Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4323-4341.doi: 10.3864/j.issn.0578-1752.2016.22.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Immobilization Effect and Its Physiology and Biochemical Mechanism of the Cadmium in Crop Roots

WANG Xue-hua, DAI Li   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128
  • Received:2016-07-25 Online:2016-11-16 Published:2016-11-16

Abstract: A certain degree of cadmium stress has seriously influenced crop growth, development, yield and quality of farm produce. In this review, the authors comprehensively summarized the damages of Cd to crops and a human being, and the characteristics of the Cd absorption, transport and accumulation as well as their dependent main regulatory genes and their functions. The resistant and tolerant mechanisms of crops to the Cd toxicity were simply summarized, while the physiology and biochemical mechanism of the root cadmium immobilization effect which was one of them were emphatically introduced. The Cd got into the plant via the root absorption mostly, and in the root, the Cd2+ entered the “free space” firstly, which is constituted by the cell space, the cell wall micropore and the space between cell wall and plasma membrane, afterwards, passed through the plasma membrane into the cytoplasm by the way of active or passive absorption, and then were transported into the xylem vessel through symplast or apoplast pathway. Rice and others crops mainly use the following ways to adapt the Cd stress: the retention effect of cell wall, the chelation effect in symplast, the compartmentation effect of vacuole, the accumulation of stress protein and proline, the enhancement of antioxidase system activity and the immobilization effect of the root. As an important way to resist and tolerate the cadmium toxicity, the immobilization effect of cadmium in crop root plays a crucial role in regulating the Cd absorption, transport, distribution and accumulation in crop, preventing Cd entering into bioplasts and shoots of plant, and reducing the harm of Cd to the growth and development of the crop and the yield and quality of the farm produce. It mainly contains the retention caused by the low root-to-shoot Cd transport volume, the cell wall and the vacuolar. (i) The retention caused by the low root-to-shoot Cd transport volume. This retention effect is mostly influenced by the xylem Cd loading capacity of the root and the content of the cadmium long distance transport carrier – phytochelatins (PCs); and they were controlled by the ion transporter HMA2 and HMA4 on plasma membrane and the PCs synthetase in cell and their relevant regulatory genes, such as HMA2, HMA4 and PCs1. And they have a negative regulation to the Cd retention in the xylem. (ii) The cell wall immobilization effect. This effect happens in the apoplast (including the cell wall and intercellular layer) of the root cell, and is mainly related to the component and structure of the apoplast, and in which the pectin has played a key role, moreover, the hemicellulose also has some effect in it. On the basis of the different action way in the pectin and hemicellulose Cd retention, the cell wall immobilization effect can be divided into physical immobilization (PIB) and chemical immobilization (CIB). The PIB is mostly related to the pectin content and the pectin methyl esterase (PME) activity. While, the CIB is the result of electrostatic binding effect between the Cd2+ and carboxyl group or other groups with negative charge on the pectin, hemicellulose and other components of the cell wall. And they were controlled by the genes like PME14 and XCD1. (iii) The vacuole immobilization effect. This effect is closely related to the PCs in the cytoplasm and the vacuole, as well as the transport protein on the tonoplast; and its retention ability to Cd is restricted by the vacuolar sequestration capacity (VSC). In the vacuole Cd immobilization, the PCs with different molecular weight play an important part, they participated in the chelation of Cd in the cytoplasm, the Cd transformation between cytoplasm and vacuole, and the Cd sedimentation in the vacuole finally. At the same time, the transport proteins on the tonoplast are in charge of transferring the low molecular weigh PC-Cd compound from cytoplasm solution into the vacuole through active transport, making the Cd insulated. In crop roots, the successively combined action of the three immobilization effects has reduced the cadmium transfer amount from the root to shoot, then eased the pernicious effects of the Cd to the shoot, and decreased the content in the crop harvesting organs like grain. However, due to the finiteness of the percentage of PC-Cd in the general Cd number, the total charge number of the cell wall and the VSC of vacuole, making the intensity and effectiveness of the root-Cd-retention effects are limited to a certain degree.

Key words: root, cadmium, immobilization effect, phytochelatins, cell wall

[1]    顾继光, 周启星, 王新. 土壤重金属污染的治理途径及其研究进展. 应用基础与工程科学学报, 2003, 11(2): 143-149.
Gu J G, Zhou Q X, Wang X. Reused path of heavy metal pollution in soils and its research advance. Journal of Basic Science and Engineering, 2003, 11(2): 143-149. (in Chinese)
[2]    孔箐锌, 陈阜. 我国农田污染现状与防治对策. 节能减排, 2010(4): 23-26.
Kong J X, Chen F.Current situation and control countermeasures of farmland pollution in China. Energy Reuction, 2010(4): 23-26. (in Chinese)
[3]    杜应琼, 何江华, 陈俊坚, 魏秀国, 杨秀琴, 王少毅, 何文彪. 铅、镉和铬在叶类蔬菜中的累积及对其生长的影响. 园艺学报, 2003, 30(1): 51-55.
