Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (S): 75-85.doi: 10.3864/j.issn.0578-1752.2015.S.009

Previous Articles     Next Articles

Research Advance on the Relationship Between Thioredoxin- Interacting Protein and Glucose Metabolism in Oocytes

PANG Yun-wei, SUN Ye-qing, DU Wei-hua, HAO Hai-sheng, ZHAO Xue-ming, WANG Dong, ZHU Hua-bin   

  1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2015-09-22 Online:2015-10-20 Published:2015-10-20

Abstract: Thioredoxin-interacting protein (TXNIP) is a member of the thioredoxin (Trx) super family of proteins, which is the only α-arrestin family member that binds to and negatively regulates Trx. TXNIP can inhibit the function of Trx system by binding Trx, and act as a competitive inhibitor to remove Trx from apoptosis signal-regulating kinase 1 (ASK1). TXNIP is closely related to the cellular reduction-oxidation (redox) state and plays an important role in cell apoptosis. TXNIP is a critical regulator of glucose metabolism. High glucose recruits carbohydrate response element-binding protein (ChREBP) and the transcription factor MondoA:Mlx to the TXNIP promoter and mediates glucose-induced TXNIP expression. Histone deacetylase 1(HDAC1), nuclear factor Y (NF-Y) and the forkhead boxO1 transcription factor (FOXO1) have been reported to regulate the transcription of TXNIP. TXNIP can also inhibit cell proliferation by repressing cyclin-dependent kinase activity. Some studies have found that elevated TXNIP levels induce beta cell apoptosis and inhibit insulin signaling pathway, then promote the occurrence of diabetes and the associated medical comorbidities. Clinical data suggest that hyperglycemia induced by diabetes seriously affects metabolic activity and quality in oocytes. Glucose is the substrate for many cellular functions that can regulate the process of meiosis, and is metabolised by glycolysis pathway, the pentose phosphate pathway, the hexosamine biosynthesis pathway and the polyol pathway. Recent studies have revealed that upon specific depletion of TXNIP, most of oocytes were arrested at metaphate I (MI) stage, which exhibited disturbed actin networking and upregulated glucose uptake and lactate production, indicating that TXNIP is an important regulator of glucose metabolism in oocytes. In summary, it may exist complex regulatory relationships between TXNIP and glucose metabolism in oocytes. TXNIP may be a critical target mediating glucose metabolism in oocytes, and further study will provide important theoretical reference for abnormal metabolic studies. Hence, the structure and regulatory mechanism of TNXIP, pathways of glucose metabolism in oocytes and the relationship between TXNIP and glucose metabolism in oocytes are reviewed in this paper.

Key words: TXNIP, oocyte, glucose, metabolism

[1]    徐盛玉, 吴德, 王定越. 卵母细胞质量评定方法. 中国生物工程杂志, 2008, 28(7):116-121.
Xu S Y, Wu D, Wang D Y. The review of assessment of oocyte quality. China Biotechnology, 2008, 28(7): 116-121. (in Chinese)
[2]    Zheng P, Schramm R D, Latham K E. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biology of Reproduction, 2005, 72(6):1359-1369.
[3]    Sutton-McDowall M L, Gilchrist R B, Thompson J G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, 2010, 139(4):685-695.
[4]    Spindel O N, World C, Berk B C. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxidants & Redox Signaling, 2012, 16(6):587-596.
[5]    Chen K S, DeLuca H F. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochimica et Biophysica Acta, 1994, 1219(1):26-32.
[6]    Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J. Identification of thioredoxin- binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. The Journal of Biological Chemistry, 1999, 274(31):21645-21650.
[7]    Yamanaka H, Maehira F, Oshiro M, Asato T, Yanagawa Y, Takei H, Nakashima Y. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochemical and Biophysical Research Communications, 2000, 271(3):796-800.
[8]    Takahashi Y, Nagata T, Ishii Y, Ikarashi M, Ishikawa K, Asai S. Up-regulation of vitamin D3 up-regulated protein 1 gene in response to 5-fluorouracil in colon carcinoma SW620. Oncology Reports, 2002, 9(1):75-79.
[9]    Lee S, Kim S M, Lee R T. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxidants & Redox Signaling, 2013, 18(10):1165-1207.
