Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1425-1431.doi: 10.3864/j.issn.0578-1752.2012.07.022

• RESEARCH NOTES • Previous Articles     Next Articles

Application of Wavelet Analysis for Estimation of Soil Available Potassium Content with Hyperspectral Reflectance

 CHEN  Hong-Yan, ZHAO  Geng-Xing, LI  Xi-Can, LU  Wen-Li, SUI  Long   

  1. 1.山东农业大学资源与环境学院,山东泰安 271018
    2.山东农业大学信息科学与工程学院,山东泰安 271018
    3.山东农业大学园艺科学与工程学院, 山东泰安 271018
    4.山东省沾化县国土资源局,山东沾化 256800
  • Received:2011-10-08 Online:2012-04-01 Published:2012-01-18

Abstract: 【Objective】 This study aimed at improving the precision and practicability of the soil available potassium estimation model by removing the noise of soil hyperspectral reflectance. 【Method】 Seventy-six soil samples with similar soil organic matter, nitrogen and phosphorus element contents and different potassium element contents were selected. The first derivative spectrum of the soil sample logarithmic reflectance was decomposed to multiple levels by using four kinds of wavelet function, respectively. The low frequency wavelet coefficients were obtained, and the hyperspectral estimation models of soil available potassium content were built. 【Result】The results showed that the low frequency wavelet coefficients of 1-3 levels could represent the original spectrum. Based on the low frequency coefficients of different wavelet functions at the same level, the precise of soil available potassium estimation model showed a little difference. The model built with the low frequency coefficient of the second decomposition level using the Bior 1.3 function had comparatively high accuracy and was chosen as the best model. With the data reducing to 25% and reflecting 95.6% information of the input spectrum, the model building R2 reached 0.976 and RMSE was 10.66 mg•kg-1, which was validated to have fairly good forecast accuracy. 【Conclusion】Therefore, wavelet analysis for obtaining wavelet coefficients can not only extract the soil hyperspectral information, but also compress data, which is feasible to forecast soil potassium content in combination with partial least squares regression method.

Key words: hyperspectral, soil available potassium, wavelet analysis, wavelet coefficient

[1]苏建平, 邹  忠, 黄  标, 丁  峰, 陈小明, 王冬梅, 李  峰, 丁扣其. 江苏如皋市农田土壤速效钾时空变化与平衡施肥技术研究. 土壤通报, 2006, 37(2): 407-410.

Su J P, Zou Z, Huang B, Ding F, Chen X M, Wang D M, Li F, Ding K Q. The spacial-temporal change of available potassium in agricultural soil of Jiangsu Rugao and balanced fertilization technique. Chinese Journal of Soil Science, 2006, 37(2): 407-410. (in Chinese)

[2]Sullivan D G, Shaw J N, Rickman D, Mask P L, Luvall J C. Using remote sensing data to evaluate surface soil properties in Alabama ultisols. Soil Science, 2005, 170(12): 954-968.

[3]彭  杰, 张杨珠, 周  清, 庞新安, 伍维模. 土壤理化特性与土壤光谱特征关系的研究进展. 土壤通报, 2009, 40(5): 1204-1208.

Peng J, Zhang Y Z, Zhou Q, Pang X A, Wu W M. The progress on the physics-chemistry properties with spectrum characteristic of the soil. Chinese Journal of Soil Science, 2009, 40(5): 1204-1208. (in Chinese)

[4]刘焕军, 张  柏, 杨  立, 宋开山, 王宗明, 段洪涛. 土壤光学遥感研究进展. 土壤通报, 2007, 38(6): 1197-1202.

Liu H J, Zhang B, Yang L, Song K S, Wang Z M, Duan H T. Review of soil optical remote sensing. Chinese Journal of Soil Science, 2007, 38(6): 1197-1202. (in Chinese)

[5]邓  晶, 杜昌文, 周健民, 王火焰, 陈小琴. 红外光谱在土壤学中的应用. 土壤, 2008, 40(6): 872-877.

Deng J, Du C W, Zhou J M, Wang H Y, Chen X Q. Application of infrared spectroscopy in soil science, Soils, 2008, 40(6): 872-877. (in Chinese)

[6]Weng Y L, Gong P, Zhu Z L. A spectral index for estimating soil salinity in the yellow river delta region of China using EO-1 hyperion data. Pedosphere, 2010, 20(3): 378-388.

[7]刘焕军, 张  柏, 赵  军, 张兴义, 宋开山, 王宗明, 段洪涛. 黑土有机质含量高光谱模型研究. 土壤学报, 2007, 41(1): 27-32.

Liu H J, Zhang B, Zhao J, Zhang X Y, Song K S, Wang Z M, Duan H T. Spectral models for prediction of originic matter in black soil. Acta Pedologica Sinica, 2007, 41(1): 27-32. (in Chinese)

[8]褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 2004, 16(4): 528-542.