Du Y Q, He J H, Chen J J, Wei X G, Yang X Q, WANG S Y, HE W B. Effects of heavy metals of Pb, Cd and Cr on the growth of vegetables and their uptake. Acta Horticulturae Sinica, 2003, 30(1): 51-55. (in Chinese)
[4]    Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Angle J S. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals, 2004, 17(5): 549-553.
[5]    杨望, 赵先英, 张定林, 季卫刚, 刘毅敏. 镉的毒性及损伤机制研究进展. 职业与健康, 2013, 29(8): 1001-1003.
Yang W, Zhao X Y, Zhang D L, Ji W G, Liu Y M. Research progress of cadmium toxicity and mechanism of injury. Occup and Health, 2013, 29(8): 1001-1003. (in Chinese)
[6]    袁庆红, 何作顺. 重金属迁移及其对农作物影响的研究进展. 职业与健康, 2009, 25(24): 2808-2810.
Yuan Q H, He Z S. Research of heavy metal migration and its impact on crops. Occup and Health, 2009, 25(24): 2808-2810. (in Chinese)
[7]    关昕昕, 严重玲, 刘景春, 敖子强.钙对镉胁迫下小白菜生理特性的影响. 厦门大学学报(自然科学版), 2011, 50(1): 132-137.
Guan X X, Yan Z L, Liu J C, Ao Z Q. Effect of calcium on physiological property of Brassica chinensis L.under cadmium stress. Journal of Xiamen University (Natural Science), 2011, 50(1): 132-137. (in Chinese)
[8]    杨居荣, 贺建群, 蒋婉菇. 镉污染对植物生理生化的影响. 农业环境保护, 1995, 14(5): 193-197.
Yang J R, He J Q, Jiang W R. Effect of cadmium pollution on the physiology and biochemistry of plants. Agro-Environment Protection, 1995, 14(5): 193-197. (in Chinese)
[9]    黄秋婵, 黎晓峰, 李耀燕. 镉对水稻的毒害效应及耐性机制的研究进展. 安徽农业科学, 2007, 35(7): 1971-1974.
Huang Q C, Li X F, Li Y Y. Revie of toxic effect of cadmium on Oryza sativa and tolerant mechanism. Journal of Anhui Agricultural Sciences, 2007, 35(7): 1971-1974. (in Chinese)
[10]   葛才林, 骆剑峰, 刘冲. 重金属对水稻光合作用和同化物输配的影响. 核农学报, 2005, 19(3): 214-218.
Ge C L, Luo J F, Liu C. Effect of heavy metal on the photosynthesis and photosynthates transformation in rice. Acta Agriculturae Nucleatae Sinica, 2005, 19(3): 214-218. (in Chinese)
[11]   王琴儿, 曾英, 李丽美. 镉毒害对水稻生理生态效应的研究进展. 北方水稻, 2007(4): 12-16.
Wang Q E, Zeng Y, Li L M. Advance on the effect of cadmium damage on physiology and ecology of rice. North rice, 2007(4): 12-16. (in Chinese)
[12]   孔德政, 裴康康, 李永华, 张曼. 铅、镉和锌胁迫对荷花生理生化的影响. 河南农业大学学报, 2010, 44(4): 402-407.
Kong D Z, Pei K K, Li Y H, Zhang M. Effect of Cd, Zn and Pb stresses on physiology and biochemistry of lotus. Journal of Henan Agricultural University, 2010, 44(4): 402-407. (in Chinese)
[13]   莫争, 王春霞, 陈琴, 王海, 薛传金, 王子健.重金属CuPbZnCrCd在水稻植株中的富集和分布. 环境化学, 2002, 21(2): 110-116.
Mo Z, Wang C X, Chen Q, Wang H, Xue C J, Wang Z J. Distribution and enrichment of heavy metals of Cu, Pb, Zn, Cr and Cd in paddy plant. Environmental Chemistry, 2002, 21(2):110-116. (in Chinese)
[14]   郭天财, 夏来坤, 朱云集. 铜、镉胁迫对冬小麦籽粒淀粉含量和糊化特性影响的初步研究. 麦类作物学报, 2006, 26(3): 107-l10.
Guo T C, Xia L K, Zhu Y J. Preliminary study on effect of copper, cadmium stress on starch content and pasting property of winter wheat grain. Journal of Triticeae Crops, 2006, 26(3): 107-110. (in Chinese)
[15]   王农, 石静, 刘春光. 镉对几种粮食作物子粒品质的影响. 农业环境与发展. 2008, 25(2): 114-115.