[10]   Ludwig D L, Kotanides H, Le T, Chavkin D, Bohlen P, Witte L. Cloning, genetic characterization, and chromosomal mapping of the mouse VDUP1 gene. Gene, 2001, 269(1-2):103-112.
[11]   Shalev A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Molecular Endocrinology, 2014, 28(8):1211-1220.
[12]   Patwari P, Chutkow W A, Cummings K, Verstraeten V L, Lammerding J, Schreiter E R, Lee R T. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. The Journal of Biological Chemistry, 2009, 284(37):24996-25003.
[13]   Shin D, Jeon J H, Jeong M, Suh H W, Kim S, Kim H C, Moon O S, Kim Y S, Chung J W, Yoon S R, Kim W H, Choi I. VDUP1 mediates nuclear export of HIF1alpha via CRM1-dependent pathway. Biochimica et Biophysica Acta, 2008, 1783(5):838-848.
[14]   Patwari P, Higgins L J, Chutkow W A, Yoshioka J, Lee R T. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. The Journal of Biological Chemistry, 2006, 281(31):21884-21891.
[15]   Hwang J, Suh H W, Jeon Y H, Hwang E, Nguyen L T, Yeom J, Lee S G, Lee C, Kim K J, Kang B S, Jeong J O, Oh T K, Choi I, Lee J O, Kim M H. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nature Communications, 2014, 5:2958.
[16]   Lillig C H, Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxidants & Redox Signaling, 2007, 9(1):25-47.
[17]   Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. The Journal of Biological Chemistry, 2010, 285(6):3997-4005.
[18]   Lu J, Holmgren A. Thioredoxin system in cell death progression. Antioxidants & Redox Signaling, 2012, 17(12):1738-1747.
[19]   Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Frontiers in Immunology, 2014, 4:514.
[20]   Yu Y, Xing K, Badamas R, Kuszynski C A, Wu H, Lou M F. Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radical Biology and Medicine, 2013, 57:92-104.
[21]   Forrester M T, Seth D, Hausladen A, Eyler C E, Foster M W, Matsumoto A, Benhar M, Marshall H E, Stamler J S. Thioredoxin- interacting protein (Txnip) is a feedback regulator of S-nitrosylation. The Journal of Biological Chemistry, 2009, 284(52):36160-36166.
[22]   Ogata F T, Batista W L, Sartori A, Gesteira T F, Masutani H, Arai R J, Yodoi J, Stern A, Monteiro H P. Nitrosative/Oxidative Stress Conditions Regulate Thioredoxin-Interacting Protein (TXNIP) Expression and Thioredoxin-1 (TRX-1) Nuclear Localization. PLoS One, 2013, 8(12):e84588.
[23]   Cha-Molstad H, Saxena G, Chen J, Shalev A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element- binding protein, p300, and histone H4 acetylation in pancreatic beta cells. The Journal of Biological Chemistry, 2009, 284(25): 16898-16905.
[24]   Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. The Journal of Biological Chemistry, 2002, 277(6):3829-3835.
[25]   Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One, 2011, 6(12):e28804.
[26]   Chen J, Jing G, Xu G, Shalev A. Thioredoxin-interacting protein stimulates its own expression via a positive feedback loop. Molecular Endocrinology, 2014, 28(5):674-680.
[27]   Sans C L, Satterwhite D J, Stoltzman C A, Breen K T, Ayer D E. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Molecular and Cellular Biology, 2006, 26(13):4863-4871.
[28]   Stoltzman C A, Peterson C W, Breen K T, Muoio D M, Billin A N, Ayer D E. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19):6912-6917.
[29]   Han K S, Ayer D E. MondoA senses adenine nucleotides: transcriptional induction of thioredoxin-interacting protein. Biochemical Journal, 2013, 453(2):209-218.
[30]   Kato T, Shimono Y, Hasegawa M, Jijiwa M, Enomoto A, Asai N, Murakumo Y, Takahashi M. Characterization of the HDAC1 complex that regulates the sensitivity of cancer cells to oxidative stress. Cancer Research, 2009, 69(8):3597-3604.
[31]   Zhou J, Yu Q, Chng W J. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. The International Journal of Biochemistry & Cell Biology, 2011, 43(12):1668-1673.
