Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2796-2807.doi: 10.3864/j.issn.0578-1752.2013.13.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Comparative Analysis of Differential Proteins from Midgut of Silkworm Induced by Cytoplasmic Polyhedrosis Virus Infection

 GAO  Kun, DENG  Xiang-Yuan, QIU  Zhi-Yong, QIN  Guang-Xing, GUO  Xi-Jie   

  1. 1.Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu
    2.Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu
    3.College of Biotechnology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu
  • Received:2012-12-04 Online:2013-07-01 Published:2013-01-14

Abstract: 【Objective】 The objective of this study is to analyze differentially expressed proteins in the midgut of silkworm strain p50 induced by Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) , and to explore the immune mechanism of silkworm against BmCPV infection, which would also provide valuable information for further study. 【Method】 The differentiated proteins in the midgut of silkworm which induced by BmCPV was investigated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and the characteristics and functions of the differentially expressed proteins were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Silkworm Protein Data Bank.【Result】Between the control and BmCPV infected silkworm midgut, 8 differentiated protein spots (3 in control and 5 in BmCPV infected silkworm) were distinguished. In the control silkworm midgut, the three specific spots were hydroxysteroid dehydrogenase, voltage-dependent anion-selective channel (VDAC) and a new unknown protein. However, in the BmCPV infected silkworm midgut, the five specific spots might be ras-specific guanine nucleotide-releasing factor 1-like (RASGRF1), H+ transporting ATP synthase beta subunit isoform 1, putative tumor suppressor protein (PDSS2), multidrug resistance-associated protein (MRP4/ABCC4) and nipped-B-like protein (NIPBL). 【Conclusion】BmCPV infection induced a variety of differentially expressed proteins in the midgut, suggesting that different mechanisms were activited in the silkworm to response to the virus infection. Of the 8 differnentiated proteins, the down-regulated expression of VDAC and the up-regulated expression of PDSS2, MRP4/ABCC4 and NIPBL could respectively induce apoptosis. It would provide clues for elucidating the apoptosis program of silkworm against BmCPV infection.

Key words: Bombyx mori , cytoplasmic polyhedrosis virus , midgut , differentiated expressed proteins

[1]Tan Y R, Sun J C, Lu X Y, Su D M, Zhang J Q. Entry of Bombyx mori cypovirus 1 into midgut cells in vivo. Journal of Electron Microscopy (Tokyo), 2003, 52(5): 485-489.

[2]Sun J C, Chen D N, Yang Y F, Zhang Q F, Tan P C, Xu X Y, Qiu B L. Penetration and replication of Bombyx mori cytoplasmic polyhedrosis virus in vivo. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(2): 78-82.

[3]张建红, 高玮, 张立人. 家蚕质型多角体病毒在蚕体内的形态发生及其细胞病理变化. 蚕业科学, 1990, 16(3): 140-144.

Zhang J H, Gao W, Zhang L R. Morphogenesis of cytoplasmic polyhedrsis virus of Bombyx mori in vivo and cytopathologic changes. Acta Sericologica Sinica, 1990, 16(3): 140-144. (in Chinese)

[4]钟杨生, 徐秋云, 林健荣, 王叶元, 范兰芬. 高温干燥对家蚕胚胎发育影响的蛋白质表达谱分析//中国蚕学会第六届青年学术研讨会论文集 (2), 2009.

Zhong Y S, Xu Q Y, Lin J Y, Wang Y Y, Fan L F. Analysis on protein expression of silkworm embryonic development under high temperature and dry condition//The Sixth Youth Symposium of Chinese Society of Sericultural Science (2), 2009. (in Chinese)

[5]裘智勇, 李木旺, 沈兴家, 郭锡杰. 家蚕对浓核病毒 (镇江株)抵抗性和感受性品种的中肠组织蛋白比较分析. 蚕业科学, 2008, 34(2): 244-249.

Qiu Z Y, Li M W, Shen X J, Guo X J. Comparative analysis of proteins extracted from midgut of silkworm strains susceptible and non-susceptible to Bomby mori Densovirus (Zhenjiang strain). Acta Sericologica Sinica, 2008, 34(2): 244-249. (in Chinese)

[6]刘晓勇, 陈克平, 姚勤, 李军, 蔡克亚. 家蚕中肠组织抗核型多角体病毒病的相关蛋白分析. 昆虫学报, 2008, 51(4): 443-448.

Liu X Y, Chen K P, Yao Q, Li J, Cai K Y. Proteome analysis of silkworm (Bombyx mori) midgut proteins related to BmNPV infection resistance or susceptibility. Acta Entomologica Sinica, 2008, 51(4): 443-448. (in Chinese)

[7]Qin L G, Xia H C, Shi H F, Zhou Y J, Chen L, Yao Q, Liu X Y, Feng F, Yuan Y, Chen K P. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. Journal of Proteomics, 2012, 75(12): 3630-3638.

[8]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.

[9]Gordaliza M, Castro M A, Miguel del Corral J M, Lopez-Vazquez M L, Garcia P A, Garcia-Gravalos M D, San Feliciano A. Synthesis and antineoplastic activity of cyclolignan aldehydes. European Journal of Medicinal Chemistry, 2000, 35: 691-698.

[10]Hoogenboom B W, Suda K, Engel A, Fotiadis D. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. Journal of Molecular Biology, 2007, 370: 246-255.

[11]Mannella C A. The ‘ins’ and ‘outs’ of mitochondrial membrane channels. Trends in Biochemical Sciences, 1992, 17: 315-320.

[12]Dihanich M. The biogenesis and function of eukaryotic porins. Experientia, 1990, 46: 146-153.

[13]Forte M, Guy H R, Mannella C A. Molecular genetics of the VDAC ion channel: structural model and sequence analysis. Journal of Bioenergetics and Biomembranes, 1987, 19(4): 341-350.