Wang N, Shi J, Liu C G. Effect of cadimum on several kinds of grain crop seed quality. Agro-Environment and Development, 2008, 25(2): 114-115. (in Chinese)
[16]   何李生. 镉对水稻生长和养分吸收的影响及质外体在水稻耐受镉毒害中的作用[D]. 杭州: 浙江大学, 2007.
He L S. Effect of cadmium on growth and nutrient uptake of rice and the possible role of apoplast in tolerance to cadmium [D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[17]   朱智伟, 陈铭学, 牟仁祥, 曹赵云, 张卫星, 林晓燕. 水稻镉代谢与控制研究进展. 中国农业科学, 2014, 47(18): 3633-3640.
Zhu Z W, Chen M X, Mou R X, Cao Z Y, Zhang W X, Lin X Y. Advances in research of cadmium metabolism and control in rice plant. Scientia Agricultura Sinica, 2014, 47(18): 3633-3640. (in Chinese)
[18]   刘仲齐. 水稻体内镉转运机理的研究进展//第五届全国农业环境科学学术研讨会论文集. 2013: 120-125.
Liu Z Q. Research advance on the mechanism of cadmium transport in rice//Proceedings of the Fifth National Symposium on Agricultural Environmental Science. 2013: 120-125. (in Chinese)
[19]   Ueno D, Koyama E, Yamaji N, Ma J F. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Journal of Experimental Botany, 2011, 62: 2265-2272.
[20]   Nocito F F, Lancilli C, Dendena B, Lucchini G, Sacchi G A. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell and Environment, 2011, 34: 994-1008.
[21]   叶新新, 周艳丽, 孙波. 适于轻度Cd、As污染土壤种植的水稻品种筛选. 农业环境科学学报, 2012, 31(6): 1082-1088.
Ye X X, Zhou Y L, Sun B. Screening of suitable cultivars for the adaptation to lightly contaminated soil with Cd and As. Journal of Agro-Environment Science, 2012, 31(6): 1082-1088. (in Chinese)
[22]   刘侯俊, 梁吉哲, 韩晓日, 李军, 芦俊俊, 张素静, 冯璐, 马晓明.东北地区不同水稻品种对Cd的累积特性研究. 农业环境科学学报, 2011, 30(2): 220-227.
Liu H J, Liang J Z, Han X R, Li J, Lu J J, Zhang S J, Feng L, Ma X M. Accumulation and distribution of cadmium in different rice cultivars of northeastern China. Journal of Agro-Environment Science, 2011, 30(2): 220-227. (in Chinese)
[23]   赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌.杂交水稻不同器官镉浓度与累积量. 中国水稻科学, 2006, 20(3): 306-312.
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Concentrations and accumulation of cadmium in different organs of hybrid rice. Chinese Journal of Rice Science, 2006, 20(3): 306-312. (in Chinese)
[24]   Liu J G, Qian M, Cai G L,Yang J C, Zhu Q S. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials, 2007, 143: 443-447.
[25]   于辉, 杨中艺, 杨知建, 向佐湘.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布. 应用生态学报, 2008, 19(10): 2221-2226.
Yu H, Yang Z Y, Yang Z J, Xiang Z X. Chemical forms and subcellular and molecular distribution of Cd in two Cd-accumulation rice genotype. Chinese Journal of Applied Ecology, 2008, 19(10): 2221-2226. (in Chinese)
[26]   Huang J, Zhang Y, Peng J S, Zhong C, Ow D W, Gong J M. Fission yeast HMT1 lowers seed cadmium through phytochelatin- dependent vacuolar sequestration in Arabidopsis. Plant Physiology, 2012, 158: 1779-1788.
[27]   查燕, 杨居容, 刘虹, 何孟常. 污染谷物中重金属的分布及加工过程的影响. 环境科学, 2000, 21(3): 52-55.
Cha Y, Yang J R, Liu H, He M C. Distribution of heavy metals in polluted crops seeds and the effect of heavy metal in the food processing. Environmental Science, 2000, 21(3): 52-55. (in Chinese)
[28]   牟仁祥, 陈铭学, 朱智伟, 应兴华. 水稻重金属污染研究进展. 生态研究, 2004, 13(3): 417-419.
Mou R X, Chen M X, Zhu Z W, Ying X H. Advance in the researches on heavy metals in rice. Ecology and Environment, 2004, 13(3): 417-419. (in Chinese)
[29]   杨居容, 查燕, 刘虹. 污染稻麦籽实中Cd、Cu、Pb的分布及其存在形态初探. 中国环境科学, 1999, 19: 500-504.
Yang J R, Cha Y, Liu H. The distribution and chemical forms of Cd、Cu and Pb in polluted seeds. China Environmental Science, 1999, 19: 500-504. (in Chinese)
[30]   王亚军, 潘传荣, 钟国才, 陈嘉东.稻谷中镉元素残留分布特征分析. 粮食与饲料工业, 2010, 10: 56-59.