[32]   Lee J H, Jeong E G, Choi M C, Kim S H, Park J H, Song S H, Park J, Bang Y J, Kim T Y. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Molecules and Cells, 2010, 30(2):107-112.
[33]   Matsumoto M, Pocai A, Rossetti L, Depinho R A, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metabolism, 2007, 6(3): 208-216.
[34]   Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. The Journal of Biological Chemistry, 2013, 288(32):23194-23202.
[35]   Han S H, Jeon J H, Ju H R, Jung U, Kim K Y, Yoo H S, Lee Y H, Song K S, Hwang H M, Na Y S, Yang Y, Lee K N, Choi I. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene, 2003, 22(26):4035-4046.
[36]   Nishinaka Y, Nishiyama A, Masutani H, Oka S, Ahsan K M, Nakayama Y, Ishii Y, Nakamura H, Maeda M, Yodoi J. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Research, 2004, 64(4):1287-1292.
[37]   Jeon J H, Lee K N, Hwang C Y, Kwon K S, You K H, Choi I. Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Research, 2005, 65(11):4485-4489.
[38]   Kwon H J, Won Y S, Suh H W, Jeon J H, Shao Y, Yoon S R, Chung  J W, Kim T D, Kim H M, Nam K H, Yoon W K, Kim D G, Kim    J H, Kim Y S, Kim D Y, Kim H C, Choi I. Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis. Journal of Immunology, 2010, 185(7): 3980-3989.
[39]   Jin H O, Seo S K, Kim Y S, Woo S H, Lee K H, Yi J Y, Lee S J, Choe T B, Lee J H, An S, Hong S I, Park I C. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene, 2011, 30(35):3792-3801.
[40]   Kaadige M R, Yang J, Wilde B R, Ayer D E. MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Molecular and Cellular Biology, 2015, 35(1):101-110.
[41]   Gilchrist R B, Ritter L J, Armstrong D T. Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, 2004, 82-83:431-446.
[42]   Kim E, Seok H H, Lee S Y, Lee D R, Moon J, Yoon T K, Lee W S, Lee K A. Correlation between Expression of Glucose Transporters in Granulosa Cells and Oocyte Quality in Women with Polycystic Ovary Syndrome. Endocrinology and Metabolism, 2014, 29(1):40-47.
[43]   Kumar P, Rajput S, Verma A, De S, Datta T K. Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus bubalis) oocytes and in vitro-produced embryos. Theriogenology, 2013, 80(8):914-922.
[44]   Wang Q, Chi M M, Schedl T, Moley K H. An intercellular pathway for glucose transport into mouse oocytes. American Journal of Physiology. Endocrinology and Metabolism, 2012, 302(12):E1511-1518.
[45]   Wang Q, Chi M M, Moley K H. Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice. Endocrinology, 2012, 153(4):1984-1989.
[46]   Collado-Fernandez E, Picton H M, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. The International Journal of Developmental Biology, 2012, 56(10-12): 799-808.
[47]   Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction, 2002, 124(5):675-681.
[48]   Kim Y, Kim E Y, Seo Y M, Yoon T K, Lee W S, Lee K A. Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes. Clinical and Experimental Reproductive Medicine, 2012, 39(2):58-67.
[49]   Ishizaki C, Watanabe H, Bhuiyan M M, Fukui Y. Developmental competence of porcine oocytes selected by brilliant cresyl blue and matured individually in a chemically defined culture medium. Theriogenology, 2009, 72(1):72-80.
[50]   Absalon-Medina V A, Butler W R, Gilbert R O. Preimplantation embryo metabolism and culture systems: experience from domestic animals and clinical implications. Journal of Assisted Reproduction and Genetics, 2014, 31(4):393-409.
[51]   Frank L A, Sutton-McDowall M L, Gilchrist R B, Thompson J G. The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Molecular Reproduction and Development, 2014, 81(5):391-408.
[52]   Sutton-McDowall M L, Gilchrist R B, Thompson J G. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction, 2004, 128(3): 313-319.
[53]   Frank L A, Sutton-McDowall M L, Brown H M, Russell D L, Gilchrist R B, Thompson J G. Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Human Reproduction, 2014, 29(6):1292-1303.