Chu X L, Yuan H F, Lu W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Progress in Chemistry, 2004, 16(4): 528-542. (in Chinese)

[9]刘  炜, 常庆瑞, 郭  曼, 邢东兴, 员永生. 小波变换在土壤有机质含量可见/近红外光谱分析中的应用. 干旱地区农业研究, 2010, 28(5): 241-246.

Liu W, Chang Q R, Guo M, Xing D X, Yuan Y S. Application of wavelet transformation in detection of organic matter content based on visible/near infrared reflectance spectroscopy. Agricultural Research in the Arid Areas, 2010, 28(5): 241-246. (in Chinese)

[10]郑立华, 李民赞, 潘  娈, 孙建英, 唐 宁. 近红外光谱小波分析在土壤参数预测中的应用. 光谱学与光谱分析, 2009, 29(6): 1549-1552.

Zheng L H, Li M Z, Pan L, Sun J Y, Tang N. Application of wavelet packet analysis in estimating soil parameters based on NIR spectra. Spectroscopy and Spectral Analysis, 2009, 29(6): 1549-1552. (in Chinese)

[11]Ge Y, Thomasson J A. Wavelet incorporated spectral analysis for soil property determination. Transactions of the American Society of Agricultural and Biological Engineers, 2006. 49(4): 1193-1201.

[12]田高友, 褚小立, 袁洪福. 小波变换-偏最小二乘法用于柴油近红外光谱分析. 计算机与应用化学, 2006, 23(10): 971-974.

Tian G Y, Chu X L, Yuan H F. Near infrared spectra analysis of diesel by wavelet transform combined with partial least square regression method. Computers and Applied Chemistry, 2006, 23(10): 971-974. (in Chinese)

[13]Confalonieri M, Fornasier F, Ursino A. The potential of neat infrared reflectance spectroscopy as a tool for the chemical characterization of agricultural soils. Journal of Near Infrared Spectroscope, 2001,9: 123-131.

[14]徐永明, 蔺启忠, 王  璐, 黄秀华. 基于高分辨率反射光谱的土壤营养元素估算模型. 土壤学报, 2006, 43(5): 709-716.

Xu Y M, Lin Q Z, Wang L, Huang X H. Model for estimating soil nutrient elements based on high resolution reflectance spectra. Acta Pedologica Sinica, 2006, 43(5): 709-716. (in Chinese)

[15]李  伟. 近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[D]. 长春:吉林大学, 2006.

Li W. Using NIRS to predict the content of available nitrogen, phosphorus and potassium in soil[D]. Changchun: Jilin University, 2006. (in Chinese)

[16]Shepherd K D, Walsh M G. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 2002, 66: 988-998

[17]何  挺, 王  静, 林宗坚, 程  烨. 土壤有机质光谱特征研究. 武汉大学学报•信息科学版, 2006, 31(11): 975-979.

He T, Wang J, Lin Z J, Cheng Y. Spectral features of soil organic matter. Geomatics and Information Science of Wuhan University, 2006, 31(11): 975-979. (in Chinese)

[18]张娟娟, 田永超, 朱  艳, 姚  霞, 曹卫星. 不同类型土壤的光谱特征及其有机质含量预测. 中国农业科学, 2009, 42(9): 3154-3163.

Zhang J J, Tian Y C, Zhu Y, Yao X, Cao W X. Spectral characteristics and estimation of organic matter contents of different soil types. Scientia Agricultura Sinica, 2009, 42(9): 3154-3163. (in Chinese)

[19]李民赞. 光谱分析技术及其应用. 北京: 科学出版社, 2006: 115-279.

Li M Z. Spectral Analysis Technology and its Application. Beijing: Science Press, 2006:115-279. (in Chinese)

[20]刘  炜, 常庆瑞, 郭  曼, 邢东兴, 员永生. 不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析. 红外与毫米波学报, 2011,30(4): 316-321.

Liu W, Chang Q R, Guo M, Xing D X, Yuan Y S. Analysis on derivative spectrum feature for SOM under different scales of differential window. Journal of Infrared MillimeterWaves, 2011,30(4): 316-321. (in Chinese)

[21]李  军, 李培军, 郭建聪. 基于离散小波变换的高光谱特征提取中分解尺度的特征方法. 自然科学进展, 2007, 17(11): 1500-1508.

Li J, Li P J, Guo J C. Method of selecting decomposition resolution in the hyperspectra feature extraction based on wavelet discrete transform. Progress in Natural Science, 2007, 17(11): 1500-1508. (in Chinese)

[22]王大凯, 彭进业. 小波分析及其在信号处理中的应用. 北京: 电子工业出版社, 2006.

Wang D K, Peng J Y. Wavelet Analysis and Its Applications to Signal. Beijing: Publishing House of Electronics Industry, 2006. (in Chinese)

[23]Jahn B R, Brooksby P A, Upadhyaya S K. Wavelet-based spectral analysis for soil nitrate content measurement. Transactions of the American Society of Agricultural Engineers, 2005, 48(6): 2065-2071.