Wang Y J, Pan C R, Zhong G C, Chen J D. Analysis on distribution characteristics of cadmium residues in paddy. Cereal & Feed Industry, 2010, 10: 56-59. (in Chinese)
[31]   于辉, 杨中艺, 向佐湘, 陈桂华, 刘明稀, 张志飞, 袁剑刚.两种不同镉积累类型水稻糙米中镉的存在形态. 中山大学学报(自然科学版), 2010, 49(1): 85-89.
Yu H, Yang Z Y, Xiang Z X, Chen G H, Liu M X, ZHANG Z  F, YUAN J G. Existing forms of cadmium in brown rice (Oryza sativa L.) of two cultivars differing in Cd accuymulation. Acta  Scientiarum Naturalium Universitatis Sunyateni, 2010, 49(1): 85-89. (in Chinese)
[32]   Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experim- ental Botany, 2009, 60 (9): 2677-2688.
[33]   Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 2012, 5(1): 1-8.
[34]   Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 2013, 16(3): 328-334.
[35]   孙敏. 水稻植株中镉区室化关键螯合物的鉴定与分析[D]. 北京: 中国农业科学院, 2010.
Sun M. Characterization and analysis of chelates involved in compartmentation of cadimium in rice plants [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[36]   王芳. 不同镉耐性水稻中镉的亚细胞和分子分布[D]. 南京: 南京农业大学, 2009.
Wang F. Subcellular and molecular distibutions of cadmium in two rice cultivars with different tolerance [D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[37]   Florijin P J, van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil, 1993, 150: 25-32.
[38]   Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 2004, 576(3): 306-312.
[39]   Wong C K, Cobbett C S. HMA p-type ATPase are the major mechanism for root-to- shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 2009, 181(1): 71-78.
[40]   Williams L E, Mills R F. P1B-ATPase an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 2005, 10: 491-502.
[41]   杨菲, 唐明凤, 朱玉兴. 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015, 30(3): 2-8.
Yang F, Tang M F, Zhu Y X. Molecular mechanism of cadmium absorption and transport in rice. Hybrid Rice, 2015, 30(3): 2-8. (in Chinese)
[42]   钟茜, 李韶山. 水稻P1B型ATPase重金属转运蛋白的结构与功能研究进展. 宁夏师范学院学报(自然科学), 2013, 34(6): 62-69.
Zhong Q, Li S S. Structure and function of heavy metal transporter P1B-ATPase in rice: a review. Journal of Ningxia Normal University (Natural Science), 2013, 34(6): 62-69. (in Chinese)
[43]   Kim D Y, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal tesistance. The Plant Journal, 2007, 50(2): 207-218.
[44]   Hanikenne M, Talke I N, Haydon M J, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. Evolution of metal hyperaccumula- tion required cis-regulatory changes and triplication of HMA4. Nature, 2008, 43: 391-395.
[45]   张福锁. 环境胁迫与植物根际营养. 北京: 中国农业出版社, 1997: 211-237.
Zhang F S. Environmental Stress and Plant Nutrition. Beijing: China Agriculture Press, 1997: 211-237. (in Chinese)
[46]   原海燕, 黄钢, 佟海英,黄苏珍. Cd胁迫下马蔺根和叶中非蛋白巯基肽含量的变化. 生态环境学报, 2013, 22(7): 1214-1219.
Yuan H Y, Huang G, Tong H Y, Huang S Z. The change of non-protein thiol content in roots and leaves of Iris lactea var. chinensis under Cd stress. Ecology and Environmental Science, 2013, 22(7): 1214-1219. (in Chinese)
[47]   原海燕, 郭智, 佟海英, 黄苏珍. Pb胁迫下外源GSH对马蔺体内Pb积累和非蛋白巯基化合物含量的影响. 水土保持学报, 2013, 27(4): 212-216.
Yuan H Y, Guo Z, Dong H Y, Huang S Z. Effects of ecogenous glutathione on Pb accumulation and non-protein thiol content in Iris lactea var. chinensis under Pb stress. Journal of Soil and Water Conservation, 2013, 27(4): 212-216. (in Chinese)
[48]   刘俊祥. 多年生黑麦草对重金属镉的抗性机理研究[D]. 北京: 中国林业科学研究所, 2012.
Liu J X. The resistance mechanism of Lolium perenne to heavy metal Cd2+ stress [D]. Beijing: Chinese Academy of Forestry, 2012. (in Chinese)
[49]   商慧文, 陈江华, 郭园园, 程功, 周会娜, 戴华鑫, 翟妞, 张艳玲. 不同镉积累基因型烟草根系镉螯合能力差异及其相关基因分析. 烟草农学, 2014, 12: 62-66.