[54]   Kaneko T, Iuchi Y, Takahashi M, Fujii J. Colocalization of polyol-metabolizing enzymes and immunological detection of fructated proteins in the female reproductive system of the rat. Histochemistry and Cell Biology, 2003, 119(4):309-315.
[55]   Gu L, Liu H, Gu X, Boots C, Moley K H, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cellular and Molecular Life Sciences : CMLS, 2015, 72(2): 251-271.
[56]   Minn A H, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology, 2005, 146(5):2397-2405.
[57]   Chen J, Saxena G, Mungrue I N, Lusis A J, Shalev A. Thioredoxin- interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes, 2008, 57(4):938-944.
[58]   Chen J, Hui S T, Couto F M, Mungrue I N, Davis D B, Attie A D, Lusis A J, Davis R A, Shalev A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. The FASEB Journal, 2008, 22(10): 3581-3594.
[59]   高海波, 李裕明, 李丽华, 刘志平, 陈璐璐. 硫氧环蛋白相互作用蛋白与糖尿病关系的研究. 华中科技大学学报: 医学版, 2009(5): 669-672.
Gao H B, Li Y M, Li L H, Liu Z P, Chen L L. Relationship between thioredoxin interacting protein and diabetes mellitus. Journal of Huazhong University of Science and Technology: Medicine, 2009(5): 669-672. (in Chinese)
[60]   Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nature Medicine, 2013, 19(9):1141-1146.
[61]   Jing G, Westwell-Roper C, Chen J, Xu G, Verchere C B, Shalev A. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2. The Journal of Biological Chemistry, 2014, 289(17):11807-11815.
[62]   焦铭, 李笔, 陶敏, 黄俊潮. 胰岛淀粉样多肽诱导β细胞凋亡机制的研究进展. 生命科学, 2014, (3):302-308.
Jiao M, Li B, Tao M, Huang J C. Progress on the mechanism of β-cell apoptosis induced by islet amyloid polypeptide. Chinese Bulletin of Life Sciences, 2014, (3): 302-308. (in Chinese)
[63]   Chang A S, Dale A N, Moley K H. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology, 2005, 146(5):2445-2453.
[64]   Wang Q, Ratchford A M, Chi M M, Schoeller E, Frolova A, Schedl T, Moley K H. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Molecular Endocrinology, 2009, 23(10):1603-1612.
[65]   Wang Q, Moley K H. Maternal diabetes and oocyte quality. Mitochondrion, 2010, 10(5):403-410.
[66]   Zhang C H, Qian W P, Qi S T, Ge Z J, Min L J, Zhu X L, Huang X, Liu J P, Ouyang Y C, Hou Y, Schatten H, Sun Q Y. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reproductive Biology and Endocrinology : RB&E, 2013, 11:31.
[67]   Ma J Y, Li M, Ge Z J, Luo Y, Ou X H, Song S, Tian D, Yang J, Zhang B, Ou-Yang Y C, Hou Y, Liu Z, Schatten H, Sun Q Y. Whole transcriptome analysis of the effects of type I diabetes on mouse oocytes. PLoS One, 2012, 7(7):e41981.
[68]   Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41):17639-17644.
[69]   Lee S Y, Lee H S, Kim E Y, Ko J J, Yoon T K, Lee W S, Lee K A. Thioredoxin-interacting protein regulates glucose metabolism and affects cytoplasmic streaming in mouse oocytes. PLoS One, 2013, 8(8):e70708.
[70]   Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Molecular Reproduction and Development, 2013, 80(2):166-182.
[1] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[2] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[3] Lu YANG,NaoHua ZENG,JinShun BAI,Xing ZHOU,GuoPeng ZHOU,SongJuan GAO,Jun NIE,WeiDong CAO. Responses of Soil Diazotroph Community to Rice Straw, Glucose and Nitrogen Addition During Chinese Milk Vetch Growth [J]. Scientia Agricultura Sinica, 2020, 53(1): 105-116.
[4] ZHANG Tong,LI RuiLan,FAN XiaoMei,LIU ChunJie,HAI RiHan,HUO Min,ZHANG JiaXin. Expression of p66Shc and Its Relationship with Cytoplasmic Redox Homeostasis in Sheep Oocytes [J]. Scientia Agricultura Sinica, 2019, 52(12): 2183-2192.