[14]Hiller S, Abramson J, Mannella C, Wagner G, Zeth K. The 3D structures of VDAC represent a native conformation. Trends in Biochemical Sciences, 2010, 35: 514-521.

[15]Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3100-3105.

[16]Vander Heiden M G, Chandel N S, Schumacker P T, Thompson C B. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Molecular Cell, 1999, 3: 159-167.

[17]Vander Heiden M G, Li X X, Gottleib E, Hill R B, Thompson C B, Colombini M. Bcl- XL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. Journal of Biological Chemistry, 2001, 276(22): 19414-19419.

[18]Shimizu S, Shinohara Y, Tsujimoto Y. Bax and Bcl- xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene, 2000, 19(38): 4309-4318.

[19]Tan W, Lai J C, Miller P, Stein C A, Colombini M. Phosphorothioate oligonucleotides reduce mitochondrial outer membrane permeability to ADP. American Journal of Physiology-Cell Physiology, 2007, 292: 1388-1397.

[20]Tan W, Loke Y H, Stein C A, Miller P, Colombini M. Phosphorothioate oligonucleotides block the VDAC channel. Biophysical Journal, 2007, 93: 1184-1191.

[21]Lai J C, Tan W, Benimetskaya L, Miller P, Colombini M, Stein C A. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(19): 7494-7499.

[22]Tan W, Colombini M. VDAC closure increases calcium ion flux. Biochimica et Biophysica Acta, 2007, 1768: 2510-2515.

[23]Peng M, Falk M J, Haase V H, King R, Polyak E, Selak M, Yudkoff M, Hancock W W, Meade R, Saiki R, Lunceford A L, Clarke C F, Gasser D L. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genetics, 2008, 4(4): e1000061.

[24]Ziegler C G, Peng M, Falk M J, Polyak E, Tsika E, Ischiropoulos H, Bakalar D, Blendy J A, Gasser D L. Parkinson's disease-like neuromuscular defects occur in prenyl diphosphate synthase subunit 2 (Pdss2) mutant mice. Mitochondrion, 2012, 12: 248-257.

[25]Chen P, Zhao S H, Chu Y L, Xu K, Zhu L, Wu Y, Song J, Cao C X, Xue X, Niu Y Y. Anticancer activity of PDSS2, prenyl diphosphate synthase, subunit 2, in gastric cancer tissue and the SGC7901 cell line. Anticancer Drugs, 2009, 20(2): 141-148.

[26]Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 2000, 92(16): 1295-1302.

[27]Schuetz J D, Connelly M C, Sun D, Paibir S G, Flynn P M, Srinivas R V, Kumar A, Fridland A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nature Medicine, 1999, 5(9): 1048-1051.

[28]Wielinga P R, van der Heijden I, Reid G, Beijnen J H, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. Journal of Biological Chemistry, 2003, 278(20): 17664-17671.

[29]Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. Journal of Biological Chemistry, 2000, 275(39): 30069-30074.

[30]Guo Y, Kotova E, Chen Z S, Lee K, Hopper-Borge E, Belinsky M G, Kruh G D. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'- (2'-phosphonylmethoxyethyl) adenine. Journal of Biological Chemistry, 2003, 278(32): 29509-29514.

[31]Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Current Opinion in Cell Biology, 1994, 6: 415-424.

[32]Copsel S, Garcia C, Diez F, Vermeulem M, Baldi A, Bianciotti L G, Russel F G, Shayo C, Davio C. Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. Journal of Biological Chemistry, 2011, 286(9): 6979-6988.

[33]Hammond C L, Marchan R, Krance S M, Ballatori N. Glutathione export during apoptosis requires functional multidrug resistance- associated proteins. Journal of Biological Chemistry, 2007, 282(19): 14337-14347.

[34]Hammond C L, Lee T K, Ballatori N. Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. Journal of Hepatology, 2001, 34: 946-954.

[35]Coppola S, Ghibelli L. GSH extrusion and and the mitochondrial pathway of apoptotic signalling. Biochemical Society Transactions, 2000, 28(2): 56-61.

[36]Tagami M, Kusuhara S, Imai H, Uemura A, Honda S, Tsukahara Y, Negi A. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells. Biochemical Biophysical Research Communications, 2010, 400: 593-598.

[37]Hannivoort R A, Dunning S, Vander Borght S, Schroyen B, Woudenberg J, Oakley F, Buist-Homan M, van den Heuvel F A, Geuken M, Geerts A, Roskams T, Faber K N, Moshage H. Multidrug resistance-associated proteins are crucial for the viability of activated rat hepatic stellate cells. Hepatology, 2008, 48: 624-634.

[38]Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Molecuar Cell, 2000, 5: 243-254.

[39]Gillespie P J, Hirano T. Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Current Biology, 2004, 14: 1598-1603.

[40]Takahashi T S, Yiu P, Chou M F, Gygi S, Walter J C. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nature Cell Biology, 2004, 6(10): 991-996.

[41]Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters J M. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Current Biology, 2006, 16(9): 863-874.

[42]单士刚, 姚青, 彭建新, 洪华珠. 动物病毒诱导的细胞凋亡及其生理意义. 病毒学报, 2006, 22(3): 233-236.

Shan S G, Yao Q, Peng J X, Hong H Z. Physiological significance of apoptosis in animal virus infection. Chinese Journal of Virology, 2006, 22(3): 233-236. (in Chinese)
[1] LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262.
[2] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[3] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[4] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[5] DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384.
[6] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[7] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[8] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[9] ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411.
[10] WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799.
[11] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[12] Jie HU,XinYi WANG,Fei WANG. Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(21): 4188-4196.
[13] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[14] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
[15] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!