Shang H W, Chen J H, Guo Y Y, Cheng G, Zhou H N, Dai H X, Zhai N, Zhang Y L. Differences of root system’s cadmium chelating ability between two tobacco genotypes of different Cd accumulationg pattern and analysis of related genes thereof. Tobacco Agronomy, 2014, 12: 62-66. (in Chinese)
[50]   汪祝兵. 水稻过表达TaPCS1导致镉敏感及其生理机制的研究[D]. 杭州: 浙江大学, 2011.
Wang Z B. Overexpression of TaPCS1 in rice leads to cadmium hypersensitivity and physiological mechanisms [D]. Hangzhou: Zhejiang Unicersity, 2011. (in Chinese)
[51]   张旭红, 高艳玲, 林爱军, 崔玉静, 朱永官. 植物根系细胞壁在提高植物抵抗金属离子毒性中的作用. 生态毒理学报, 2003, 3(1): 9-14.
Zhang X H, Gao Y L, Lin A J, Cui Y J, Zhu Y G. A review on the effect of cell wall on the resietance of plants to metal stress. Asian Journal of Ecotoxicology, 2003, 3(1): 9-14. (in Chinese)
[52]   黄秋婵, 黎晓峰, 沈方科, 阳继辉, 李耀燕, 张维珺.硅对水稻幼苗镉的解毒作用及其机制研究. 农业环境科学学报, 2007, 26(4): 1307-1311.
Huang Q C, Li X F, Shen F K, Yang J H, Li Y Y, ZHANG W J. Cadmium resistance improned by silicon and corresponding mechanisms in Oryza sativas L. seedlings. Journal of Agro- Enviroment Science, 2007, 26(4): 1307-1311. (in Chinese)
[53]   史新慧, 王贺, 张福锁.硅提高水稻抗镉毒害机制的研究. 农业环境科学学报, 2006, 25(5): 1112-1116.
Shi X H, Wang H, Zhang F S. Research on the mechanism of silica improving the resistance of rice seedling to Cd. Journal of Agro-Environment Science, 2006, 25(5): 1112-1116. (in Chinese)
[54]   Gabriel L T, Jerome P, Siobhan A B, Kerstin M. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta, 2015, 242: 791-811.
[55]   Xu S S, Lin S Z, Lai Z X. Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil, 2015, 392: 71-85.
[56]   Zhu X F, Lei G J, Jiang T,Liu Y, Li G X, Zheng S J. Cell wall polysaccharides are involved in P- deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta, 2012, 236: 989-997.
[57]   Li T Q, Tao Q, Shohag J I, Yang X, Donald L S, Liang Y C. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil, 2015, 389: 387-399.
[58]   Dronnet V M, Renard C M G C, Axelos M A V, Thibault J F. Heavy metals binding by pectins: selectivity, quantification and characterization. Carbohydr Polym, 1996, 30: 253-263.
[59]   Nataly M, Yuliya N, Maria K, Igor Y. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls. Plant soil, 2014, 381: 25-34.
[60]   Bernhard J W, Pax F C B, Peter M K, Neal W M. Comparative hydrolysis and sorption of Al and La onto plant cell wall material and pectic materials. Plant Soil, 2010, 332: 319-330.
[61]   Xiong J, An L Y, Lu H, Zhu C. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009, 230: 755-765.
[62]   Magdalena K. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiology Plant, 2011, 33: 35-51.
[63]   Schmohl N, Horst W J. Cell wall pectin content modulates aluminum sensitivity of Zea mays L.cells grown in suspension culture. Plant Cell Environ, 2000, 23: 735-742.
[64]   唐剑锋, 罗湖旭, 林咸永, 章永松, 李刚.铝胁迫下小麦根细胞壁果胶甲酯酶活性的变化及其与耐铝性的关系. 浙江大学学报(农业与生命科学版), 2006, 32(2): 145-151.
Tang J F, Luo H X, Lin X Y, Zhang Y S, Li G. Aluminum-induced changes in cell-wall pectin methylesterase activity of wheat seedlings in relation to their aluminum tolerance. Journal of Zhejiang University(Agricultural,& Life Science), 2006, 32(2): 145-151. (in Chinese)
[65]   潘伟槐, 郑仲仲, 郭天荣, 王超, 寿建昕, 潘建伟.果胶甲基酯酶PME参与调控大麦根尖铝毒敏感性. 浙江大学学报(理学版), 2011, 38(3): 326-332.
Pan W H, Zheng Z Z, Guo T R, Wang C, Shou J X, PAN J W. Involvement of PME activity in regulation of Al toxic sensitivity in the root tips of barley. Journal of zhejiang University(Science Edition), 2011, 38(3): 326-332. (in Chinese)
[66]   刘家友, 喻敏, 刘丽屏, 萧洪东.铝胁迫下豌豆根边缘细胞和根细胞壁多糖组分含量的变化. 中国农业科学, 2009, 42(6): 1963-1971.