[24]王纪华, 黄文江, 劳彩莲, 张录达, 罗长兵, 王  韬, 刘良云, 宋晓宇, 马智宏. 运用PLS算法由小麦冠层反射光谱反演氮素垂直分布. 光谱学与光谱分析, 2007, 27(7): 1319-1322.

Wang J H, Huang W J, Lao C L, Zhang L D, Luo C B, Wang T, Liu L Y, Song X Y, Ma Z H. Inversion of winter wheat foliage vertical distribution based on canopy reflected spectrum by partial least squares regression method. Spectroscopy and Spectral Analysis, 2007, 27(7): 1319-1322. (in Chinese)

[25]翁永玲, 戚浩平, 方洪宾, 赵福岳, 路云阁. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演. 土壤学报2010, 47(6):1255-1263.

Weng Y L, Qi H P, Fang H B, Zhao F Y, Lu Y G. PLSR-based hyperspectral remote sensing retrieval of salinity of Chaka-Gonghe basin in Qinghai province. Acta Pedologica Sinica, 2010, 47(6): 1255-1263.(in Chinese)

[26]陈  斌, 邹贤勇, 朱文静. PCA结合马氏距离法剔除近红外异常样本. 江苏大学学报:自然科学版, 2008, 29(4):277-279.

Chen B, Zou X Y, Zhu W J. Eliminating outlier samples in near-infrared model by method of PCA-mahalanobis distance. Journal of Jiangsu University: Natural Science Edition, 2008, 29(4): 277-279. ( in Chinese)

[27]Viscarra-Rossel R A, Lark R M. Improved analysis and modeling of soil diffuse reflectance spectra using wavelets. European Journal of Soil Science, 2009, 60(3):453-464.

[28]梁  亮, 杨敏华, 臧  卓. 基于小波去噪与SVR的小麦冠层含氮率高光谱测定. 农业工程学报,2010,26(12):248-253.

Liang L, Yang M H, Zang Z. Determination of wheat canopy nitrogen content ratio by hyperspectral technology based on wavelet denoising and support vector regression. Transactions of the CSAE, 2010,26(12):248-253. (in Chinese)
[1] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[4] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[5] LI PengLei,ZHANG Xiao,WANG WenHui,ZHENG HengBiao,YAO Xia,ZHU Yan,CAO WeiXing,CHENG Tao. Assessment of Terrestrial Laser Scanning and Hyperspectral Remote Sensing for the Estimation of Rice Grain Yield [J]. Scientia Agricultura Sinica, 2021, 54(14): 2965-2976.
[6] ZHOU LongFei, GU XiaoHe, CHENG Shu, YANG GuiJun, SUN Qian, SHU MeiYan. Spectral Diagnosis of Leaf Area Density of Maize at Heading Stage Under Lodging Stress [J]. Scientia Agricultura Sinica, 2019, 52(9): 1518-1528.
[7] ZHANG Zhuo,LONG HuiLing,WANG ChongChang,YANG GuiJun. Comparison of Hyperspectral Remote Sensing Estimation Models Based on Photosynthetic Characteristics of Winter Wheat Leaves [J]. Scientia Agricultura Sinica, 2019, 52(4): 616-628.
[8] YanChuan MA,Hao LIU,ZhiFang CHEN,Kai ZHANG,Xuan YU,JingLei WANG,JingSheng SUN. Canopy Equivalent Water Thickness Estimation of Cotton Based on Hyperspectral Index [J]. Scientia Agricultura Sinica, 2019, 52(24): 4470-4483.
[9] WANG JunJie,CHEN Ling,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Effects of Hyperspectral Prediction on Leaf Nitrogen Content and the Grain Protein Content of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2019, 52(15): 2593-2603.
[10] ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867.
[11] MeiYan SHU, XiaoHe GU, Lin SUN, JinShan ZHU, GuiJun YANG, YanCang WANG, LiYan ZHANG. High Spectral Inversion of Winter Wheat LAI Based on New Vegetation Index [J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496.
[12] CHEN ZhiFang, SONG Ni, WANG JingLei, SUN JingSheng. Leaf Water Potential Estimating Models of Winter Wheat Based on Hyperspectral Remote Sensing [J]. Scientia Agricultura Sinica, 2017, 50(5): 871-880.
[13] ZHANG XiaoYuan, ZHANG LiFu, ZHANG Xia, WANG ShuDong, TIAN JingGuo, ZHAI YongGuang. Sensitivity of Different Spectral Vegetation Index for Estimating Winter Wheat Leaf Nitrogen [J]. Scientia Agricultura Sinica, 2017, 50(3): 474-485.
[14] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
[15] DI Qing-Yun, ZHANG Juan-Juan, XIONG Shu-Ping, LIU Juan, YANG Yang, MA Xin-Ming. Research on Hyperspectral Differences and Monitoring Model of Leaf Nitrogen Content in Wheat Based on Different Soil Textures [J]. Scientia Agricultura Sinica, 2013, 46(13): 2655-2667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!