[5] GONG XiangWei, HAN HaoKun, ZHANG DaZhong, LI Jing, WANG Meng, XUE ZhiHe, YANG Pu, GAO XiaoLi, FENG BaiLi. Effects of Nitrogen Fertilizer on Dry Matter Accumulation, Transportation and Nitrogen Metabolism in Functional Leaves of Broomcorn Millet at Late Growth Stage [J]. Scientia Agricultura Sinica, 2018, 51(6): 1045-1056.
[6] LI YongZhu,JIN TaiHua, HAN ZhaoQing, XIA ChunFeng, CHAO HongYu, ZHANG NaiFeng, WANG ShiQin, DIAO QiYu. Effects of the Milk Replacer on the Development of Intestine, the Flora Diversity and the Relative Expression of Glucose Transporter Gene of Early Weaned Yimeng Black Goat Lambs [J]. Scientia Agricultura Sinica, 2018, 51(11): 2193-2205.
[7] LI HaiJun, YU BoYang, DUAN YunJiao, LIU XingYu, WENG YaZheng, DU ChenGuang, WANG XiuMei. A Modified Paraffin-Section Technique for Ovine Cumulus-Oocyte Complexes [J]. Scientia Agricultura Sinica, 2017, 50(8): 1543-1550.
[8] ZHANG Xiang, HU DaPeng, LI Yuan, ZHANG LiYa, WANG Jian, CHEN Yuan, CHEN DeHua. Effects of Soil Water Deficit on Insecticidal Protein Expression in Boll Shell of Transgenic Bt Gene Cotton [J]. Scientia Agricultura Sinica, 2017, 50(4): 640-647.
[9] ZHAO YiWen, ZHAO Jia, PANG QuanHai. Effect of Melatonin on Insulin and Gαi/o Expression in Rat Insulinoma Cell Line [J]. Scientia Agricultura Sinica, 2017, 50(17): 3429-3438.
[10] XU Hai-feng, LIU Jing-xuan, WANG Yi-cheng, ZUO Wei-fang, QU Chang-zhi, WANG De-yun, ZHANG Jing, JIANG Sheng-hui, WANG Nan, CHEN Xue-sen. Isolation and Expression Analysis of a Vacuolar Glucose Transporter Gene MdVGT1 in Apple [J]. Scientia Agricultura Sinica, 2016, 49(23): 4584-4592.
[11] ZUO Qi-sheng, ZHANG Lei, LIAN Chao, XIAO Tian-rong, WANG Ying-jie, TANG Bei-bei, WANG Fei, JI Yan-qin, LU zhen-yu, ZHAO Rui-feng, ZHANG Wen-hui, ZHANG Ya-ni, LI Bi-chun. The Regulatory Mechanism of the Lipid Metabolism Pathways During Male Germ Cell Differentiation in Chickens [J]. Scientia Agricultura Sinica, 2015, 48(22): 4539-4550.
[12] FU Ting, YANG Ting, LIU Yang, WANG Gui-rong. Identification and Functional Characterization of TRPA1 in Apolygus lucorum (Meyer-Dür) [J]. Scientia Agricultura Sinica, 2015, 48(12): 2364-2373.
[13] PAN Yang-yang, LI Qin, CUI Yan, FAN Jiang-feng, YANG Kun, HE Jun-feng, YU Si-jiu. The Expression of EGF and EGFR in Yak Oocyte and Its Function on Development Competence of Embryo [J]. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448.
[14] ZHAO Ying, YANG Ke-jun, ZHAO Chang-jiang, LI Zuo-tong, WANG Yu-feng, FU Jian, GUO Liang, LI Wen-sheng. Alleviation of the Adverse Effects of Salt Stress by Regulating Photosynthetic System and Active Oxygen Metabolism in Maize Seedlings [J]. Scientia Agricultura Sinica, 2014, 47(20): 3962-3972.
[15] ZENG Zhi-jun, LIU Chen-long, YANG Hui, YANG Bin, YANG Zhu-qing, CHEN Cong-ying. Genome-Wide Association Study on Porcine Serum Glucose (GLU) and Glycosylated Serum Proteins (GSP) with High Density SNP Markers [J]. Scientia Agricultura Sinica, 2014, 47(18): 3700-3707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!