Liu J Y, Yu M, Liu L P, Xiao H D. Differences of cell wall polysaccharides in border cells and root apices of pea (Pisun sativum) under aluminium stress. Scientia Agricultura Sinica, 2009, 42(6): 1963-1971. (in Chinese)
[67]   郑绍建. 细胞壁在植物抗营养逆境中的作用及其分子生理机制. 中国科学(生命科学), 2014, 44(4): 334-341.
Zheng S j. The role of cell wall in plant resietance to mutritional stresses and the underlying physiological and molecular mechanisms. Scientia Sinica Vitae, 2014, 44(4): 334-341. (in Chinese)
[68]   Zhu X F, W ang Z W, Dong F, Lei G J, Shi Y Z, Li G X, Zheng S J. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. Journal of Hazard Mater, 2013, 263: 398-403.
[69]   Liu H Y, Liao B H, Lu S Q. Toxicity of surfactant, acid rain and Cd2+ combined pollution to the nucleus of Vicia faba root tip cells. Chinese Journal of Applied & Environmental Biology, 2004, 15: 493-496.
[70]   Probst A, Liu H Y, Fanjul M, Liao B, Hollande E. Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morpholog- ical changes in leaf and root. Environmental and Experimental Botany, 2009, 66: 297-308.
[71]   Hart J J,Welch R M, Norvell W A, Sullivan L A, Kochian L V. Characterization of cadmium binding, uptake. and translocation in intact seedling of bread and durum wheat cuhivars. Plant Physio1ogy, 1998, 116: 1413-1420.
[72]   Ortiz D F, Ruscitti T, McCue K F, Ow D W. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry, 1995, 270: 4721-4728.
[73]   Solis-Dominquez F A, Gonzales-Chavez M C, Garrillo- Gonzalez R, Rodriguez- Vazquez R. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Joural of Hazardous Materials, 2007, 141(3): 630-636.
[74]   Ortiz D F, Kreppel L, Speiser D M, Scheel G, McDonald G, Ow D W. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette- type vacuolar membrane transporter. European Molecular Biology Organization, 1992, 11: 3491-3499.
[75]   Hirschi K D, Korenkov V D, Wilganowski N L. Expression of arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiology, 2000, 124(1): 125-133.
[76]   Koren’kov V, Park S, Cheng N H. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchange. Planta, 2007, 225(2): 403-411.
[77]   Yang X Y, Zeng Z H, Yan J Y, Fan W, Bian H W, Zhu M Y, Yang J L, Zheng S J.Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice. Physiologia Plantarum, 2012, 148: 502-511.
[78]   柏晓娅. XCD1基因调控拟南芥抗镉的机理研究[D]. 合肥: 合肥工业大学, 2013.
Bo X Y. Mechanisms which by the XCD1 gene regulates cadmium resistance in Arabidopsis [D]. Hefei: Hefei University of Technology, 2013. (in Chinese)
[79]   Chou T S, Chao Y Y, Huang W D, Hong C Y, Kao C H. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology, 2011, 168: 1021-1030.
[80]   张杰. 超积累植物东南景天Cd耐性和积累的分子机制[D]. 杭州: 浙江大学, 2015.
Zhang J. Molecular mechanisms of Cd tolerance and accumulation in metal hvperaccumulator Sedum Alfredii [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[81]   Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumula- tion in rice. Journal of Experimental Botany, 2011, 62(14): 4843-4850.
[82]   Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi R D, Trivedi P K. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAM-P1, in arsenic transport and tolerance. Plant, Cell Environ, 2014, 37: 140-152.
[83]   Milner M J, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia ZM, Ma J F, Kochian L V. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd. The Plant Journal, 2014, 78: 398-410.
[84]   Greger M, Kabir A H, Landberg T, Maity P J, Lindberg S. Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution, 2016, 211: 90-97.
[85]   Lee S, An G.Over-expression of OsIRT1 leads to increased iron and zinc accumul-ations in rice. Plant Cell Environ, 2009, 32: 408-416.
[86]   Hou L Y, Shi W M, Wei W H , Shen H. Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Biological Trace Element Research, 2011, 139: 228-240.
[87]   Chen J H, Shen H, Wu Y. Analysis of expression pattern of AHA1 gene promoter in Arabidopsis thaliana. Plant Physiology Communications, 2008, 44: 87-92.
[88]   Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Science Report, 2012, 2: 286.
[89]   鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展. 中国水稻科学, 2013, 27(5): 539-544. 
E Z G, Zhang Y P, Wang L. Molecular mechanism of rice responses to cadmium stress. Chinese Journal of Rice Science, 2013, 27(5): 539-544. (in Chinese)
[90] Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of  the National Academy of Sciences of the USA, 2012, 109(47): 19166-19171.
[91]   Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiology, 2009, 50(1): 106-117.
