIN O. Hot spots in protein-protein interfaces: Towards drug discovery. Progress in Biophysics and Molecular Biology, 2014, 116(2/3): 165-173.
[1] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[2] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[3] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[4] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[5] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[6] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[7] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[8] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[9] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[10] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[11] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[12] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[13] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[14] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
[15] ZHENG XiuPing, DING HaoJie, GUO XiaoLu, YANG Yi, HUANG Yan, CHEN XueQiu, ZHOU QianJin, DU AiFang. Characteristics of Hc-daf-22 Gene from Haemonchus contortus: Crokaryotic Expression and Its Enzymatic Activity [J]. Scientia Agricultura Sinica, 2017, 50(8): 1535-1542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!