[92]   Lin S K, Wan W F, Tian T, Wang Y X, Liu Q L, Zhang W F, Ai Y F, Xue L C, He H Q. Protein complex and proteomic profile in the roots of Oryza sativa L. in response to cadmium toxicity. Acta Physiol Plant, 2015, 37: 188.
[93]   Ueno D, Yamaji N, Kono I, Huang C, Ando T, Yano M, Ma J. Gene limiting cadmium accumulation in rice. Proceedings    of the National Academy of Sciences of the USA, 2010, 107: 16500-16505. 
[94]   Ueno D, Milner M J, Yamaji N, Yokosho K, Koyama E, Zambrano M C, Kaskie M, Ebbs S, Kochian L V, Ma J. Elevated expression of TcHMAS plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerule- scens. The Plant Journal, 2011, 66: 852-862.
[95]   Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium transloca- tion in rice by mediating efflux into vacuoles. New Phytologist, 2011, 189(1): 190- 199.
[96]   Kim Y H, Khan A L, Kim D H, Lee S Y, Kim K M, Waqas M, Jung H Y, Shin J H, Kim J G, Lee I J. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biology, 2014, 14: 13.
[97]   Park J, Song W Y, Ko D, Eom Y, Hansen T H, Schiller  M, Lee T G, Martinoia E, Lee Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012, 69: 278-288.
[98]   Korenkov V, King B, Hirschi K, Wagner G J. Root- selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.. Plant Biotechnology Journal, 2009, 7: 219-226.
[99]   张敏. 东南景天镉超积累相关基因的克隆与功能研究[D]. 杭州: 浙江大学, 2011.
Zhang M. Cloning and functional analysis of selected Cd hyPeraeeumulation related genes from Sedum alfredii Hance [D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[100] Cailliatte R, Lapeyre B, Briat J F, Mari S, Curie C. The NRAMP6 metal transporter contributes to cadmium toxicity. Biotechnology Journal, 2009, 422: 217-228.
[101] Takahashi R, Bashir K, Ishimaru Y, Nishizawa N K, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant SignalingBehavior, 2012, 7(12): 1605-1607.
[102] Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiology, 2012, 53(1): 213-224.
[103] Yamaji N, Xia J X, Mitani-Ueno N, Yokosho K, Ma J F. Preferential delivery of Zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA21. Plant Physiology, 2013, 162: 927-939.
[104] Lochlainn O S, Bowen H C, Fray R G, Hammond J P, King G J, White P J, Graham N S, Broadley M R. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmi -um (Cd) hyperaccumulator Noccaea caerulescens. PLoS One, 2011, 6: el7814. 
[105] Wang F, Wang Z, Zhu C. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochimica et Biophysica Sinica, 2012, 4(10): 886-893.
[106] Guo J B, Dai X J, Xu W Z, Ma M. Overexpressing GSH1 and AsPCS1 simultane- ously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 2008, 72: 1020-1026.
[107] Yuan L Y, Yang S G, Liu B X, Zhang M, Wu K Q. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Report, 2012, 31: 67-79.
[108] Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011, 62(15): 5727-5734.
[109] Ma J, Cai H M, He C W, Zhang W J, Wang L J. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells, New Phytologist, 2015, 206(3): 1063-1074.
[110] Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y,Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the USA, 2011, 108(52): 20959-20964.
[111]裴惠娟, 张满效, 安黎哲. 非生物胁迫下植物细胞壁组分变化. 生态学杂志, 2011, 30(6): 1279-1286.
Pei H J, Zhang M X, An N Z. Change of planet cell wall components under abiotic stress: a review. Chinese Journal of Ecology, 2011, 30(6): 1279-1286. (in Chinese)
[112]Bouton S X. Quasimodol encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in arabidopsis. Plant Cell Online, 2002, 14: 2577-2590.
[113]Macarisin D, Wisniewski M E, Bassett C, Thannhauser T W. Proteomic analysis of baminobutyric acid priming and abscisic acid-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes. Plant Cell Environ, 2009, 32: 1612-1631.
[114] Solecka D, Zebrowski J, Kacperska A. Are pectins involved in cold acclimation and deacclimation of winter oilseed rape plants. Annals of Botany, 2008, 101: 521-530.
[115]曲涛. 低温胁迫下油菜素内酯调控拟南芥果胶去甲基酯化的研究[D]. 兰州: 兰州大学, 2011.
Qu T. Study of demethylesterification of pectin, regulated by Brassinosteroids in Arabidopsis under chilling stress [D]. Lanzhou: Lanzhou University, 2011. (in Chinese)
[116]刘家友, 喻敏, 刘丽屏, 萧洪东. 硼对豌豆根边缘细胞和根细胞壁多糖组分含量的影响. 华中农业大学学报, 2009, 28(3): 311-315.
Liu J Y, Yu M, Liu L P, Xiao H D. Effect of boron on the content of cell wall polysaccharides in border cells and root apices of pea(Pisum sativum). Journal of Huazhong Agricultural University, 2009, 28(3): 311-315. (in Chinese)
[1] ZHOU Liang,XIAO Feng,XIAO Huan,ZHANG YuSheng,AO HeJun. Effects of Lime on Cadmium Accumulation of Double-Season Rice in Paddy Fields with Different Cadmium Pollution Degrees [J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791.
[2] PENG Ou,LIU YuLing,TIE BaiQing,YE ChangCheng,ZHANG Miao,LI YuanXingLu,ZHOU JunChi,XU Meng,ZHANG Yan,LONG Yong. Effects of Conditioning Agents and Agronomic Measures on Cadmium Uptake by Rice in Polluted Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(3): 574-584.
[3] ZHU YaJing, ZHOU YaLi, LIU SuShuang, WEI JiaPing, LIU XiaoLin, SHEN YingZi, ZHAO HaiHong, MA Hao. GmHMADP Involved in Seed Vigor Formation of Soybean Under High Temperature and Humidity Stress and its Study Responsive to Copper and Cadmium Stress [J]. Scientia Agricultura Sinica, 2018, 51(14): 2642-2654.
[4] Hua YU, YuXian SHANGGUAN, ShiHua TU, YuSheng QIN, Kun CHEN, DaoQuan CHEN, QianCong LIU. Sources of Cadmium Accumulated in Rice Grain [J]. Scientia Agricultura Sinica, 2018, 51(10): 1940-1947.
[5] WANG Ting, ZHOU Cui, GU YanWen, MA WenChao, LIU Yuan, WEI Hong. Hyperspectral Estimation of Cadmium Content in Tumorous Stem Mustard Based on the Wavelet-Fractal Analysis [J]. Scientia Agricultura Sinica, 2018, 51(1): 71-81.
[6] CHEN JiangMin, YANG YongJie, HUANG QiNa, HU PeiSong, TANG ShaoQing, WU LiQun, WANG JianLong, SHAO GuoSheng. Effects of Continuous Flooding on Cadmium Absorption and Its Regulation Mechanisms in Rice [J]. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310.
[7] FAN Wei-guo, LUO Yan. Growth Status, Root Morphology andPhysiologicalCharacteristics of Four Citrus Rootstocks Under Different Phosphorus Levels [J]. Scientia Agricultura Sinica, 2015, 48(3): 534-545.
[8] YU Hui-yong, SONG Xiao-li, WANG Shu-sheng, CAO Li-jun, GUO Li, WANG Xiao-li, PENG Gong-yin. Effects of Low Molecular Weight Organic Acids on Soil Enzymes Activities and Bacterial Community Structure [J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947.
[9] LU Mei-bin, CHEN Zhi-jun, LI Wei-xi, HU Xue-xu, LI Jing-mei, WANG Bu-jun. Survey and Dietary Exposure Assessment of Cadmium in Wheat from Two Main Wheat-Producing Regions in China [J]. Scientia Agricultura Sinica, 2015, 48(19): 3866-3876.
[10] ZHU Zhi-wei, CHEN Ming-xue, MOU Ren-xiang, CAO Zhao-yun, ZHANG Wei-xing, LIN Xiao-yan. Advances in Research of Cadmium Metabolism and Control in Rice Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3633-3640.
[11] SONG Wen-en, CHEN Shi-bao. The Toxicity Thresholds (ECx) of Cadmium (Cd) to Rice Cultivars as Determined by Root-Elongation Tests in Soils and Its Predicted Models [J]. Scientia Agricultura Sinica, 2014, 47(17): 3434-3443.
[12] SUN Cong, CHEN Shi-Bao, SONG Wen-恩, LI Ning. Accumulation Characteristics of Cadmium by Rice Cultivars in Soils and Its Species Sensitivity Distribution [J]. Scientia Agricultura Sinica, 2014, 47(12): 2384-2394.
[13] KONG Long-1, 2 , TAN Xiang-Ping-1, HE Wen-Xiang-1, 3 , WEI Ge-Hong-2. Response of Soil Enzyme Activity in Different Type of Soils to Cadmium Exposure in China [J]. Scientia Agricultura Sinica, 2013, 46(24): 5150-5162.
[14] WU Xiao-Sheng, WEI Shuai, WEI Yi-Min, GUO Bo-Li, YANG Ming-Qi, LIU Xiao-Ling. Effect of Sub-chronic Cadmium Exposure on Liver Biochemical Index in Wuzhishan Pig [J]. Scientia Agricultura Sinica, 2012, 45(3): 562-568.
[15] WANG Ji-Cang, LIU Xue-Zhong, YUAN Yan, YI Chuan-Hui, BIAN Jian-Chun, LIU Zong-Ping. The Role of Oxidative Stress on the Apoptosis of Rat Hepatocytes Induced by Cadmium [J]. Scientia Agricultura Sinica, 2011, 44(18): 3895-3902.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!